ZW3432C 电力监测仪 使用说明书

(版本号 V1.4)

本说明书适用于主机软件版本V1.27、硬件版本V1.11及以上版本的仪表

第1章	产品概述	03
1.1	产品外观描述	03
1.2	产品固件版本	03
1.3	产品主要特性	04
1.4	产品主要技术参数	04
1.5	报警功能参数简介	07
1.6	产品外观、按键及显示窗口	08
1.7	引用标准	09
第2章	使用前的准备	10
2.1	安全注意事项	10
2.2	使用前的准备	10
2.3	开机信息说明	12
2.4	其它注意事项	12
第3章	产品安装指南	13
3.1	产品安装尺寸	13
3.2	产品安装方法	14
第4章	产品接线指南	17
4.1	相关内容描述	17
4.2	产品接线图	17
第5章	产品通讯指南	25
5.1	关于 RS-485 通讯	25
5.2	通讯接线方式	25
第6章	菜单操作指南	27
6.1	操作显示界面图	27
6.2	菜单总揽	
6.3	维护单操作指南	
6.4	实时显示菜单操作指南	54
第7章	报警控制	77
7.1	关于报警	77
7.2	报警设置	77
7.3	报警示例及注意事项	77
第8章	输入/输出及扩展接口	79
8.1	扩展模块的说明	79
8.2	扩展功能的使用	79
第9章	装箱清单及产品维护	80
9.1	装箱清单	80
9.2	注意事项及产品维护	

第1章 产品概述

1.1 产品外观描述:

仪表连接端子

编号	名称	说明
1	电压输入端子	待测量电压输入
2	继电器输出端子	两组继电器常开常闭触点输出
3	工作电源端子	仪表工作电源输入
4	扩展 I/O 口连接端子	扩展功能端口
5	RS-485 通讯端子	可通过 RS-485 总线通讯组网
6	电流输入端子	待测量电流输入

1.2 产品固件版本:

本产品的固件版本可以通过仪表主菜单的信息界面查询,具体操作方法可以参照第6章的6.3.3小节。

1.3 产品主要特性:

- 真有效值3路电流及中线测量
- 真有效值3相/线电压测量
- 各相及总有功功率测量
- 各相及总无功功率测量
- 各相及总视在功率测量
- 各相及总功率因数测量
- 四象限有功电能测量
- 四象限无功电能测量
- 电压频率测量
- 50 次谐波测量

● 需量测量

- 电压电流不平衡度测量
- 接受电流互感器 CT 和电压互感器 PT 输入
- 直接测量电压达到 500V
- 可记录数据的最大值和最小值及其发生时间
- 可修改的具有延时功能的定值报警和继电器输出功能
- 具有报警事件记录功能
- 可通过大液晶显示屏轻松修改设置(具有密码保护功能)
- 符合 Modbus RTU 协议带光电隔离的 RS-485 通讯接口
- 电能脉冲输出
- 具有扩展功能接口
- 具有数据保存功能,掉电后数据可保存 10 年

1.4 产品主要技术参数

本电力监测仪的测试对象为(45~65)Hz 和(350~450Hz)交流电压、 电流信号。具体技术指标如下:

在检定仪表时请把设置参数恢复为出厂默认值,参见 6.3 节

并按3相四线系统,无CT,无PT方式接线

仪表主要技术参数

测量 参数	测量范围	测量误差	分辨力	过载
电压	10.0~500.0V AC	土(0.4%读数+0.1%量程)	0.1V	120%
电流	0.01~5A AC	土(0.4%读数+0.1%量程)	0. 001A	120%
有功 功率	U*I*COSΦ	PF=1.0:	0.1W	
有功 电能	999999999 MWh	±(0.4%读数+0.1%量程)	0.1Wh	
无功 功率	U*I*SINΦ	PF=0.0:	0.1Var	
无功 电能	999999999 MVarh	±(0.8%读数+0.2%量程)	0.1Varh	
视在 功率	U*I	土(0.4%读数+0.1%量程)	0.1VA	
功率 因数	0.20~1.00	± 0.02	0.001	
频率	45~65Hz 350~450Hz	±0.05Hz	0.01Hz	
谐波	1~50 次	B级(GB/T19862-2005)		

当测试对象为350~450Hz的信号时,测量误差增加±0.4%读数

其它技术参数如下:

电压输入(每路)				
输入范围 10~500V AC				
输入阻抗	$4M \Omega$			
	电流输入(每路)			
输入范围	0.01~5A AC			
输入阻抗	<0.1 Ω			
	继电器输出(2路)			
触点类型	每路一常开一常闭机械触点			
触点容量	2A/250V AC			
串口				
类型	光电隔离 RS-485			
协议	Modbus-RTU			
波特率 9600、19200、38400 bps				
工作环境				
温度	0∼40°C			
湿度	<75%RH			
大气压力	80~106 kPa			
	工作电源			
供电电压	85~265V AC 100~300V DC			
供电频率	45~65Hz 或 直流			
整机功耗 (带扩展)	<10VA			
其它参数				
外形尺寸	96 X 96 X 100mm 带扩展 96 X 96 X 125mm			
开口尺寸	92 X 92mm			

1.5 报警功能参数简介

报警功能主要包括报警事件存储(报警发生时间、报警期间极值、报 警原因、报警结束时间),可设置的报警参数,报警可作为继电器输出的 条件等。报警参数及符号详见下表:

报警参数	符号	说明	
过流	OVER I	A相、B相、C相、零线	
欠流	UNDER I	A 相、 B 相、 C 相、 零线	
过压	OVER V	A 相、B 相、C 相、AB、BC、CA 线电压	
欠压	UNDER V	A 相、B 相、C 相、AB、BC、CA 线电压	
过有功	OVER P	总有功功率	
欠有功	UNDER P	总有功功率	
过无功	OVER Q	总无功功率	
欠无功	UNDER Q	总无功功率	
过视在功率	OVER S	总视在功率	
欠视在功率	UNDER S	总视在功率	
过频率	OVER HZ	频率	
欠频率	UNDER HZ	频率	
过功率因数	OVER PF	总功率因数	
欠功率因数	UNDER PF	总功率因数	
过功率需量	OVER W DMD	总功率需量	
逆相序	PHASE REV	电压逆相序	
过不平衡度	OVER UNBAL	电压不平衡度, 电流不平衡度	

注:上述参数指标适用正常产品,定制产品请参照顾客订货合同要求执行。

1.6 产品外观、按键及显示窗口

仪表实物图示

编号	名称	说明
1	电压输入端子	待测量电压输入
2	工作电源输入端子	仪表工作电源输入
3	产品型号标贴	标明产品型号
4	显示区域上	用于显示菜单标题
5	显示区域中	用于显示参数数值
6	显示区域左	用于显示参数标识
7	显示区域下	用于显示软键功能提示
8	软按键	功能软键(从左至右依次为F1-F5)
9	继电器输出端子	仪表内两路继电器常开常闭触点输出
10	安装片	用于固定仪表
11	显示区域右	用于显示数值单位
12	RS-485 通讯端子	可通过 RS-485 总线组网通讯

- 1.6.1 ZW3432C电力监测仪显示数据位置在仪表头,接线端子位置在仪表 尾,产品标签中记录仪表的重要信息。
- **1.6.2** 显示窗口为 LCD 液晶显示, 白色 LED 背光照明。按任意键均可开启 背光照明, 如果 5 分钟内无任何按键操作自动关闭背光照明。
- 1.6.3 操作软键共5个。参照各章内容,可以完成相应功能的操作。

符号	名称	功能说明
化	返回	返回上一级菜单;常用位置F1;
••	递减 -1	操作闪烁位,使其数据递减1,或按照预置值递减循环;
••	递增 +1	操作闪烁位,使其数据递增1,或按照预置值递增循环;
	右循环	改变当前闪烁位的位置,所有设置操作仅对闪烁位有效,常用位置 F5。

软键功能对照表

1.7 引用标准

引用国家标准

GB/T 17883-1999 0.2S 级和 0.5S 级静止式交流有功电度表

GB/T 17882-1999 2 级和 3 级静止式交流无功电度表

DL/T 614-1997 多功能电能表

GB/T 13850-1998 交流电量转换为模拟量或者数字信号的电测量变速器 DB37/T 557-2005 数字式电参数测量(试)仪

相应国际标准

IEC 62053-22:2003 电量测量设备(交流)-特殊要求-第 22 部分: 静态电度表(0.2S 级和 0.5S 级)

IEC 62053-23:2003 电量测量设备(交流)-特殊要求-第 23 部分:静态无 功表(**2S**级和**3S**级)

IEC 61010-1:2001 测量、控制以及实验室用电气设备的安全要求-第1部分: 一般要求

IEC 61000-2-11 电磁兼容性(EMC)-第 2-11 部分

IEC 60068-2-30 环境测试-第 2-30 部分

9

第2章 使用前的准备

2.1 安全注意事项

本章涉及重要的安全信息,请用户务必在安装使用本仪器之前仔细 阅读并理解本章之内容。

▲ 警告

- ●仅允许具有合格资质的工作人员从事本产品的安装,且必须按照规 定的安装程序来执行。
- ●请在从事电器安装调试工作时配备检验合格的个人安全防护装备。
- ●不允许单独操作。
- ●请在进行安装操作之前关闭所有的电源。
- ●请在检查、测试、维护本仪表之前断掉所有的电源。请关注电源系 统的设计细节,包括可能有的后备电源。
- ●请注意不要将工作区域内的工具或者其它物体遗留在本仪表内。
- ●请在移动或者安装面板时使用安全警示标志,避免人身伤害。
- ●成功地操作本仪表依靠于正确的安装、操作和使用规范。忽视基本的安装要求可能会导致人身伤害以及电子仪表或其它财产的损害。
- ●不要旁路外部保险丝。
- ●请在使用高阻表测试已经安装好的仪表之前,断开所有的与之相连 的输入和输出连线。
- ●请注意高压测试有可能会导致仪表内的元件损坏。

2.2 使用前的准备

2.2.1 测试原理:本电力监测仪所有测试数据为真有效值(TRMS)。依据的数学公式如下:

$$TRMS = \sqrt{\frac{1}{T} \int_0^T f(t)^2 dt} \quad \cdots \quad x \ge 1$$

该测试原理适用于常见的各种工频信号的测试,通过 100k A/D 采样 可对包括正弦波、方波、三角波及各种异常波形进行分析。

 Σ 的显示数值与线制有关,其数值算法如下表所示:

合计参数计算方法

SYS	21 SYS	32 SYS	33 SYS	43 SYS
线制方式	1相2线	3相3线2元件	3相3线3元件	3相4线
$\sum U$	U1	(U1+U3)/2	(U1+U2+U3)/3	(U1+U2+U3)/3
ΣI	Ι1	(I1+I3)/2	(I1+I2+I3) /3	(I1+I2+I3)/3
$\sum P$	P1	P1+P3	P1+ P3	P1+P2+P3
$\sum Q$	Q1	Q1+Q3	Q1 +Q3	Q1+Q2+Q3
ΣS	S1	(S1+S3) * √3 /2	(S1+S2+S3)* $\sqrt{3}/3$	S1+S2+S3
ΣPF	$\Sigma P / \Sigma S$			

2.2.2 安装使用流程

- a. 请参照装箱清单检查确认收到的仪表是否完整。如果存在遗漏的 项目,请及时通知供货商或本公司。
- b. 使用前请确认被测试参数的范围满足仪表的测试参数的量程范围,严禁进行超出量程的参数测试。
- c. 使用前请确认能够提供满足仪表工作要求的工作电源。不适宜的 工作电源可能烧毁仪表。
- d. 请确认仪表工作环境条件满足产品使用要求。在更加恶劣的环境 条件下可能影响仪表精度和使用寿命。
- e. 仪表安装使用流程请参照如下步骤执行:

图 2-2 仪表使用流程

2.3 开机信息说明

本电力监测仪无电源控制开关,在工作电源接入后即可工作。在开 机自检过程中,显示如下信息:

显示屏幕	显示字符	说 明	备注
	ZW 3432 C	规格型号	
METER INFO	V 1.00 SOFT	软件版本	並 : 古 立 日
	V 1.00 BOARD	硬件版本	育通厂前
	C 2.01 COMM	通讯规约版本	

仪表信息说明

备注:实物可能不同,以上模式仅供参考。

2.4 其它注意事项

- 2.4.1 RS-485 通讯: 请从 <u>http://www.qingzhi.com/下载中心</u> 中获得, 并提供测试样本程序。
- 2.4.2 继电器输出: 继电器输出触点容量: 2A/250V AC; 请注意继电器负载的工作要求。
- 2.4.3 继电器报警输出对应的测试数据可能与显示数据不同,请参照7.3.2使用说明。

2.4.4 订货须知:

用户在订货前,请确认以下项目:

- 测试参数的范围满足订货产品的量程要求; 其它测试范围必须 订货时声明。
- 2. 工作电源: AC 85~265V 45~65Hz; 其它要求必须订货声明。
- 3. 扩展功能的选择及扩展功能的类型及使用要求。
- 4. 其它特别声明的技术要求或使用要求。

第3章 产品安装指南

3.1 产品安装尺寸 3.1.1 外形尺寸图

正视图

顶视图

3.1.2 安装面板开口尺寸图

3.2 产品安装方法

本电力监测仪具有外形美观,结构紧凑,安装简单,使用方便等优点, 下面详细介绍一下涉及装配的组件和装配向导(请参照下图):

Step 1: 将本仪表自前向后嵌入到安装孔位中。

- Step 2: 将4个固定用的半透明安装片依次放入本仪表外壳四个直角 边附近的长方形定位槽里,然后沿着仪表前壳的方向向前推 至不动为止。要求用手轻轻晃动本仪表外壳,其与安装面板 间无明显间隙,配合良好,安装牢固即可。
- Step 3: 拆卸本仪表时,首先将安装片向上翘起的一端轻轻抬起,使 其脱离仪表机壳上的齿牙,然后将其向后退出定位槽,依次 将4个安装片拆下来即可将仪表拆除。

Step 4: 将本仪表所需的各种连接端子的连线均正确可靠地连接好。

安装片安装前状态示意图

安装片预装示意图

安装片紧固示意图

安装片拆卸示意图

第4章 产品接线指南

- 4.1 相关内容描述
- 4.1.1 符号描述

符号	描述	符号	描述
	保险丝	-1-	保护接地
	有效接线端子		空端子
CTs	电流互感器		电压互感器

4.1.2 注意事项

- 建议用户在外接 CT、PT 时,在本仪表和 CT、PT 之间采用接线端子排 连接,以方便仪表的拆卸。
- 当电流信号以 CT 方式接入时,请注意 CT 同名端。
- 用户需根据所采用的 PT 不同选择额定电流合适的保险丝。

4.2 产品接线图

4.2.1 仪表端子说明 (火表工作电源) 中压信号输入端 扩展接口端子 继电器输出端 化表工作电源 电压信号输入端 地名新聞 电流信号接入端

仪表输入输出端子位置示意图

4.2.2 仪表典型接线图

1-1. 仪表工作电源接线图

1-2. 单相两线系统,采用无 CT,无 PT 方式的接线图(适用于 21 SYS, 见 6.3.1 的设置仪表参数)

1-3. 单相两线系统,采用 1CT, 1PT 方式的接线图(适用于 21 SYS, 见 6.3.1 的设置仪表参数)

1-4. 单相两线系统,采用1CT,无PT,电压直接方式的接线图(适用于 21 SYS,见 6.3.1 的设置仪表参数)

2-1. 三相三线系统,采用无 PT,无 CT 方式的接线图(适用于 32 SYS, 见 6.3.1 的设置仪表参数)

2-2. 三相三线系统,采用 2CT, 2PT 方式的接线图(适用于 32 SYS,见 6.3.1 的设置仪表参数)

2-3. 三相三线系统,采用无 PT, 2CT 方式的接线图(适用于 32 SYS, 见 6.3.1 的设置仪表参数)

3-1. 三相三线系统,采用无 CT,无 PT 连接方式的接线图(适用于 33 SYS, 见 6.3.1 的设置仪表参数)

3-2. 三相三线系统,采用 3CT, 2PT 方式的接线图(适用于 33 SYS,见6.3.1的设置仪表参数)

3-3. 三相三线系统,采用 3CT,无 PT 方式的接线图(适用于 33 SYS,见6.3.1的设置仪表参数)

4-1. 三相四线系统,采用无 CT,无 PT 连接方式的接线图(适用于 43 SYS , 见 6.3.1 的设置仪表参数)

4-2. 三相四线系统,采用 3CT, 3PT 连接方式的接线图(适用于 43 SYS, 见 6.3.1 的设置仪表参数)

4-3. 三相四线系统,采用 3CT, 无 PT 连接方式的接线图(适用于 43 SYS, 见 6.3.1 的设置仪表参数)

4.2.3 注意事项

为保证测量数据的准确度,必须正确接入电压、电流测试信号。当被测试电压小于仪表电压量程,可以直接接入;否则,必须经电压互感器 PT 接入。当被测试电流小于仪表电流量程,可以直接接入;否则,必须经电流互感器 CT 接入。

接入互感器的精度能够影响仪表测试数据的准确度。互感器次级输出 应连接较粗、较短的低阻抗导线,减少干扰影响。互感器可能产生信号角 差的偏移,对测试数据的准确度有影响。

4.2.4 继电器报警功能的接线

● 继电器输出功能的使用必须注意其输出能力及负载要求

仪表继电器输出典型接线图

第5章 产品通讯指南

5.1 关于 RS-485 通讯

本系列电力监测仪可以提供满足一般工业要求的 MODBUS 规约 RTU 模式。该接口硬件设计为光电隔离。可与 Modicon (MODBUS 版权所有)可编程逻辑控制器、RTU、SCADA 系统、DCS 系统或具有 ModBus 兼容协议的监控系统之间进行信息和数据的有效传送。也可以自行编写或采用其它符合该规约要求的通讯控制软件构成监控系统。

通讯规约请参照公司网站<u>(http://www.qingzhi.com)</u>或附件光盘,并可以提供通讯测试的样本程序。

★ RS485 信号电平的检查:

将仪表和上位机的连线断开,测量仪表和上位机的串行口信号线。上 位机的 A 对 B 端应当为+2V~+5V 电压(无平衡电阻时)。若上面的测试信 号不正常则为接口或连线的问题。

5.2 通讯接线方式

5.2.1 本电力监测仪采用符合 MODBUS-RTU 规范带光电隔离的 RS-485 总线通讯方式。RS-485 从设备端口允许最多 32 台仪表利用双绞线通 讯电缆通过菊型链接方式组成通讯网络。具体方法参考下面的示意

1-32 台设备

RS-485 总线链接示意图

- **5.2.2** 为了将本仪表链接成菊型网络方式,需使用双绞线通讯电缆和仪表上的三芯接线端子,按照以下步骤进行:(请参考下面的示意图)
 - Step 1: 将每段电缆的两头均剥去 6mm 左右的线皮,将裸露出的铜芯 插入到接线端子孔内。
 - Step 2: 拧紧固定螺栓。

接线端子示意图

5.2.3 为了将多个仪表链接成菊型网络形式,应采用以下方法: 将每台仪表的+、一接线端子一一对应的链接起来,如下图所示。
(注意:牢记只需要将屏蔽线在主机端一点接地即可,离主机最远的 终端需接120 欧姆的匹配电阻。)

网络链接示意图

第6章 菜单操作指南

6.1 操作显示界面图

6.2 操作菜单总揽

本电力监测仪提供软键功能,方便对仪表进行控制。第一级菜单包含 了电力参数测量仪屏幕上初始的所有选项。通过选择第一级菜单中的选项 可以进入下一级菜单的屏幕。所有的菜单操作过程见下图: (注意:按钮 ---> 用来对同级的菜单选项做滚动选择。)

菜单总揽

第一级菜单 第二级菜单

6.3 维护单操作指南

6.3.1 设置菜单操作指南

为了对本电力监测仪设置,请按以下说明进行:

- 1. 滚动第一级菜单列表直到看见 MAIN 选项, 按下 MAIN 选项按钮。
- 2. 按下 SET 选项按钮。
- 3. 输入系统密码。(注意:默认的密码是1234)
- 4. 选择 OK 按钮确认,如果密码正确则进入设置界面。

输入密码

选择设置的项目

- 以下为设置选项操作步骤:
- 1. 设置日期
 - a. 按下 DATE 按钮。
 - b. 输入年份, 按下 0K 按钮确认。
 - c. 输入月份, 按下 OK 按钮确认。
 - d. 输入日期, 按下 0K 按钮确认。
 - e. 按下 企按钮返回 SETUP 设置界面。
- 2. 设置时间
 - a. 按下 TIME 按钮。
 - b. 输入小时值,按下 OK 按钮确认。
 - c. 输入分钟值,按下 OK 按钮确认。
 - d. 输入秒值, 按下 0K 按钮确认。
 - e. 按下1上按钮返回 SETUP 设置界面。

DATE: 日期

TIME: 时间

- 3. 设置通讯
 - a. 按下 COM 按钮。
 - b. 设置通讯地址(ADDR),按下 OK 按钮确认。
 - c. 选择通讯波特率 (BAUD): 9600, 19200 或 38400, 按下 OK 按钮确认。
 - d. 按下 企按钮返回 SETUP 设置界面。

通讯设置:包括地址和通讯速率

4. 设置仪表参数

设置仪表参数总界面

(1) 设置CT

a. 按下---→直到出现 METER 选项,按下 METER 按钮进入设置界面。

b. 按下 CT 按钮。

c. 设置 CT 变比(SCAL), 按下 OK 按钮确认。

d. 设置电流柱状图量程(SEC),按下 OK 按钮确认。

e. 按下 企按钮返回 METER SETUP 设置界面。

(2) 设置 PT

a. 按下--→直到出现 METER 选项,按下 METER 按钮进入设置界面。

b. 按下 PT 按钮。

c. 设置 PT 变比(SCAL), 按下 OK 按钮确认。

d. 设置电压柱状图量程(SEC), 按下 0K 按钮确认。

e. 按下 企按钮返回 METER SETUP 设置界面。

提醒: 输入信号满量 程时(600V,6A) PT*CT<=19884

CT、PT 设置图:包括比例系数和次级 值,次级值作为棒形图的100%刻度值

(3) 设置 F

a. 按下--→直到出现 METER 选项, 按下 METER 按钮进入设置界面。 b. 按下 F 按钮。

c. 按下 + 按钮选择频率,按下 OK 按钮确认。

d. 按下1上按钮返回 METER SETUP 设置界面。

被测信号频率 50/60/400 Hz

(4) 设置 SYS

a. 按下--→直到出现 METER 选项,按下 METER 按钮进入设置界面。 b. 按下 SYS 按钮。

c. 按下 + 按钮选择正确的线制,按下 OK 按钮确认。

d. 按下个按钮返回 METER SETUP 设置界面。

SYS: 分 21、32、33、43 SYS 四种线制

5. 设置报警

报警参数选择界面

报警参数设置界面

报警参数表

序号	报警描述	简称
1	过流 A相	OVER IA
2	过流 B相	OVER IB
3	过流 C相	OVER IC
4	过流 零线	OVER IN
5	欠流 A相	UNDER IA
6	欠流 B相	UNDER IB
7	欠流 C相	UNDER IC
8	欠流 零线	UNDER IN
9	过压 A相	OVER VA
10	过压 B相	OVER VB
11	过压 C相	OVER VC
12	过压 AB相	OVER VAB
13	过压 BC 相	OVER VBC
14	过压 CA相	OVER VCA
15	欠压 A相	UNDER VA
16	欠压 B相	UNDER VB
17	欠压 C相	UNDER VC
18	欠压 AB 相	UNDER VAB
19	欠压 BC 相	UNDER VBC
20	欠压 CA 相	UNDER VCA
21	过有功	OVER P
22	欠有功	UNDER P
23	过无功	OVER Q
24	欠无功	UNDER Q
25	过视在功率	OVER S
26	欠视在功率	UNDER S
27	过频率	OVER HZ
28	欠频率	UNDER HZ
29	过功率因数	UNDER PF
30	欠功率因数	UNDER PF
31	过需用功率	OVER W DMD
32	逆相序	PHASE REV
33	过电压不平衡度	OVER V UNBAL
34	过电流不平衡度	OVER I UNBAL

- (1) 设置电流上限报警
 - a. 按下--→直到出现 ALAR 选项,按下 ALAR 按钮进入设置界面。
 - b. 按下--→ 或 <----按钮直到出现显示区域上方出现 OVER IA 字样。
 - c. 按下 EDIT 按钮,进入 IA 上限报警功能选择界面。
 - d. 按下+按钮选择报警使能(ENBAL)或者禁止(DISAB),按下 OK 按 钮进入报警参数设置界面。
 - e. 按下+、一和--→按钮设置上限报警动作数值(PU MAG),按下 OK 按钮确认。
 - f. 按下+、一和--→按钮设置上限报警动作延时数值(PU DELAY), 按下 OK 按钮确认。
 - g. 按下+、一和--→按钮设置上限报警恢复数值(D0 MAG),按下 OK 按钮确认。
 - h. 按下+、一和--→按钮设置上限报警恢复延时数值(D0 DELAY), 按下 0K 按钮确认。
 - i.按下1.按钮返回报警设置界面。 (注: IB IC IN 电流上限报警的设置同上)
- (2) 设置电流下限报警
 - a. 按下--→直到出现 ALAR 选项,按下 ALAR 按钮进入设置界面。
 - b.按下--→ 或 <----按钮直到出现显示区域上方出现 UNDER IA 字 样。
 - c. 按下 EDIT 按钮, 进入 IA 下限报警功能选择界面。
 - d. 按下+按钮选择报警使能(ENBAL)或者禁止(DISAB),按下 OK 按 钮进入报警参数设置界面。
 - e. 按下+、一和--→按钮设置下限报警动作数值(PU MAG),按下 OK 按钮确认。
 - f. 按下+、一和--→按钮设置下限报警动作延时数值(PU DELAY), 按下 OK 按钮确认。
 - g. 按下+、一和--→按钮设置下限报警恢复数值(D0 MAG),按下 OK 按钮确认。
 - h. 按下+、一和--→按钮设置下限报警恢复延时数值(D0 DELAY), 按下 0K 按钮确认。
 - i. 按下**企**按钮返回报警设置界面。

(注: IB IC IN 电流下限报警的设置同上)
- (3) 设置电压上限报警
 - a. 按下--→直到出现 ALAR 选项,按下 ALAR 按钮进入设置界面。
 - b. 按下--→ 或 <----按钮直到出现显示区域上方出现 OVER VA 字样。 c. 按下 EDIT 按钮, 进入 VA 上限报警功能选择界面。
 - d. 按下+按钮选择报警使能(ENBAL)或者禁止(DISAB),按下 OK 按 钮进入报警参数设置界面。
 - e. 按下+、一和--→按钮设置上限报警动作数值(PU MAG),按下 OK 按钮确认。
 - f. 按下+、一和--→按钮设置上限报警动作延时数值(PU DELAY), 按下 OK 按钮确认。
 - g. 按下+、一和--→按钮设置上限报警恢复数值(D0 MAG),按下 OK 按钮确认。
 - h. 按下+、-和--→按钮设置上限报警恢复延时数值(D0 DELAY), 按下 0K 按钮确认。
 - i.按下1.按钮返回报警设置界面。 (注: VB VC VAB VBC VCA 电压上限报警的设置同上)
- (4) 设置电压下限报警
 - a. 按下--→直到出现 ALAR 选项,按下 ALAR 按钮进入设置界面。
 - b.按下--→ 或 <----按钮直到出现显示区域上方出现 UNDER VA 字 样。
 - c. 按下 EDIT 按钮, 进入 VA 下限报警功能选择界面。
 - d. 按下+按钮选择报警使能(ENBAL)或者禁止(DISAB),按下 OK 按 钮进入报警参数设置界面。
 - e. 按下+、一和--→按钮设置下限报警动作数值(PU MAG),按下 OK 按钮确认。
 - f. 按下+、一和--→按钮设置下限报警动作延时数值(PU DELAY), 按下 OK 按钮确认。
 - g. 按下+、一和--→按钮设置下限报警恢复数值(D0 MAG),按下 OK 按钮确认。
 - h. 按下+、一和--→按钮设置下限报警恢复延时数值(D0 DELAY), 按下 0K 按钮确认。
 - i. 按下企按钮返回报警设置界面。

(注: VB VC VAB VBC VCA 电压下限报警的设置同上)

- (5) 设置总有功功率(P)上限报警
 - a. 按下--→直到出现 ALAR 选项,按下 ALAR 按钮进入设置界面。
 - b. 按下--→ 或 <----按钮直到显示区域上方出现 OVER P 字样。
 - c. 按下 EDIT 按钮, 进入总有功功率 P 上限报警功能选择界面。
 - d. 按下+按钮选择报警使能(ENBAL)或者禁止(DISAB),按下 OK 按 钮进入报警参数设置界面。
 - e. 按下+、一和--→按钮设置上限报警动作数值(PU MAG),按下 OK 按钮确认。
 - f. 按下+、一和--→按钮设置上限报警动作延时数值(PU DELAY), 按下 OK 按钮确认。
 - g. 按下+、一和--→按钮设置上限报警恢复数值(D0 MAG),按下 OK 按钮确认。
 - h. 按下+、一和--→按钮设置上限报警恢复延时数值(D0 DELAY), 按下 0K 按钮确认。
 - i. 按下企按钮返回报警设置界面。
- (6) 设置总有功功率(P)下限报警
 - a. 按下--→直到出现 ALAR 选项,按下 ALAR 按钮进入设置界面。
 - b. 按下--→ 或 <----按钮直到显示区域上方出现 UNDER P 字样。
 - c. 按下 EDIT 按钮, 进入总有功功率 P 下限报警功能选择界面。
 - d. 按下+按钮选择报警使能(ENBAL)或者禁止(DISAB),按下 OK 按 钮进入报警参数设置界面。
 - e. 按下+、一和--→按钮设置下限报警动作数值(PU MAG),按下 OK 按钮确认。
 - f. 按下+、-和--→按钮设置下限报警动作延时数值(PU DELAY), 按下 OK 按钮确认。
 - g. 按下+、一和--→按钮设置下限报警恢复数值(D0 MAG),按下 OK 按钮确认。
 - h. 按下+、一和--→按钮设置下限报警恢复延时数值(DO DELAY), 按下 OK 按钮确认。
 - i. 按下**企**按钮返回报警设置界面。

- (7) 设置总无功功率(Q)上限报警
 - a. 按下--→直到出现 ALAR 选项,按下 ALAR 按钮进入设置界面。 b. 按下--→ 或 <----按钮直到显示区域上方出现 OVER Q 字样。

 - c. 按下 EDIT 按钮,进入总无功功率Q上限报警功能选择界面。
 - d. 按下+按钮选择报警使能(ENBAL)或者禁止(DISAB),按下 OK 按钮进入报警参数设置界面。
 - e. 按下+、一和--→按钮设置上限报警动作数值(PU MAG), 按下 OK 按钮确认。
 - f. 按下+、一和--→按钮设置上限报警动作延时数值(PU DELAY), 按下 OK 按钮确认。
 - g. 按下+、一和--→按钮设置上限报警恢复数值(D0 MAG),按下 OK 按钮确认。
 - h. 按下+、-和--→按钮设置上限报警恢复延时数值(D0 DELAY), 按下 0K 按钮确认。
 - i. 按下个.按钮返回报警设置界面。
- (8) 设置总无功功率(Q)下限报警
 - a. 按下--→直到出现 ALAR 选项, 按下 ALAR 按钮进入设置界面。
 - b. 按下--→ 或 <----按钮直到显示区域上方出现 UNDER Q字样。
 - c. 按下 EDIT 按钮, 进入总无功功率 Q 下限报警功能选择界面。
 - d. 按下+按钮选择报警使能(ENBAL)或者禁止(DISAB),按下 OK 按钮进入报警参数设置界面。
 - e. 按下+、一和--→按钮设置下限报警动作数值(PU MAG), 按下 OK 按钮确认。
 - f. 按下+、一和--→按钮设置下限报警动作延时数值(PU DELAY), 按下 OK 按钮确认。
 - g. 按下+、一和--→按钮设置下限报警恢复数值(D0 MAG),按下 OK 按钮确认。
 - h. 按下+、一和--→按钮设置下限报警恢复延时数值(D0 DELAY), 按下 0K 按钮确认。
 - i. 按下个按钮返回报警设置界面。

- (9) 设置总视在功率(S)上限报警
 - a. 按下--→直到出现 ALAR 选项,按下 ALAR 按钮进入设置界面。
 - b. 按下--→ 或 <----按钮直到出现显示区域上方出现 OVER S 字样。
 - c. 按下 EDIT 按钮, 进入总视在功率 S 上限报警功能选择界面。
 - d. 按下+按钮选择报警使能(ENBAL)或者禁止(DISAB),按下 OK 按 钮进入报警参数设置界面。
 - e. 按下+、一和--→按钮设置上限报警动作数值(PU MAG),按下 OK 按钮确认。
 - f. 按下+、一和--→按钮设置上限报警动作延时数值(PU DELAY), 按下 OK 按钮确认。
 - g. 按下+、一和--→按钮设置上限报警恢复数值(D0 MAG),按下 OK 按钮确认。
 - h. 按下+、一和--→按钮设置上限报警恢复延时数值(D0 DELAY), 按下 0K 按钮确认。
 - i. 按下个按钮返回报警设置界面。
- (10) 设置总视在功率(S)下限报警
 - a. 按下--→直到出现 ALAR 选项, 按下 ALAR 按钮进入设置界面。
 - b. 按下--→ 或 <----按钮直到显示区域上方出现 UNDER S字样。
 - c. 按下 EDIT 按钮,进入总视在功率 S 下限报警功能选择界面。
 - d. 按下+按钮选择报警使能(ENBAL)或者禁止(DISAB),按下 OK 按钮进入报警参数设置界面。
 - e. 按下+、一和--→按钮设置下限报警动作数值(PU MAG),按下 OK 按钮确认。
 - f. 按下+、一和--→按钮设置下限报警动作延时数值(PU DELAY), 按下 OK 按钮确认。
 - g. 按下+、一和--→按钮设置下限报警恢复数值(D0 MAG),按下 OK 按钮确认。
 - h. 按下+、一和--→按钮设置下限报警恢复延时数值(D0 DELAY), 按下 0K 按钮确认。
 - i. 按下**企**按钮返回报警设置界面。

- (1) 设置频率(HZ)上限报警
 - a. 按下--→直到出现 ALAR 选项,按下 ALAR 按钮进入设置界面。
 - b. 按下--→ 或 <----按钮直到显示区域上方出现 OVER HZ 字样。
 - c. 按下 EDIT 按钮,进入频率上限报警功能选择界面。
 - d. 按下+按钮选择报警使能(ENBAL)或者禁止(DISAB),按下 OK 按钮进入报警参数设置界面。
 - e. 按下+、一和--→按钮设置上限报警动作数值(PU MAG),按下 OK 按钮确认。
 - f. 按下+、一和--→按钮设置上限报警动作延时数值(PU DELAY), 按下 OK 按钮确认。
 - g. 按下+、-和--→按钮设置上限报警恢复数值(D0 MAG),按下 OK 按钮确认。
 - h. 按下+、一和--→按钮设置上限报警恢复延时数值(DO DELAY), 按下 OK 按钮确认。
 - i. 按下**企**按钮返回报警设置界面。
 - (12) 设置频率(HZ)下限报警
 - a. 按下--→直到出现 ALAR 选项,按下 ALAR 按钮进入设置界面。
 - b. 按下--→ 或 <----按钮直到显示区域上方出现 UNDER HZ 字样。
 - c. 按下 EDIT 按钮,进入频率下限报警功能选择界面。
 - d. 按下+按钮选择报警使能(ENBAL)或者禁止(DISAB),按下 OK 按钮进入报警参数设置界面。
 - e. 按下+、一和--→按钮设置下限报警动作数值(PU MAG),按下 OK 按钮确认。
 - f. 按下+、一和--→按钮设置下限报警动作延时数值(PU DELAY), 按下 OK 按钮确认。
 - g. 按下+、一和--→按钮设置下限报警恢复数值(D0 MAG),按下 OK 按钮确认。
 - h. 按下+、一和--→按钮设置下限报警恢复延时数值(D0 DELAY), 按下 0K 按钮确认。
 - i. 按下个按钮返回报警设置界面。

- (13) 设置总功率因数(PF)上限报警
 - a. 按下--→直到出现 ALAR 选项,按下 ALAR 按钮进入设置界面。
 - b. 按下--→ 或 <----按钮直到显示区域上方出现 OVER PF 字样。
 - c. 按下 EDIT 按钮, 进入总功率因数上限报警功能选择界面。
 - d. 按下+按钮选择报警使能(ENBAL)或者禁止(DISAB),按下 OK 按钮进入报警参数设置界面。
 - e. 按下+、一和--→按钮设置上限报警动作数值(PU MAG), 按下 OK 按钮确认。
 - f. 按下+、一和--→按钮设置上限报警动作延时数值(PU DELAY), 按下 OK 按钮确认。
 - g. 按下+、一和--→按钮设置上限报警恢复数值(D0 MAG),按下 OK 按钮确认。
 - h. 按下+、-和--→按钮设置上限报警恢复延时数值(D0 DELAY), 按下 0K 按钮确认。
 - i. 按下个按钮返回报警设置界面。
- (14) 设置总功率因数(PF)下限报警
 - a. 按下--→直到出现 ALAR 选项,按下 ALAR 按钮进入设置界面。
 - b. 按下--→ 或 <----按钮直到显示区域上方出现 UNDER PF 字样。
 - c. 按下 EDIT 按钮,进入总功率因数下限报警功能选择界面。
 - d. 按下+按钮选择报警使能(ENBAL)或者禁止(DISAB),按下 OK 按钮进入报警参数设置界面。
 - e. 按下+、一和--→按钮设置下限报警动作数值(PU MAG), 按下 OK 按钮确认。
 - f. 按下+、一和--→按钮设置下限报警动作延时数值(PU DELAY), 按下 OK 按钮确认。
 - g. 按下+、-和--→按钮设置下限报警恢复数值(D0 MAG),按下 OK 按钮确认。
 - h. 按下+、一和--→按钮设置下限报警恢复延时数值(D0 DELAY), 按下 0K 按钮确认。
 - i. 按下企按钮返回报警设置界面。

(15)设置总功率需量(W DMD)上限报警

- a. 按下--→直到出现 ALAR 选项,按下 ALAR 按钮进入设置界面。
- b. 按下--→ 或 <----按钮直到显示区域上方出现 OVER W DMD 字样。
- c. 按下 EDIT 按钮, 进入总功率需量上限报警功能选择界面。
- d. 按下+按钮选择报警使能(ENBAL)或者禁止(DISAB),按下 OK 按 钮进入报警参数设置界面。
- e. 按下+、一和--→按钮设置上限报警动作数值(PU MAG),按下 OK 按钮确认。
- f. 按下+、一和--→按钮设置上限报警动作延时数值 (PU DELAY), 按下 OK 按钮确认。
- g. 按下+、一和--→按钮设置上限报警恢复数值(D0 MAG),按下 OK 按钮确认。
- h. 按下+、一和--→按钮设置上限报警恢复延时数值(D0 DELAY), 按下 OK 按钮确认。
- i. 按下1上按钮返回报警设置界面。

临设置相序错误(PHASE REV)报警

- a. 按下--→直到出现 ALAR 选项,按下 ALAR 按钮进入设置界面。
- b. 按下--→ 或 <----按钮直到出现显示区域上方出现 PHASE REV 字 样。
- c. 按下 EDIT 按钮,进入相序错误报警功能选择界面。
- d. 按下 + 按钮选择报警使能(ENBAL)或者禁止(DISAB),按下 OK 按钮确认。
- e. 按下**企**按钮返回报警设置界面。
- 6. 设置输入输出(I/0)

①如果设定继电器为报警输出或上位机控制输出,按下面操作

- a. 按下--→直到出现 I/0 选项,按下 I/0 按钮进入设置界面。
- b. 按下 DOUT 按钮进入,通过←--或者--→按钮选择输出继电器 1
 (RELAY R1) 或者输出继电器 2 (RELAY R2)。
- c. 按下 EDIT 按钮进入,通过按下+按钮选择 ALARM (报警控制继电器输出)或者 EXT (外部扩展控制继电器输出),按下 OK 按钮进入 控制输出选项设置界面。
- d. 按下←--或者--→按钮选择欲控制输出的选项。
- e. 按下+按钮选择相应选项的开或关(ON/OFF)。
- f. 按下企按钮逐级返回设置模式(SETUP MODE)界面。

总界面

输出继电器选择界面

输出控制设置界面

②如果设定继电器为电能脉冲输出,按下面操作

- a. 按下--→直到出现 I/0 选项, 按下 I/0 按钮进入设置界面。
- b.按下 DOUT 按钮进入,通过←--或者--→按钮选择输出继电器 1 (RELAY R1) 或者输出继电器 2 (RELAY R2)。
- c. 按下 EDIT 按钮进入,通过按下+按钮选择脉冲输出电能(可供选择的电能见下表),按下 OK 按钮进入脉宽和脉冲参数设置。
- d. 按下+、一和--→按钮设置脉宽 PULS, 单位 10 毫秒, 按下 0K 按 钮确认。
- e. 按下+、-和--→按钮设置脉冲常数 PARA,单位个/千瓦时,按 下 OK 按钮确认。
- f. 按下企按钮逐级返回设置模式(SETUP MODE)界面。

EP-T	总有功电能
EP-N	净有功电能
EP-IN	输入有功电能
EP-OT	输出有功电能
EQ-T	总无功电能
EQ-N	净无功电能
EQ-IN	输入无功电能
EQ-OT	输出无功电能
ES-T	总视在电能

脉冲输出的两个参数设置要 合理,否则会出现持续高电 平输出 两路脉冲输出使用同样的脉 宽和脉冲常数

脉宽和脉冲常数界面

如需专业的标准电度脉冲(即数字信号输出)输出请在订货时特别指明。

- 7. 设置背光 (BLIN)
 - a. 按下--→直到出现 BLIN 选项,按下 BLIN 按钮进入设置界面。
 - b. 按下+按钮选择报警背光(ALARM)闪烁允许或不允许(YES/NO), 按下 0K 按钮。
 - c. 按下+按钮选择自动关背光(AUTO)允许或不允许(YES/NO),按下 OK 按钮。
 - d. 按下 企按钮返回设置模式 SETUP MODE 界面

报警时背光闪烁与否

- 注: 1、如果允许报警时背光闪烁,当有报警发生时,背光有规律的亮灭;
 - 2、如果允许自动关背光,那么在 5 分钟内没有任何按键操作时,背 光自动关闭,以便节省电能,延长液晶寿命,建议把该项设置成 YES。
 - 8. 设置需量(DMD)
 - a. 按下--→直到出现 DMD 选项,按下 DMD 按钮进入设置界面。
 - b. 按下+、一和--→按钮设置需量时间(1-60 MIN), 按下 OK 按钮 确认。
 - c. 按下企按钮返回设置模式(SETUP MODE)界面。

设置需量时间

9. 复位设置参数到出厂默认值

a. 按下--→直到出现 DEF 选项,按下 DEF 按钮进入设置界面。

b. 按下 YES 按钮,设置参数恢复到出厂默认值,界面回到主界面; 如果按下 NO 按钮,设置参数没有任何变化,界面回到参数选择 界面;

是否恢复出厂默认值

出厂默认值如下表

参数	说明	默认值		
CT SCALE	电流倍率	1.00		
CT SEC.	电流互感器次级电流	5.00		
PT SCALE	电压倍率	1.00		
PT SEC.	电压互感器次级电压	100. 0		
F	被测信号频率	50 Hz		
SYS	接线方式	43 (三相四线)		
ADDR	通讯地址	1		
BAUD	通讯速率	19200		
	报警使能	DISAB(非使能)		
ALAR	报警值	0		
针对所有 报警参数	报警延时	0		
	恢复值	0		
	恢复延时	0		
DOUT 针对所有继电器	继电器输出	ALARM (用于报警输出)		
	用于输出的报警参数	0FF(所有参数关闭)		
BLINK	ALARM,报警时背光是否 闪烁	N0 (不闪烁)		
	AUTO, 是否自动关背光	YES(5 分钟后自动关背 光)		
DMD	需量计算周期	15 MIN(15分钟)		
MRE	复费率电能设置	0(非使能)		

10. 复费率设置

复费率设置总界面

(1) 设置费率一 MR1
a. 按下--→直到出现 MRE 选项,按下 MRE 按钮进入设置界面。
b. 按下 MR1 按钮。
c. 选时段(NO.),按下 OK 按钮确认,共有 12 时段。
d. 设置该时段截止时间(TIME),按下 OK 按钮确认。数据结构:时-分
e. 设置该时段采用的费率(RATE),按下 OK 按钮确认。
数据定义 0: 尖 1: 峰 2: 平 3: 谷

f.循环 c、d、e 步骤设置其它时段(应安时间顺序安排时段,中间不能有交叉)。

g. 按下 企按钮返回 MULTI-RATE SETUP 设置界面。

费率设置界面

(2) 设置月费率 MRS

a. 按下--→直到出现 MRE 选项,按下 MRE 按钮进入设置界面。 b. 按下 MRS 按钮。

- c. 选月份(MONTH), 按下 OK 按钮确认。1~12 月
- d. 设置该月选用哪套费率(RATE), 按下 OK 按钮确认。

数据定义 0: 第一套费率 MR1; 1: 第二套费率 MR2 e. 循环 c、d 步骤设置其它月份。

f. 按下企按钮返回 MULTI-RATE SETUP 设置界面。

设置月费率界面

(2) 设置抄表时间 RT

a. 按下--→直到出现 MRE 选项,按下 MRE 按钮进入设置界面。

b. 按下 RT 按钮。

c. 设置抄表时间(TIME),按下 OK 按钮确认。

数据结构: 日-时,数据范围: 1~28日,0~23时 d.按下**企**按钮返回 MULTI-RATE SETUP 设置界面。

设置抄表时间界面

- 11. 退出设置
 - a. 上述设置选项设置完毕后,按下个按钮退出设置界面。
 - b. 退出时屏幕显示区域上方提示: SAVE CHANGES?。
 - c. 按下 YES 按钮保存设置内容并退出,按下 NO 按钮不保存设置内容 退出。

6.3.2 复位菜单操作指南

对本电力监测仪中的电能 E、需量 DMD、最大最小值 MIMX 和报警记录 进行复位,请按照以下步骤操作:

- 1. 滚动第一级菜单列表直到看见 MAIN 选项, 按下 MAIN 选项按钮。
- 2. 按下 RSET 按钮。
- 3. 输入系统密码。(注意:默认的密码是1234)
- 4. 按下 0K 按钮确认,如果密码正确则进入设置界面。
- 以下为复位选项操作步骤:

1. 电能计量复位

- a. 按下 E 按钮。
- b. 按下 N0/YES 按钮选择不复位/复位电能计量值。

- 2. 需量复位
 - a. 按下 DMD 按钮。
 - b. 按下 NO/YES 按钮选择不复位/复位需量值。
- 3. 最大最小值复位
 - a. 按下 MIMX 按钮。
 - b. 按下 NO/YES 按钮选择不复位/复位最大最小值。
- 4. 历史报警记录复位
 - a. 按下 ALAR 按钮。
 - b. 按下 NO/YES 按钮选择不复位/复位历史报警记录。

输入密码

	F	reset	MODI	-		
	£.	E	DH D	MIM×	ALAP	
	Ò	Ò	Ò	Ò	Ò	

选择复位的参数

6.3.3 信息菜单说明

1. 滚动第一级菜单列表直到看见 MAIN 选项, 按下 MAIN 按钮。

2. 按下 INF0 按钮。

- 3. 屏幕第一行显示 METER INFO 字样。
- 4. 屏幕第二行显示仪表型号:如 ZW3432C。
- 5. 屏幕第三行显示软件版本:如 V 1.00 SOFT。
- 6. 屏幕第四行显示硬件版本:如 V 1.00 BOARD。
- 7. 屏幕第五行显示通讯协议版本:如C 2.01 COMM。

8. 按下1上按钮返回主菜单。

信息菜单界面

6.3.4 实时时钟菜单说明

滚动第一级菜单列表直到看见 MAIN 选项,按下 MAIN 按钮。
 按下 CLK 按钮。
 屏幕第一行显示 REAL—TIME CLOCK 字样。
 屏幕第二行显示年份:如 2007 YEAR。
 屏幕第三行显示月份:如 01 MONTH。
 屏幕第四行显示日期:如 01 DAY。

7. 屏幕第五行显示时间: 如 08-08-08 H/M/S(时/分/秒)。

8. 按下 企按钮返回主菜单。

实时时间显示

6.4 实时显示菜单操作指南

6.4.1 电流(I)实时显示菜单操作指南

为了对实时电流参数进行监测,请按以下说明进行:

1. 监测各相电流

a. 滚动第一级菜单列表直到看见 I 选项, 按下 I 选项按钮。

b. 按下 PHAS 按钮。

c. 屏幕上自上而下依次显示各相电流值及相应的柱状图。

d. 按下1上按钮返回第一级菜单。

实时各相电流显示

2. 监测各相电流需量 (DMD)

a. 滚动第一级菜单列表直到看见 I 选项,按下 I 选项按钮。
b. 按下 DMD 按钮,屏幕上自上而下依次显示各相电流需量。
c. 按下 PEAK 按钮,屏幕上自上而下依次显示各相电流需量峰值。
d. 按下 D/TA 按钮,显示 A 相电流需量峰值发生日期和时间。
e. 按下 D/TB 按钮,显示 B 相电流需量峰值发生日期和时间。
f. 按下 D/TC 按钮,显示 C 相电流需量峰值发生日期和时间。
g. 按下 D/TN 按钮,显示零线电流需量峰值发生日期和时间。
h. 按下 L 按钮逐级返回第一级菜单。

实时各相电流需量显示

A相电流需量峰值记录

3. 监测电流不平衡度

a. 滚动第一级菜单列表直到看见 I 选项,按下 I 选项按钮。 b. 按下 UNBAL 按钮,屏幕显示电流的不平衡度。

c. 按下**企**按钮逐级返回第一级菜单。

电流不平衡度

6.4.2 电压(U--V)实时显示菜单操作指南

为了对实时电压参数进行监测,请按以下说明进行:

1. 监测线电压及电压不平衡度

a. 滚动第一级菜单列表直到看见 U—V 选项按钮,按下 U—V 选项按钮。 b. 按下 VL—L 按钮,屏幕显示线电压及电压不平衡度。

c. 按下1上按钮返回到第一级菜单。

线电压及线电压不平衡度

2. 监测相电压及电压不平衡度

a. 滚动第一级菜单列表直到看见 U—V 选项按钮,按下 U—V 选项按钮。 b. 按下 VL—N 按钮,屏幕显示相电压及电压不平衡度。

c. 按下12按钮返回到第一级菜单。

相电压及相电压不平衡度

6.4.3 功率 (PQS) 实时显示菜单操作指南

为了对实时功率参数进行监测,请按以下说明进行:

1. 监测总 PQS

a. 滚动第一级菜单列表直到看见 PQS 选项按钮,按下 PQS 选项按钮。

- b. 按下 PQS 按钮, 屏幕显示总 PQS 值。
- c. 按下 1/2 按钮返回到第一级菜单。

总的 PQS 值

2. 监测各相的 PQS

a. 滚动第一级菜单列表直到看见 PQS 选项按钮,按下 PQS 选项按钮。 b. 按下 PHAS 按钮。

- c. 若按下按钮 P, 屏幕显示各相的有功功率和总有功功率。
- d. 若按下按钮 Q, 屏幕显示各相的无功功率和总无功功率。
- e. 若按下按钮 S, 屏幕显示各相的视在功率和总视在功率。
- f. 按下1上按钮返回到上一级菜单。

各相有功功率

各相视在功率

3. 监测功率需量 DMD

a. 滚动第一级菜单列表直到看见 PQS 选项按钮,按下 PQS 选项按钮。

- b. 按下 DMD 按钮,当前屏幕显示功率总需量。
- c. 若按下 Pd 按钮, 屏幕显示区域上方显示当前的有功功率需量,下方显示有功功率需量峰值,若再按下 PKDT 按钮,屏幕显示记录的有功功率需量峰值的日期和时间。
- d. 若按下 Qd 按钮, 屏幕显示区域上方显示当前的无功功率需量,下方 显示无功功率需量峰值,若再按下 PKDT 按钮,屏幕显示记录的无功 功率需量峰值的日期和时间。
- e. 若按下 Sd 按钮,屏幕显示区域上方显示当前的视在功率需量,下方 显示视在功率需量峰值,若再按下 PKDT 按钮,屏幕显示记录的视在 功率需量峰值的日期和时间。
- f. 按下**企**按钮返回到上一级菜单。

功率总需量

有功功率需量和峰值需量

有功功率峰值需量发生的日期时间 (注:无功功率、视在功率需量显示界面与上图类似。)

6.4.4 电能(E)实时显示菜单操作指南

为了对电能测量参数进行实时监测,请按以下说明进行:

- 1. 监测有功电能
 - a. 滚动第一级菜单列表直到看见 E 选项按钮, 按下 E 选项按钮。
 - b. 按下 Wh 按钮, 屏幕显示有功电能值。
 - c. 按下1上按钮返回到第一级菜单。
- 2. 监测无功电能
 - a. 滚动第一级菜单列表直到看见 E 选项按钮, 按下 E 选项按钮。
 - b. 按下 VARh 按钮, 屏幕显示无功电能值。
 - c. 按下**企**按钮返回到第一级菜单。
- 3. 监测视在电能
 - a. 滚动第一级菜单列表直到看见 E 选项按钮,按下 E 选项按钮。 b. 按下 VAh 按钮,屏幕显示视在电能值。
 - c. 按下1上按钮返回到第一级菜单。

IN: 输入的电能; 0T: 到送的电能; 另外一个为总电能

有功电能

无功电能

视在电能

4. 监测复费率电能

a. 滚动第一级菜单列表直到看见 E 选项按钮, 按下 E 选项按钮。

b. 按下 MRE 按钮, 屏幕显示复费率电能值。

c. 通过<--- 或 --→按钮可以看到更多

c. 按下1上按钮返回到第一级菜单。

显示区域内从上到下显示内容:

S: 尖时段电能: P: 峰时段电能: D: 平时段电能: L: 谷时段电能:

复费率电能

可查看的复费率电能

符号	说明
TOTAL MREP+	分时段总输入有功电能
TOTAL MREQ+	分时段总输入无功电能
TOTAL MREP-	分时段总到送有功电能
TOTAL MREQ-	分时段总到送无功电能
THIS MONTH MREP+	分时段本月输入有功电能
THIS MONTH MREQ+	分时段本月输入无功电能
THIS MONTH MREP-	分时段本月到送有功电能
THIS MONTH MREQ-	分时段本月到送无功电能
LAST MONTH MREP+	分时段上月输入有功电能
LAST MONTH MREQ+	分时段上月输入无功电能
LAST MONTH MREP-	分时段上月到送有功电能
LAST MONTH MREQ-	分时段上月到送无功电能

6.4.5 功率因数(PF)实时显示菜单操作指南

为了对功率因数参数进行实时监测,请按以下说明进行: a. 滚动第一级菜单列表直到看见 PF 选项按钮,按下 PF 选项按钮。 b. 屏幕显示各相功率因数数值和总的功率因数数值。

功率因数

6.4.6 频率(HZ)实时显示菜单操作指南

为了对频率参数进行实时监测,请按以下说明进行:

a. 滚动第一级菜单列表直到看见 HZ 选项按钮, 按下 HZ 选项按钮。

b. 屏幕自上而下依次显示被测信号的频率、总电压(Σ-V)、总电流 (Σ-A)和总功率(PF)因数数值。

频率

6.4.7 谐波(HARM)实时显示菜单操作指南

注: 3相4线仅有相电压谐波监测,3相3线仅有线电压谐波监测。

为了对谐波参数进行实时监测,请按以下说明进行:

谐波总界面

- 1. 线电压谐波参数监测
 - a. 滚动第一级菜单列表直到看见 HARM 选项按钮, 按下 HARM 选项按钮。
 - b. 按下 VL-L 按钮, 屏幕上显示各线电压谐波畸变率。
 - c. 按下+、一和--→按钮设置要观测的谐波次数(最大 50 次)。
 - d. 切换 CONT/RATI 按钮,可以分别观测各线电压的谐波相对含量和 谐波绝对含量。
 - e. 按下**企**按钮返回到上一级菜单。

线电压总谐波畸变率(当ORDER=00时)

线电压谐波含量(当ORDER=00时)

谐波含有率(当 ORDER≥01 时。如果 ORDER=01 显示的是基波含有 率,为100%)

谐波

(当ORDER≥01时。如果ORDER=01显示的是基波值)

(注: 相电压和电流谐波监测界面同上图类似。)

- 2. 相电压谐波参数监测
 - a. 滚动第一级菜单列表直到看见 HARM 选项按钮,按下 HARM 选项 按钮。
 - b. 按下 VL-N 按钮, 屏幕上显示各相电压谐波畸变率。
 - c. 按下+、一和--→按钮设置要观测的谐波次数(最大 50 次)。
 - d. 切换 CONT/RATI 按钮,可以分别观测各相电压的谐波相对含量和 谐波绝对含量。
 - e. 按下1上按钮返回到上一级菜单。
- 3. 电流谐波参数监测
 - a. 滚动第一级菜单列表直到看见 HARM 选项按钮,按下 HARM 选项 按钮。
 - b. 按下 I 按钮, 屏幕上显示各相电电流谐波百分比参数。
 - c. 按下+、一和--→按钮设置要观测的谐波次数(最大 50 次)。
 - d. 切换 CONT/RATI 按钮,可以分别观测各相电流的谐波相对含量和 谐波绝对含量。
 - f. 按下**企**按钮返回到上一级菜单。
- (注:1:相电压和电流谐波监测界面同线电压谐波监测界面类似。
 - 2:为了保证谐波测量的准确性,应满足如下要求:测量电压>50V 测量电流>0.05A)

- 6.4.8 最大最小值(MIMX)实时显示菜单操作指南
- 每个月月底 00:00:00 的时候,系统会自动将 00:00:00 之前的最大/最小值保存为上一个月的最大/最小值。本机以下的操作都是针对本月的最大/最小值而言的,上月的最大/最小值只能在上位机看。

为了对最大最小值参数进行实时监测,请按以下说明进行:

- 1. 三相电压电流最大最小值监测
 - a. 滚动第一级菜单列表直到看见 MIMX 选项按钮, 按下 MIMX 选项按钮。
 - b. 屏幕依次显示线电压的最小最大值、电流的最大值及发生值所对应的 相和总有功功率最大值。
 - c. 按下1上按钮返回到第一级菜单。

分别显示线电压的最小值、最大值;电流最大值;有功功率最大值。

2. 电流(I)最大最小值监测

a.滚动第一级菜单列表直到看见 MIMX 选项按钮,按下 MIMX 选项按钮。 b.按下 I 按钮。

c. 若按下 MIN 按钮, 屏幕显示电流最小值及所在相和发生的日期时间。 d. 若按下 MAX 按钮, 屏幕显示电流最大值及所在相和发生的日期时间。 e. 按下 ① 按钮返回到上一级菜单。

I: 电流最小值及发生日期时间

3. 电压(U--V)最大最小值监测

a.滚动第一级菜单列表直到看见 MIMX 选项按钮,按下 MIMX 选项按钮。 b.按下 U--V 按钮。

c. 若按下 UMIN 按钮, 屏幕显示线电压的最小值和发生的日期时间记录。 d. 若按下 UMAX 按钮, 屏幕显示线电压的最大值和发生的日期时间记录。 e. 若按下 VMIN 按钮, 屏幕显示相电压的最小值和发生的日期时间记录。 f. 若按下 VMAX 按钮, 屏幕显示相电压的最大值和发生的日期时间记录。 g. 按下 **1**. 按钮返回到上一级菜单。

U: 线电压最小值及发生日期时间

V: 相电压最小值及发生日期时间

(注:线电压、相电压最大值及发生日期时间同上图类似)

4. 电压不平衡度(UNBAL)最大最小值监测

a. 滚动第一级菜单列表直到看见 MIMX 选项按钮,按下 MIMX 选项按钮。 b.按下 UNBAL 按钮。

- c. 若按下 UMIN 按钮, 屏幕显示线电压不平衡度的最小值和发生的日期 时间记录。
- d. 若按下 UMAX 按钮, 屏幕显示线电压不平衡度的最大值和发生的日期 时间记录。
- e. 若按下 VMIN 按钮, 屏幕显示相电压不平衡度的最小值和发生的日期 时间记录。
- f. 若按下 VMAX 按钮, 屏幕显示相电压不平衡度的最大值和发生的日期 时间记录。
- g. 按下**企**按钮返回到上一级菜单。

电压不平衡度最小最大值及发生日期时间

5. 总功率(PQS)最大最小值监测

a.滚动第一级菜单列表直到看见 MIMX 选项按钮,按下 MIMX 选项按钮。 b.按下 PQS 按钮。

- c. 若按下P按钮,进入总有功功率最大最小值显示界面。通过切换MIN和MAX 键分别监测总有功功率的最小值和最大值及发生日期时间的记录。
 d. 若按下Q按钮,进入总无功功率最大最小值显示界面。通过切换MIN和
- MAX 键分别监测总无功功率的最小值和最大值及发生日期时间的记录。 e. 若按下 S 按钮,进入总视在功率最大最小值显示界面。通过切换 MIN 和 MAX 键分别监测总视在功率的最小值和最大值及发生日期时间的记录。 f. 按下 1 按钮 返回到上一级菜单。

总界面

总有功功率最小值及发生日期时间(总无功、视在功率类同)

- 6. 总功率因数(PF)的最大最小值(绝对值)监测
 - a. 滚动第一级菜单列表直到看见 MIMX 选项按钮, 按下 MIMX 选项按钮。
 - b. 按下 PF 按钮。
 - c. 通过切换 MIN 和 MAX 按钮,可以分别监测总功率因数的最小值和最大 值及发生的日期时间记录。
 - d. 按下1上按钮返回到上一级菜单。

7. 频率(F) 最大最小值监测

a. 滚动第一级菜单列表直到看见 MIMX 选项按钮,按下 MIMX 选项按钮。 b. 按下 F 按钮。

- c. 通过切换 MIN 和 MAX 按钮,可以分别观监频率的最小值和最大值及发生的日期时间记录。
- d. 按下 1. 按钮返回到上一级菜单。

F: 频率最小值及发生日期时间 (注:最大值及发生日期时间类同上面)
- 8. 电压总谐波畸变率 (THDV) 的最大最小值监测
 - a. 滚动第一级菜单列表直到看见 MIMX 选项按钮, 按下 MIMX 选项按钮。 b. 按下 THDV 按钮。
 - c. 若按下 UMIN 按钮, 屏幕显示线电压总谐波畸变率的最小值和发生的 日期时间记录。
 - d. 若按下 UMAX 按钮, 屏幕显示线电压总谐波畸变率的最大值和发生的 日期时间记录。
 - e. 若按下 VMIN 按钮, 屏幕显示相电压总谐波畸变率的最小值和发生的 日期时间记录。
 - f. 若按下 VMAX 按钮, 屏幕显示相电压总谐波畸变率的最大值和发生的 日期时间记录。
 - g. 按下**企**按钮返回到上一级菜单。

THDV: 线电压总谐波畸变率最小值及发生日期时间 (注: 线电压和相电压总谐波畸变率最大最小值及发生日期时间同上图)

9. 电流总谐波畸变率(THDI)的最大最小值监测

a. 滚动第一级菜单列表直到看见 MIMX 选项按钮,按下 MIMX 选项按钮。 b. 按下 THDI 按钮。

- c. 若按下 MIN 按钮, 屏幕显示相电流总谐波畸变率的最小值及所在相和 发生的日期时间记录。
- d. 若按下 MAX 按钮, 屏幕显示相电流总谐波畸变率的最大值及所在相和 发生的日期时间记录。
- e. 按下1上按钮返回到上一级菜单。

THDI: 电流总谐波畸变率最小值及发生日期时间 (注: 电流总谐波畸变率最大值及发生日期时间同上图)

6.4.9 报警 (ALAR) 状态实时显示菜单操作指南

为了对报警参数进行实时监测,请按以下说明进行:

a. 滚动第一级菜单列表直到看见 ALAR 选项按钮, 按下 ALAR 选项按钮。

b. 通过切换 ACT/HIST 按钮,分别查看当前报警和历史报警记录。

c. 通过切换←--/--→按钮, 依次查看多个报警记录。

d. 按下 î 按钮返回到第一级菜单。

ACTIVE 正在发生的报警

HIST 历史报警

- 第1行:报警原因
- 第2行:报警序号
- 第3行:报警延时内的最大或最小值(在历史报警中:报警期间的最 大或最小值)
- 第4行:在历史报警中:报警持续时间
- 第5行:报警延时满足时的日期和时间(在历史报警中:报警结束时的日期和时间)
- 第6行:通过切换←--/--→按钮察看其它报警,切换 ACT/HIST 分别察看当前报警和历史报警。
 - 注: 在历史报警窗口,棒图提示报警存储器使用情况,100%时 表示满
- 6.4.10 输入输出口(I/0)状态实时显示菜单操作指南

为了对输入/输出参数进行实时监测,请按以下说明进行:

- a. 滚动第一级菜单列表直到看见 I/0 选项按钮, 按下 I/0 选项按钮。
- b. 按下 DOUT 按钮。
- c. 通过切换←--/--→按钮, 依次查看多个输出记录。
- d. 按下1上按钮返回到上一级菜单。

总界面

输出界面

(注: 该数字量输出界面指继电器输出,该界面显示 R1、R2 两个继电器 输出的次数以及当前状态,棒形图填满表示继电器动作,棒形图为 空表示继电器释放。)

第7章 报警控制

7.1 关于报警

本电力监测仪可以设置并检测 32 项报警条件,可以存储多达 1000 条的历史报警记录。除了可以设置报警的上下限条件以外,还可以设置报警 延时时间,从而有效地减小了误报率。

当一个或多个报警条件有效时,电力监测仪就会在屏幕上出现一个闪烁的 你号,同时屏幕的背光也会出现闪烁状态(需用户设置),以这种 醒目的形式引起用户的注意以便于及时处理。用户也可以通过大屏幕实时 查看当前或历史的报警状态及报警原因、日期、时间的相关记录,方便用 户分析和处理问题。

7.2 报警设置

除了相序错误不需要设置报警数值外,对于那些需要设定数值的报警 条件,必须设置以下内容:

- 1. 设定动作值
- 2. 设定动作延时(精确到秒)
- 3. 设定恢复值
- 4. 设定恢复延时(精确到秒)
- 5. 设定继电器报警输出功能(依据用户需要)
- 6. 设定报警背光提醒功能(依据用户需要)

(注意:设定动作值和恢复值均为零的报警是无效的,所有数据最大可设 65000。)

7.3 报警示例及注意事项

- 7.3.1 注意事项
 - 1. 使用时,请注意触点容量的说明,选择适宜的负载,防止过载损坏 继电器。
 - 2.设置上限报警时,设置的动作值必须大于恢复值,否则报警功能无效。
 - 3. 设置下限报警时,设置的动作值必须小于恢复值,否则报警功能无效。

7.3.2 报警示例

● 示例 1: 继电器报警输出对应的是测试数据

继电器报警输出对应的测试数据可能与显示数据不同,请参照下列公 式使用:

● 示例2

如果要设置测量数值为0时报警,可以采取以下方法予以解决:

首先采用下限报警,将动作值设置成接近于0的最小值0.001,恢复 值设置成次小值0.002即可。 Max2

下限报警输出控制过程示意图

注: Max1: 上限报警时动作延时内的最大值, Max2: 上限报警时报警 期间内的最大值; Min1: 下限报警时动作延时内的最小值, Min2: 下限报 警时报警期间内的最小值。

第8章 输入/输出及扩展接口

8.1 扩展模块的说明

具体使用请参照扩展模块使用说明书。

8.2 扩展功能的使用

本电力监测仪提供扩展功能,方便用户扩展其智能特性,提供测试与 控制的灵活性。

8.2.1 输出/输入功能

- ●本电力监测仪可扩展多路继电器的报警输出功能,该功能满足用 户对越上限和越下限的分别控制。可以用于扩展控制相应的继电 器或交流接触器。使用时,请注意触点容量的说明,选择适宜的 负载,防止过载损坏继电器。
- ●本电力监测仪也可扩展多路开关量信号输入功能,并可关联继电器输出。

8.2.2 模拟量输出功能

- ●本电力监测仪可扩展多路模拟量输出功能,输出信号的幅值与选定的测试数据以规定的比例同步变化。该功能满足用户对测试数据的实时监测的需要,方便二次仪表的接入或控制。
- ●模拟量输出可以提供电流输出(0~20mA、4~20mA)或电压输出(0~5V、0~10V)。

第9章 装箱清单及产品维护

9.1 装箱清单

●产品装箱时,应该包括如下物品,请用户在收到订货后及时查收。如果 有疑问,请联系经销商或本公司。

说明	订货仪表,请注意检查标签内容是否符合订货要	指导仪表的使用及维护	产品合格证	辅助仪表的安装、固定	通讯规约及样本通讯程序	电源接线端子	继电器输出接线端子	电压输入接线端子	通讯 RS485 接线端子
单位	Ą¤	滎	纷	飬	张	÷	\downarrow	\downarrow	\checkmark
数量	1	1	1	1	1	1	1	1	1
名称	电力监测仪	使用说明书	产品合格证	安装架	通讯光盘	5.08mm间距5T 接线端子	5.08mm间距6T 接线端子	5.08mm间距7T 接线端子	5.08mm间距3T 接线端子
序号	1	2	3	4	5	9	L	8	6

9.2 注意事项及产品维护

9.2.1 产品使用过程中,请注意以下事项

- a. 仪表应在推荐的工作环境下使用。更加恶劣的环境可能降低测试参数 的准确度,缩短产品使用寿命。
- b. 不要超过仪表的输入信号范围测量。
- c. 本系列仪表为精密测量设备,严禁猛烈撞击仪表。
- d. 仪表的工作电源电压必须符合技术要求。过高的电源电压可能烧毁仪 表; 过低的电源电压不能保证仪表正常工作。
- e. 未经许可不得擅自拆开仪表,否则不保修。
- f.由于用户使用不当,而造成仪表损坏的,不在保修范围之内。

9.2.2 产品维护

在正常情况下,本系列仪表不需要特别维护,如果出现数据异常,请 执行如下维护:

a. 请检查仪表的参数设置,确保参数及功能正确。

- b. 请检查仪表表尾的接线端子,确保接线可靠。
- c. 当长时间处于非工作状态时(大于3个月),请保持连续通电工作1 小时。保持电子元器件的工作性能。

9.2.3 常见问题处理(见下表)

常见问题处理表

	现象	原因	对策1	对策2
显	所有显示 闪烁、不 显示	工作电源异常	检查电源电 压是否正常	检查电源 端子连接 情况
示	显示乱码	附近有强干扰	远离强烈的 干扰环境	程序异常, 退回公司
数据	有底数	电源干扰 或环境干扰	远离强烈的 干扰环境	工作电源与 其它设备 电源分离
	数据跳动, 无法读值	信号干扰 或信号谐波	处理强烈的 干扰信号	处理信号谐 波,或选用 其它仪表
	数据异常	PT、CT 设置异常 (输入信号满量 程时 600V, 6A PT*CT<=19884)	检查参数设置	重新设置参数
报警	报警功 能异常	参数设置不适宜	重新设置参数	参照6.3执行
	通讯不	RS485 转换 器及连线	检查转换器 连线位置	参照 5.1 检 查信号电平
通讯功能	成功	通讯参数 设置不正 确	检查仪表与 计算机的通 讯参数的设置	参照光盘 内容检查
	接收的数据 经常出错	硬件线路接 触不良通讯 线路环境干扰	检查硬件线 路连接的可 靠性	采用带屏 蔽的通讯 线缆,降低 环境干扰。

感 谢:欢迎选择青智仪器有限公司的产品,在本产品使用前请详细阅读本手册, 以便于正确使用。

请注意以下事项:

- 本手册的版权归青智仪器有限公司所有。在未经本公司书面许可的情况下, 严禁以任何形式复制、传递、分发和存储本手册的任何内容。
- 青智仪器有限公司遵循持续发展的策略。因此,青智仪器有限公司保留在不 预先通知的情况下,对本手册中描述的任何产品进行修改和改进的权力。
- 本手册的内容可能因为修改和改进而产生未经预告的变更。如有不详之处, 请参照本手册提供的信息联系。
- 青智仪器有限公司严格实施 IS09001 质量管理体系。本公司产品虽然在严格的品质管理过程控制下制造、出厂,但如果出现不正常事项或意外之处, 请通知本公司代理商、或参照本手册提供的信息联系。
- 在产品使用过程中出现任何不正常事项或意外之处,请参照本手册提供的信息联系。

青岛青智仪器有限公司

地址: 青岛市崂山区山东头路 58 号盛和大厦 1 号楼五层 邮编: 266101 电话/传真: 0532—81920028(多线), 81920029(多线) 技术热线: (0)13953270323 网址: Http: //www.qingzhi.com