A / D 转换芯片 ADC0832的应用

$\mathrm{ADC0832}$ 是美国国家半导体公司生产的一种 8 位分辨率，双通道 AD 转换态片。由于它体积小，兼容性强，性价比高而深受单片机長好者及企业欢迎，其目前已経有很高的普及率．等习并使用 $\mathrm{ADC0832}$ 可是伎我们了解 A / D 转换器的原理，有助于我们单片机技术水平的提高。

ADC0832 具有以下特点：

- 8 位分辡率；
- 效通道 A / D 转捹；
- 輸入输出电平与 TTL／CMOS 相兼容；
- 5 V 电源供电时槍入电压在 $0-5 \mathrm{~V}$ 之间；
- 工作频率为 250 KHZ ，转换时间为 $32 \mu \mathrm{~S}$ ；
- 一般功耗仅为 15 mW ；
- 8P，14P－DIP（欢列直插），PICC 歹种封溒；
- 商用级芯片温宽为 $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ，工业级芯片温宽为 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ；

芯片顶枧图：（图1，图2）

ADC0832 2－Channel MUX Dual－In－Line Package（ N ）

COM internally connected to GND．
$V_{\text {REF }}$ internally connected to $V_{C O}$ Top View

ADC0832 2－Channel MUX
Small Outline Package（WM）

DS000088－4
Top View
图 1

芯片接口说明：

- CS＿片选使能，低电平芯片使能。
- CHO 模㨉输入通道 0 ，或作为 $\mathrm{IN}+/$－使用。
- CH1 模拟输入通道 1 ，或作为 $\mathrm{IN}+$／－使用。
- GND 芯片参者 0 电位（地）。
- DI 数据信号输入，选择通道控制。
- DO 数据信号输出，转换数据输出。
- CLK 芯片时钟输入。
- $\mathrm{Vcc} / \mathrm{REF}$ 电源输入及参考电压输入（复用）。

$\mathrm{ADC0832}$ 与单片机的接口电路：

图 3

ADC0832 为 8 位分辨率 A / D 转换芯片，其最高分辨可达 256 级，可以适应一般的模拟量转换要求。其内部电源输入与参考电压的复用，使得芯片的模拟电压输入在 $0 \sim 5 V$ 之间。芯片转换时间仅为 $32 \mu \mathrm{~S}$ ，据有双数据输出可作为数据校验，以减少数据误差，转换速度快且稳定性能强。独立的芯片使能输入，使多器件挂接和处理器控制变的更加方便。通过 DI 数据输入端，可以轻易的实现通道功能的选择。

单片机对 ADC0832 的控制原理：
正常情况下 ADC0832 与单片机的接口应为 4 条数据线，分别是 CS，CLK， DO，DI。但由于 DO 端与 DI 端在通信时并未同时有效并与单片机的接口是双向的，所以电路设计时可以将 DO 和 DI 并联在一根数据线上使用。（见图 3）

当 ADC0832 未工作时其 CS 输入端应为高电平，此时芯片禁用，CLK 和 $\mathrm{DO} / \mathrm{DI}$ 的电平可任意。当要进行 A / D 转换时，须先将 CS 使能端置于低电平并且保持低电平直到转换完全结束。此时芯片开始转换工作，同时由处理器向芯片时钟输入端 CLK 输入时钟脉冲，DO／DI 端则使用 DI 端输入通道功能选择的数据信号。在第 $\mathbf{1}$ 个时钟脉冲的下沉之前 $\mathbf{D I}$ 端必须是高电平，表示启始信号。在第 2，3 个脉冲下沉之前 DI 端应输入 2 位数据用于选择通道功能，其功能项见表1。

TABLE 6．MUX Addressing：ADC0832 Single－Ended MUX Mode

MUX Address		Channel \＃	
SGL／ DIF	ODD／	O	1
1	0	+	
1	1		+

COM is internally tied to A GND

TABLE 7．MUX Addressing：ADC0832 Differential MUX Mode

MUX Address		Channel \＃	
$\begin{array}{c}\text { SGL／} \\ \text { DIF }\end{array}$	ODD／	SIGN	

表 1

如表1所示，当此 2 位数据为＂ 1 ＂，＂ 0 ＂时．只对 CH0 进行单週道转换。当 2 位数据为＂ 1 ＂，＂ 1 ＂时，只对 CH1 进行单梮道转换。当 2 位数据为＂ 0 ＂， ＂0＂时，将 CH0 作为正转入端 IN + ，CH1 作为负输入端 IN－进行输入。当 2 位数据为＂ 0 ＂，＂ 1 ＂时，将 CHO 作为负输入端 IN－，CH1 作为正输入端 IN＋进行辅入。

到第 3 个脉冲的下沉之后 DI 端的输入电平就失去输入作用，此后 DO／DI端则开始利用数据输出DO 进行转换数据的头取。从第4个眿冲下沉开始由 DO端输出转换数据樶高位 DATA7，限后每一个眿冲下沉DO 端输出下一位数据。直到第 11 个脉冲时发出埌低位数据 DATAO，一个字节的数据辁出完成。也正是从此拉开始犄出下一个相反学节的数据，即从第 11 个字节的下沉输出DATD0。随后榆出 8 位数据，到第 19 个脉冲时数据输出元成，也标志着一次 ADD 转换的结束。最后将 CS 置高电平禁用芯牛，直接将转换后的数据进行处理就可比了。更详细的时序说明噇见，表2。

表 2

作为单通道模投信哥输入时 ADC0832 的输入电压是 $0-5 \mathrm{~V}$ 且 8 位分数率时

与 IN－的轮入时，如果 IN－的电压大于 $\mathrm{IN}+$ 的电压则转换后的教据结果始集为 00 H ．

ADC0832 芯片接口程序的编写：

$\mathrm{ADC0} 32$ 数满媵取程序流程：
为丁高遠育数的实现通信，我们采用汇編
换肘间仅为 $32 \mu \mathrm{~S}$ ，所以 A / D 较换的数据采样频率可以很快，从而也保征的某些场合对 A / D转换数琚实时性的要求。数据读取程序以子理序调用的形式出现，方便了程序的移植。

程序占用资棌有果加器 A，工作寄存熹 R7，通用刍存哭 B 和特珠寄存雙 CY 。通道功能寄存器和转摔值共用察存器 B 。在使用转换子程序之首必领熵定通道功能亭存器 B 的值，其䟼值语匂为＂MOV B Hdata＂$(00 \mathrm{H} \sim 03 \mathrm{H})$ 。运行转涣子程序后的转轱数据值被放入 B 中。子程序退出后耶可以对 B 中数据处理。


```
/*
子程序名: ADC0832 子程序
编写人: 杜洋
初写时间: 2005年10月10日
程序功能: 将模拟电压量转换成数字量
实现方法: 串行通信。
CPU 说明: MCS-51
植入说明: 占用 A, B, CY, R7
----------------------------------------------*/
```

; 以下接口定义根据硬件连线更改

ADCS	BIT	P3．5	；使能接口
ADCLK	BIT	P3．4	；时钟接口
ADDO	BIT	P3．3	；数据输出接口（复用）
ADDI	BIT	P3．3	；数据输入接口

；以下语句在调用转换程序前设定
MOV B，\＃00H ；装入通道功能选择数据值
；以下为 ADC 0832 读取数据子程序
；＝＝＝＝ADC0832 读数据子程序 $====$

ADCONV：
SETB ADDI ；初始化通道选择
NOP
NOP
CLR ADCS ；拉低／CS 端
NOP
NOP
SETB ADCLK ；拉高 CLK 端
NOP
NOP
CLR ADCLK ；拉低 CLK 端，形成下降沿
MOV A，B
MOV C，ACC． 1 ；确定取值通道选择
MOV ADDI，C
NOP
NOP
SETB ADCLK ；拉高 CLK 端
NOP
NOP
CLR ADCLK ；拉低 CLK 端，形成下降沿 2
MOV A，B
MOV C，ACC． 0 ；确定取值通道选择
MOV ADDI，C
NOP

```
            NOP
            SETB ADCLK ;拉高 CLK 端
            NOP
            NOP
            CLR ADCLK ;拉低 CLK 端,形成下降沿 3
            SETB ADDI
            NOP
            NOP
            MOV R7,#8 ;准备送下后 8 个时钟脉冲
AD 1:
            MOV C,ADDO ;接收数据
            MOV ACC.0,C
            RL A ;左移一次
            SETB ADCLK
            NOP
            NOP
            CLR ADCLK ;形成一次时钟脉冲
            NOP
            NOP
            DJNZ R7,AD_1 ;循环 }8\mathrm{ 次
            MOV C,ADDO ;接收数据
            MOV ACC.0,C
            MOV B,A
            MOV R7,#8
AD 13:
    MOV C,ADDO ;接收数据
    MOV ACC.0,C
    RR A ;左移一次
    SETB ADCLK
    NOP
    NOP
    CLR ADCLK ;形成一次时钟脉冲
    NOP
    NOP
    DJNZ R7,AD_13 ;循环 }8\mathrm{ 次
    CJNE A,B,ADCONV ;数据校验
    SETB ADCS ;拉高/CS 端
    CLR ADCLK ;拉低 CLK 端
    SETB ADDO ;拉高数据端,回到初始状态
    RET
;====子程序结束====
```

