

ACC

使用上的注意事项
（1）本商品目录中记载的数据均是本公司所测定的数据，或者是本公司根据文献得到的参考数据，利用这些数据所带来的专利纠纷，事故，损害，本公司概不负责。
（2）使用本技术手册中记载的商品时，清务必在阅读MSDS后正确使用。
（3）本资料中记载的商品，并非是以移植于人体，或者是接触体液与身体组织的医疗器具等用途为使用目的而进行特别设计与生产的商品。本公司针对这方面用途的适应性与安全性，没有进行测试。
（4）本技术手册的内容，可能未经事先通知便子以修改。

AGC

AGC Chemicals Trading（Shanghai）Co．，Ltd
中国上海市淮海中路333号瑞安广场2307－2308室 〒200021 tel：＋86－21－6386－2211旭硝子化工贸易（上海）有限公司

目录

1．AFLAS® 的特长．．．．．．．．．．．．．．．．．．．．．．．．．．．．
2．AFLAS \otimes_{8} 的商品牌号…．．．．．．．．．．．．．．．．．．．
3．生腋特性2
3
4．配比与硫化 ．． 4
5．耐热性 6

6．耐酸性•耐碱性| 6 |
| :--- |

7．耐化学品性 10
8．耐油性•－ 12
9．电气特性 － 17
10．其他特性－ － 18
11．用途••• － 20

1．AFLAS ${ }_{\text {® }}$ 的特长

自1950年代基于偏二氟乙烯－六氟丙烯的氟橡胶（分类名FKM）问世以来，市场上出现了大量的各类氟橡胶。
AFLAS \mathbb{R}_{8} 作为基于四氟乙烯与丙烯的交替共聚物的新型氟橡胶（分类名FEPM），由旭硝子公司在 1975年推出。根据AFLAS \mathbb{B}_{8} 的分子结构，它具有以下优异的特性：（1）最高耐热温度为 $250^{\circ} \mathrm{C}$ 的出色耐热性， （2）即使对于强酸，强碱也不会影响的优异耐化学品性，（3）高电气绝缘性，体积固有电阻率可达到 $10^{15 \sim 16} \Omega \cdot \mathrm{~cm}$ 。如今，在世界各国，氟橡胶被广泛应用在使用环境苛刻的各行业中。
近年，随着汽车发动机的高性能化，以胺类添加剂为主，各种添加剂被大量添加在发动机油中。氟橡胶也必须具备更好的耐热性与耐发动机油性。AFLAS®作为在这种苛刻的环境下也能够使用的材料，赢得了众人的瞩目。
另一方面，$A F L A S_{\circledR}$ 作为具有电气绝缘性，并且兼顾有最高耐热性的橡胶材料，开拓了用作各种电线绝缘护套的新用途。
－AFLAS ${ }^{\text {•的结构与特长 }}$

－AFLAS 雷达图

2．AFLAS ${ }_{\text {•的商品牌号 }}$

由其分子结构产生的高耐碱性，高电气绝缘性，超过了一般氟橡胶FKM的常规性能。
AFLAS®200牌号改良了2元生胶的低温特性。AFLAS®300牌号导入了CSM，由此具备了高分子量，优异挤出性，在挤出成形时具有一般牌号所没有的低彭胀性，形状安定性，表面平滑性等特长。
AFLAS®根据门尼粘度设定了商品牌号。其主要用途为电线绝缘护套，油田用封隔器与汽车的油封。
－AFLAS 。牌号一览

生胶结构	TFE－P							TFE－P－VdF	TFE－P－CSM
牌号	100H	100 S	150P	150E	150．	150 C	150CS	200 P	3005
比重	1.55	1.55	1.55	1.55	1.55	1.55	1.55	1.60	1.55
氟含量（\％）	57	57	57	57	57	57	57	39	57
储藏剪切弹性系数 G^{\prime} （RPA100 ${ }^{\circ}$ ， 50 cpm ）	500	340	240	160	80	490	390	220	380
门尼粘度 （MLL $1+10100^{\circ} \mathrm{C}$ ）	－－－	160	95	60	35	－－－	140	90	－－－
门尼粘度 （MLL $1+101^{21} \mathrm{C}$ ）	－－－	115	70	45	－－－	－－－	100	65	120
玻璃态转化温度 （ ${ }^{\circ}$ ）	－3	－3	－3	－3	－3	－3	－3	－13	－3
外观	褐色	褐色	褐色	褐色	褐色	白色	白色	黄色	白色
硫化体系	过氧化物	过氧化物	过氧化物	过氧化物	过氧化物	电子束	电子束	过氧化物	过氧化物
特征	高强度冲压用	高强度 冲居甬	通用	挤出用	内社	挤出用	挤出用	低温用	挤出用挤出性改善剂

3．生胶的特性

－生胶的溶解性
$A F L A S_{\circledast}$ 可以通过素炼后在室温下搅拌使其溶解在四氢呋喃（17）中。AFLAS $\underbrace{}_{8}$ 在盐，芳香族等低极性溶剂中会产生膨胀，但是在SP值 10 以上的溶剂中仅产生微小膨胀。AFLAS 8200 可以溶解于丁酮 （15）与乙腈（8）中。

没洪条件：R．T．$\times 48 \mathrm{~h}$
 －（内洶）：此麻度
 －${ }^{20032}$（内）： 1000 以下 －生烄容

$\mathrm{CH}_{3} \mathrm{CONH}_{2}$ 乙酰胺	6	$\begin{aligned} & \mathrm{C}_{\mathrm{C}, \mathrm{H}_{\mathrm{O}} \mathrm{OH}}^{\text {己讋 }} \end{aligned}$	酰䣳		
$\underset{\substack{\text { 甲醇 }}}{\mathrm{CH}_{3} \mathrm{OH}}$	7	$\mathrm{HCON}\left(\mathrm{CH}_{3}\right)_{2}$ N, N－二甲基甲酰胺	$12{ }_{\substack{\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N} \\ \text { ato } \\ \hline \text { 淀 }}}$	$17 \mathrm{CH} \mathrm{CH} \mathrm{H} \mathrm{O}$	$22 \mathrm{CH}_{3} \mathrm{CCl}_{3}$ $\text { 1, 1, } 1 \text {-三氯乙烯 }$
$3 \underset{\text { 乙二醇 }}{ }$	8	$\begin{aligned} & \mathrm{CH}_{4} \mathrm{CN} \\ & \text { 乙睛 } \end{aligned}$			
$\begin{gathered} \hline 4\left(\mathrm{CH}_{3}\right) \mathrm{SO}_{2} \\ \text { 二甲基亚矾 } \end{gathered}$	9	$\underset{\substack{\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{OH} \\ 1-\mathrm{J} \text { 醇 }}}{\text { and }}$	$14 \mathrm{CS}_{2} \text { 二酼化炭 }^{\text {m }}$	$19 \text { CH6 }$	
	10	$0{ }^{\mathrm{CH} \mathrm{CH}_{2} \mathrm{CHCN}}$	$15 \mathrm{CH}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CO}\right.$甲基乙基酮	$\underset{\text { 甲苯 }}{20 \mathrm{CH}_{3}}$	25

－生胶的耐热性
AFLAS®具有优异的耐热性， 2 元生胶的热分解初期温度超过 $400^{\circ} \mathrm{C}$ 。由于 2 元生胶的共聚比为 C2F4／C3H6＝55／45（摩尔），这可以带来很高的热安定性。

4．配比与硫化

AFLAS®与其他橡胶同样，可以通过搅拌机与 2 转子密炼机等常用混炼设备混合，利用挤出成形，压缩成形，射出成形，压延成形等通常方法进行成形。

－标准配比与硫化属性

		AFLAS。 100 H	AFLAS 100 S	AFLAS。 150P	AFLASs 150E	AFLAS。200P	AFLAS。 300 S
配比	生胶	100	100	100	100	100	100
	MT7㛶黑	30	30	30	30	25	25
	TAIC＊	5	5	5	5	5	3
	过氧化物A＊＊	1	1	1	1	1	－－－
	过氧化物 B ＊＊＊	－－	－－	－－－	－－－	－－－	1.5
	Mg0（高活性）	－－－	－－－	－－－	－－－	3	－－－
	硬脂酸钠	1	1	1	1	1	－－－
	硬脂酸亚铅	－－－	－－－	－－－	－－－	－－－	1
$\begin{aligned} & \text { 门尼粘度 } \\ & \left(121^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	MLIL＋4	122	93	58	38	79	99
	MLL $1+10$	114	85	51	35	74	97
硫化条件	一段硫化	$170 \mathrm{C} / 20 \mathrm{~min}$	$170 \mathrm{C} / 20 \mathrm{~min}$	$170^{\circ} \mathrm{C} / 20 \mathrm{~min}$	$170 \mathrm{C} / 20 \mathrm{~min}$	$170{ }^{\circ} \mathrm{C} / 20 \mathrm{~min}$	$170{ }^{\circ} \mathrm{C} / 20 \mathrm{~min}$
	二段硫化	$200^{\circ} \mathrm{C} / 4 \mathrm{~h}$	$230^{\circ} \mathrm{C} / 24 \mathrm{~h}$	$230 \mathrm{C} / 16 \mathrm{~h}$			
硫化属性	扯断强度（MPa）	21	20	17	13	18	13
	延伸率（\％）	300	230	280	360	270	220
	100 模量（MPa）	6	7	5	5	5	4
	硬度（Shore－A）	72	72	70	70	69	67
	压缩永久变形（\％， $200^{\circ} \mathrm{C} \times 70 \mathrm{~h}$ ）	35	26	29	32	23	29

＊三溸丙烯异三聚氰酸能（ $100 \% 1 \mathrm{q}$ quid）
， 1,3 －双（叔丁过氧基）一 一异丙基苯（100\％active）
＊＊＊二（叔丁）过氧化物
－硫化曲线
RPA 2000

MT碳黑填充量与硫化属性

		碳黑10pht	碳黑20pht	AFLAS。 标准配比	硙黑40pht	碳黑50pht
配比	AFLAS ${ }^{\text {a }}$ 150P	100	100	100	100	100
	MT碳黑（N990）	10	20	30	40	50
	TAIC＊	5	5	5	5	5
	过氧化物A＊＊	1	1	1	1	1
	硬脂酸钠	1	1	1	1	1
$\begin{aligned} & \text { 门尼粘度 } \\ & \left(121^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	MLL $1+4$	49	54	58	61	69
	MLL $1+10$	43	47	51	56	64
RPA （ $177 \mathrm{C} \times 12 \mathrm{~min}$ 振幅 3° ）	t10（min）	0.9	0.9	0.9	0.9	0.9
	t90（min）	6.8	6.8	6.9	7.0	7.0
	NH（dNm）	34.8	38.5	40.3	43.4	46.3
	ML（dNm）	4.6	5.1	5.6	5.9	6.4
硫化属性＊＊＊	扯断强度（MPa）	16	17	17	17	17
	延伸率（\％）	360	320	280	260	210
	1000 模量（MPa）	2.3	3.8	5.0	7.5	9． 5
	硬度（Shore－A）	63	67	70	75	80
	比重	1.54	1.57	1.59	1.60	1.62
	医缩永久变形（\％， $200{ }^{\circ} \mathrm{C} \times 70 \mathrm{~h}$ ）	29	29	29	28	29
	匤缩永久变形（\％， $200{ }^{\circ} \mathrm{C} \times 22 \mathrm{~h}$ ）	20	21	19	18	17

＊三烯内烯异三聚袁酸脂（ $100 \% 1 \mathrm{~F}$ iquid）
＊1，3－双（叔丁过氧基）一一异丙基苯（ 100% act ive）
＊＊＊酼化条件：一段硫化 $\left(170^{\circ} \mathrm{C} \times 20 \mathrm{~min}\right)+$ 二段流化 $\left(200^{\circ} \mathrm{C} \times 4 \mathrm{~h}\right)$
－硫化剂•硫化促进剂的推荐配比与硫化属性
为了充分发挥AFLAS®的特性，有必要正确的选择硫化剂•硫化促进剂的种类与使用量，硫化剂•硫化促进剂的推荐配比与硫化属性。

		AFLAS 150P 标准配比 （例1）	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { AFLAS。150P } \\ \text { 标准配比 } \\ \text { (例2) } \end{array} \\ \hline \end{array}$	$\begin{gathered} \begin{array}{c} \text { AFLASe 150P } \\ \text { 标准配比 } \\ \text { (列3) } \end{array} \\ \hline \end{gathered}$	不推傆 （例1）	$\begin{aligned} & \text { 不推荐 } \\ & \text { (列2) } \end{aligned}$
配比	${ }^{\text {AFLLAS }}$ 。 150P	100	100	100	100	100
	MTI碳黑	30	30	30	30	30
	TAIC＊	5	5	－－－	5	5
	TAIC 60\％稀释物＊＊＊	－－	－－－	8.3	－－－	－－－
	过氧化物 A ＊＊＊	1	－－－	1	－－－	－－－
	过氧化物稀秤物＊＊＊＊	－－－	2.5	－－－	1	－－－
	过氧化物0＊＊＊＊＊	－－－	－－－	－－－	－－－	2
	硬脂酸钠	1	1	1	1	1
硫化条件	－段硫化	${ }^{170}{ }^{\circ} \mathrm{C} / 20 \mathrm{~min}$	$170 \mathrm{C} / 20 \mathrm{~min}$			
	二段硫化	$200^{\circ} \mathrm{C} / 4 \mathrm{~h}$				
硫化属性	扯断强度（MPa）	17	＊同等	ヶ同等	13	14
	延伸率（\％）	280	＊同等	＊同等	350	350
	100 模量（MPa）	5	－同等	－同等	4.5	4.6
	硬度（Shore－A）	70	－同等	－同等	72	71
	压缩永久变形（\％， $200{ }^{\circ} \mathrm{C} \times 72 \mathrm{~h}$ ）	29	－同等	－同等	41	39

＊三烯丙烯异三聚氰酸脂（ $100 \% 1$ iquid）
＊＊三烯丙烙异三聚氮酸脂（ 60% powder ）
＊＊＊＊1，3－双（叔丁过氧基）一一异内基苯（40\％active）
＊＊＊＊＊2，3二甲基2，5二（叔丁过氧基）己烷

5．耐热性

AFLAS®由于其分子结构而具有优异的耐热性，在 $200^{\circ} \mathrm{C}$ 温度下可以持续使用，并且还具有抗 $250^{\circ} \mathrm{C}$高温的优异耐热性。

－耐热性

				AfLAS。 100 S	AFLAS．150P	AfLAS。200P	AFLAS． 300 S	2－FKı＊
配比	生胶			100	100	100	100	100
	MTT碳黑			30	30	25	25	30
	TAIC＊＊			5	5	5	3	－－
	过氧化物 A ＊＊＊			1	1	1	－－－	－－－
	过氧化物 $\mathrm{B} * * * *$			－－	－－－	－－－	1	－－
	硬脂酸钠			1	1	1	－－－	－－
	硬脂酸亚铅			－－－	－－－	－－－	1	－－－
	Mg0			－－－	－－－	3	－－－	3
	$\mathrm{Ca}(\mathrm{OH})_{2}$			－－－	－－－	－－－	－－－	6
初期属性	扯断强度（MPa）			20	17	19	13	14
	延伸率（\％）			230	280	270	220	180
	100% 模量（MPa）			7	5	5	4	8
	硬度（Shore－A）			72	70	69	67	86
	比重			1.59	1.59	1.68	1.59	1.83
耐热性	$200{ }^{\circ} \mathrm{C}$	200 h	扯断强度保持率（\％）	95	96	100	111	97
			延伸保持率（\％）	88	93	84	97	98
			硬度变化（度）	＋1	＋1	＋1	＋1	＋2
		500 h	扯断强度保持率（\％）	110	114	90	112	99
			延伸保持率（\％）	87	93	72	96	101
			硬度变化（度）	＋5	＋5	＋1	0	＋2
		1000h	扯断强度保持率（\％）	101	102	90	119	81
			延伸保持率（\％）	91	93	72	106	116
			硬度变化（度）	＋3	＋2	＋1	＋1	＋1
	230 C	200 h	扯断强度保持率（\％）	88	89	83	105	93
			延伸保持率（\％）	107	114	77	119	113
			硬度变化（度）	－1	0	＋1	－2	－1
		500h	扯断强度保持率（\％）	74	72	51	92	57
			延伸保持率（\％）	122	132	53	144	154
			硬度变化（度）	－4	－3	＋1	－5	0
	$250{ }^{\circ} \mathrm{C}$	96 h	扯断强度保持率（\％）	78	73	80	108	81
			延伸保持率（\％）	106	116	81	117	128
			硬度变化（度）	0	0	＋1	－4	＋1

＊添加硫化促进剂＊＊三烯内烯异三聚穞酸脂（100\％iquid）＊＊＊1，3－双（叔了过氧基）一二异丙基苯（100\％active）
＊＊＊＊二（叔丁）过氧化物（100\％active）
※耐热性的基准 70 h 的加热老化试验之后（1）具有 $\pm 30 \%$ 的扯断强度保持率（2）具有 $\pm 30 \%$ 的扯断延伸保持率（3）具有 $\pm 5 \%$ 点以内的硬度变化 ※连续使用温度的基准 1000 h 的加热老化试验后（1）具有 $\pm 30 \%$ 的扯断强度保持率（2）具有 $\pm 30 \%$ 的扯断延伸保持率（3）具有 $\pm 5 \%$ 点以内的硬度变化

6．耐酸性•耐碱性

$A F L A S{ }_{\circledR}$ 对于高温•高浓度的酸与碱具有优异的耐化学品性，并且兼有FKM所没有的特长。

－耐酸性耐碱性体积变化（物质比较）

化学品		浸渍条件		AFLAS．	FKM	硅楾挍	EPDM	CR	丁皘椓胶	NBR	CSM
		温度（C）	时间（日）								
硫酸	发烟硫酸	25	7	A	c	\times	\times	\times	\times	\times	\times
	96\％	100	3	A	D	\times	\times	\times	\times	\times	\times
		70	3	A	c	\times	\times	\times	\times	\times	\times
		40	3	A	в	\times	D	\times	\times	\times	D
		25	7	A	B	\times	c	\times	\times	\times	D
	60\％	100	3	A	A	A	A	A	A	c	в
		25	7	A	A	A	A	A	A	A	A
硝酸	20\％	100	3	A	A	A	A	A	A	B	A
	发烟硝酸	25	7	c	c	\times	\times	\times	\times	\times	\times
	98\％	25	7	c	D	D	\times	\times	\times	\times	\times
	60\％	100	3	c	\times						
		70	3	в	\times						
		40	3	A	c	B	\times	\times	\times	\times	\times
		25	7	A	B	B	D	\times	\times	\times	\times
	20\％	100	3	c	D	\times	\times	\times	\times	\times	\times
		70	3	B	D	\times	\times	\times	\times	\times	\times
		25	7	A	A	c	B	B	B	B	B
氯化氯化氢	37%	70	3	B	D	\times	c	D	c	D	D
		40	3	A	c	c	в	c	в	B	в
		25	7	A	в	c	A	B	A	B	A
	20\％	100	3	B	D	\times	c	D	D	D	D
		70	3	B	D	\times	D	D	D	D	D
		25	7	A	A	B	A	A	A	B	A
氯氧化钠溶液	50\％	100	3	A	\times	в	A	B	A	A	B
		70	3	A	A	A	A	A	A	A	в
		25	7	A	A	B	A	A	A	A	A
	20\％	100	3	A	D	A	A	A	A	A	A
		70	3	A	A	A	A	A	A	A	A
氢氟酸	50\％	25	7	A	в	\times	в	D	A	D	A
氨溶液	28\％	70	3	A	в	A	A	B	A	A	c
		25	7	A	A	A	A	A	A	A	A

A体积变化率 $<5 \%$ B体积变化率 $<15 \%$ C体积变化率 $<40 \%$ D体积变化率 $>40 \% \times$ 分解或是溶解
－耐酸性（使用AFLAS ${ }^{\text {® }}$ 标准配比，JIS3号哑铃形试片）

化学品		浸渍条件		保持率（\％）			硬度变化 （度）	体积变化率 （\％）
		温度（ ${ }^{\text {c }}$ ）	时间（日）	扯断强度	延伸	100\％模量		
硫酸	发烟硫酸	RT	7	76	98	115	－2	4.2
		RT	30	－－－	－－－	－－－	＋1	0.7
		RT	90	－－－	－－－	－－－	－－－	5.1
		RT	180	－－－	－－－	－－－	－－－	7.4
	96\％	100	3	99	101	73	－3	4.4
		RT	7	98	99	92	－3	0.4
		RT	30	－－－	－－－	－－－	＋1	0.2
		RT	90	－－－	－－－	－－－	－－－	1.1
		RT	180	－－－	－－－	－－－	－－－	2.3
	60\％	100	3	107	104	116	＋1	0.4
		RT	7	103	98	102	－1	0.1
		RT	30	－－－	－－－	－－－	＋1	0.3
		RT	90	－－－	－－－	－－－	－－	0.2
		RT	180	－－	－－－	－－－	－－－	0.4
	20\％	100	3	99	98	103	－3	0.4
		RT	7	102	105	93	－1	－0．5
		RT	30	－－－	－－－	－－－	＋1	0.4
硝酸	发烟硝酸	RT	7	42	126	49	－7	19
		RT	30	－－－	－－	－－－	－2	15.8
		RT	90	－－－	－－	－－－	－－－	14.8
		RT	180	－－－	－－－	－－－	－－－	14.9
	98\％	RT	7	－－－	－－－	－－－	－－－	－－－
		RT	30	－－－	－－－	－－－	－10	21.4
		RT	90	－－－	－－－	－－－	－－－	20.6
		RT	180	－－－	－－－	－－－	－－－	23.1
	60\％	100	3	－－－	－－－	－－－	－18	34
		70	3	44	－－－	61	－3	10
		40	3	－－－	107	－－－	＋1	1.2
		RT	7	94	－－－	91	－1	1.3
		RT	30	－－－	95	－－－	－	1.0
		RT	90	－－－	－－－	－－－	－－－	2.0
		RT	180	－－－	－－－	－－－	－－－	5.1
	20\％	100	3	43	93	50	－10	23
		70	3	42	90	58	－13	25
		40	7	105	114	111	－1	－5． 0
		RT	30	－－	－－－	－－－	＋1	0.4
		RT	90	－－－	－－－	－－－	－－－	0.5
		RT	180	－－－	－－－	－－－	－－－	1.3
氯化氢	37\％	70	3	57	112	74	－2	7.0
		40	3	77	88	108	－4	2.3
		RT	7	100	107	118	＋1	0.2
		RT	30	－－－	－－－	－－－	＋1	0.7
		RT	90	－－－	－－－	－－－	－－－	1.8
		RT	180	－－－	－－－	－－－	－－	4.5
	20\％	100	3	67	98	92	－7	6.5
		70	3	58	85	92	－6	7.4
		RT	7	103	107	112	－1	－4．6
		RT	30	－－－	－－－	－－－	＋1	0.7
氢氟酸	50\％	RT	7	63	117	100	＋6	1.5
		RT	30	－－－	－－－	－－－	0	1.7
		RT	90	－－－	－－－	－－－	－－－	2.9
		RT	180	－－－	－－－	－－－	－－－	4.1
铬酸	62\％	RT	7	90	98	92	－2	1.7
5\％氯化氢 $+25 \%$ 硝酸		100	7	70	84	105	－6	3.5
46\％钽酸 $+25 \%$ \％硝酸		RT	7	115	117	100	－1	2.6

－耐碱性（使用AFLAS＠标准配比，JIS3号哑铃形试片）

化学品		浸渍条件		保持率（\％）			硬度变化 （度）	体积变化率 （\％）
		温度（C）	时间（日）	扯断强度	延伸	100\％模量		
氢氧化钠溶液	50\％	180	3	102	91	86	＋1	1.5
		180	7	96	94	81	0	－0．3
		180	30	117	81	126	＋2	－0．1
		100	3	101	116	96	－1	1.1
		70	7	103	90	112	0	0.0
		70	30	105	84	123	0	0.1
		RT	7	108	116	75	＋2	1.2
		RT	30	－－－	－－－	－－－	－1	0.3
		RT	90	－－－	－－－	－－－	－－－	0.7
		RT	180	－－－	－－－	－－－	－－－	0.5
	20\％	100	3	95	117	92	－3	2.0
		RT	7	85	104	100	－1	－0．3
		RT	30	－－－	－－－	－－－	＋1	－0．1
氨溶液	28\％	70	3	82	116	116	－1	3.2
		70	7	100	88	94	－2	1.5
		70	30	105	81	100	－1	2.0
		RT	7	－－－	－－－	－－－	0	1.3
		RT	30	－－－	－－－	－－－	＋1	0.8
		RT	90	－－－	－－	－－	－－－	1.0
		RT	180	－－－	－－－	－－－	－－－	2.5
	7\％	140	30	87	107	68	－8	16.1
永素		100	7	107	94	94	0	2.8
乙二胺		25	7	105	108	108	＋5	1.0

7．耐化学品性

AFLASB 针对各种化学品，具有以下的耐久性。
－耐化学品性（使用AFLAS ${ }^{(150 P}$ 标准配比，JIS3号哑铃形试片）

化学品	浸渍条件		保持率（\％）			硬度变化 （度）	体积变化率 （\％）
	温度（ ${ }^{\text {c }}$ ）	时间（日）	扯断强度	延伸	100\％模量		
水	100	3	89	117	117	0	1.1
蒸气汽（6．2atm）	160	7	91	84	110	－3	4.6
澳	R．T．	7	54	136	－－－	－－－	6.2
滇（32\％）＋氯化氢 $(18 \%)+$ 硫酸 (25%)	100	1	66	112	95	－8	6.0
饱和氯溶液	100	4	22	28	87	－10	169
饱和氯溶液＋氯化钠（35\％） + 次氯酸钠（pH9．6）	100	2.5	69	${ }^{78}$	86	－9	5.9
Bleaching Liquor $\mathrm{Ca}(\mathrm{Cl10}) 2$（10\％）	100	7	112	89	148	－2	0
次氯酸钠（10\％）	100	7	100	95	114	－1	1.0
氯酸钠（10\％）	100	7	80	93	57	－12	22
氯酸钠（ 10% ） + 醕酸（pH3．5）	100	1	67	105	39	－16	24
$\begin{aligned} & \text { 氯酸钠 }(10 \%) \\ & + \text { 氢氧化钠 }(5 \%) \\ & \hline \end{aligned}$	100	7	88	85	108	0	0.6
二氧化硫（ 5% ） （连续吹入）	40	2	69	84	86	－4	7.8
过氧化氢（30\％）	100	7	105	99	110	0	－1．1
过氧化氢（ 15% ） + 氢氧化钠（3\％）	100	7	107	111	96	－2	-1.8
溴化锂（ $53 \%-63 \%$ ） （铬酸锂稳定剂）	160	11	106	106	113	＋1	－0．3
	200	11	99	110	87	＋1	－0．3
溴化锂（ $53 \%-63 \%$ ） （有机稳定剂）	160	11	108	119	100	＋1	－0．3
	200	11	95	118	90	＋3	－0．2
氟化钾＋氢氟酸 $(1: 1.8)$	85	3	94	111	109	－3	0.4
三乙二醇	230	3	88	148	－－－	－5	7.7
		10	84	169	－－－	－6	8.8
		20	74	145	－－－	－9	8.5

－耐溶剂性（使用AFLAS®150P标准配比）

溶剂	体积变化率（\％）	溶剂	体积变化率（\％）
异戊醇	0	甲苯	41
卡必醇	0	丙酮	50
甲醇	0.2	丁酮	58
苯胺	0.7	酯酸	71
甲基溶纤剂	1.4	四氯化碳	86
乙醇	2.3	醹酸乙脂	88
松节油	2.9	甲基异丁基酮	95
硝基苯	5.6	三氯乙㛓	95
NMP	9	三氯甲烷	112
乙醇胺	16	三氯乙烷	125
n －已烷	24	三氯三氟代乙烷	249
苯胺	40		

浸渍条件：R．T．$\times 7$ 日
－耐水性•耐蒸汽性•耐化学品性（使用文中第4页的标准配比，JIS3号哑铃形试片）

			AFLAS。 100 S	AFLAS 150 P	AFLAS。200P	AFLAS． 300 S	2－FK1＊
热水	168h	扯断强度保持率（\％）	88	97	29	70	53
$180^{\circ} \mathrm{C}$		延伸保持率（\％）	104	105	42	88	124
		硬度变化（度）	－4	－4	－14	－3	－16
		体积变化率（\％）	14	15	105	4	24
	720 h	扯断强度保持率（\％）	85	91	11	60	17
		延伸保持率（\％）	100	103	25	104	58
		硬度变化（	－5	－5	－29	－4	－28
		体积变化率（\％）	16	20	120	6	103
$\begin{aligned} & \text { 蒸汽 } \\ & 180^{\circ} \mathrm{C} \end{aligned}$	168 h	扯断强度保持率（\％）	90	91	41	84	66
		延伸保持率（\％）	107	99	62	90	146
		硬度变化（度）	－3	－3	－13	－4	－11
		体积变化率（\％）	8	10	72	2	15
	72 h	扯断强度保持率（\％）	92	92	28	73	51
		延伸保持率（\％）	88	111	42	88	147
		硬度变化（度）	－3	－3	－16	－6	－15
		体积变化率（\％）	10	11	91	3	20
50% 氢氧化钠 $70^{\circ} \mathrm{C}$	168 h	扯断强度保持率（\％）	102	103	99	101	36
		延伸保持率（\％）	100	90	90	102	84
		硬度变化（度）	＋1	0	0	－2	－12
		体积变化率（\％）	0	0	0	－1	－34
	720 h	扯断强度保持率（\％）	100	105	98	111	
		延伸保持率（\％）	100	84	89	95	崩坏
		硬度变化（度）	0	0	－1	0	
		体积变化率（\％）	－1	0	1	－1	
28\％氨水 $70^{\circ} \mathrm{C}$	168 h	扯断强度保持率（\％）	96	100	106	91	
		延伸保持率（\％）	98	88	81	93	崩坏
		硬度变化（度）	－1	－2	－1	0	
		体积变化率（\％）	1	2	7	3	
	720 h	扯断强度保持率（\％）	99	105	84	83	
		延伸保持率（\％）	94	81	62	89	
		硬度变化（度）	－1	－1	－3	0	
		体积变化率（\％）	1	2	32	5	

＊添加硫化促进剂

8．耐油性

AFLAS®不但耐油性优异，而且耐胺基性也很优异。发动机油与齿轮油等汽车中的各种润滑油中，添加有大量的胺类添加剂，AFLAS®即使对这些润滑油也具有优异的耐油性。
－发动机油的成分实例

－ AFLAS_{8} 的耐油性（汽车零部件不同用途 与FKM的比较）

油料	成分	用途	温度（C）	AFLAS．	FKM
发动机油		曲轴密封	160	\bigcirc	\triangle
		阀杆密封	－－－	－－－	－－－
自动变速器油		变速器密封	160	\bigcirc	\triangle
齿轮油		齿轮密封	135	\bigcirc	\times
		轴密封	－－－	－－－	－－－
		差速齿轮密封	－－－	－－－	－－－
制动油	聚乙二醇梄		135	\bigcirc	\bigcirc
冷却剂	乙二醇－H20	気䍂套密封	135	\bigcirc	\triangle
		水泵密封	－－－	－－－	－－－
		气缸盖密封	－－－	－－－	－－－
操作油		减震器密封	110	\bigcirc	\triangle
			－－－	\bigcirc	\bigcirc
			－－－	\bigcirc	\bigcirc
燃油	汽油 轻油 重油 100% 甲醇		110	\times	\bigcirc
			－－－	\times	\bigcirc
			－－－	\bigcirc	\triangle
			－－－	\bigcirc	\triangle

○适合 O 可以使用 \triangle 部分场合不可以使用 \times 不可以使用
－耐油性（使用文中第4页的标准配比，JIS33号亚铃形试片）

			AFLAS，100S	AFLAS 150 P	AFLAS。200P	AFLAS，300S	2－FKN＊
发动机油（SJ）	70 h	扯断强度保持率（\％）	76	71	－－－	－－－	96
$175{ }^{\circ} \mathrm{C}$		延伸保持率（\％）	105	116	－－－	－－－	78
		硬度变化（度）	－1	－1	－－－	－－－	＋1
		体积变化率（\％）	－－－	－－－	－－－	－－－	－－－
	72 h	扯断强度保持率（\％）	87	82	－－－	－－－	46
		延伸保持率（\％）	90	91	－－－	－－－	35
		硬度变化（度）	－6	－5	－－－	－－－	0
		休积变化率（\％）	9	9	－－－	－－－	1
	168h	扯断强度保持率（\％）	92	85	－－－	－－－	41
		延伸保持率（\％）	95	93	－－－	－－－	35
		硬度变化（度）	－6	－6	－－－	－－－	＋1
		体积变化率（\％）	10	9	－－－	－－－	1
	720h	扯断强度保持率（\％）	92	88	－－－	－－－	35
		延伸保持率（\％）	95	99	－－－	－－－	35
		硬度变化（度）	－5	－5	－－－	－－－	＋3
		体积变化率（\％）	7	7	－－－	－－－	0
柴油（CD） $175^{\circ} \mathrm{C}$	168h	扯断强度保持率（\％）	88	84	－－－	－－－	69
		延伸保持率（\％）	90	93	－－－	－－－	59
		硬度变化（度）	－3	－3	－－－	－－－	－－
		体积变化率（\％）	8	7	－－－	－－－	4
	720 h	扯断强度保持率（\％）	96	89	－－－	－－－	73
		延伸保持率（\％）	90	94	－－－	－－－	51
		硬度变化（度）	－7	－5	－－－	－－－	＋1
		体积变化率（\％）	8	7	－－－	－－－	1
自动变速器油 $175^{\circ} \mathrm{C}$	168h	扯断强度保持率（\％）	86	82	－－－	－－－	61
		延伸保持率（\％）	86	96	－－－	－－－	54
		硬度变化（度）	－3	－4	－－－	－－－	＋1
		体积变化率（\％）	14	9	－－－	－－－	1
	720 h	扯断强度保持率（\％）	84	87	－－－	－－－	62
		延伸保持率（\％）	81	93	－－－	－－－	48
		硬度变化（	－6	－5	－－－	－－－	－1
		体积变化率（\％）	8	9	－－－	－－－	9
	168h	扯断强度保持率（\％）	86	88	－－－	－－－	52
		延伸保持率（\％）	82	96	－－－	－－－	41
		硬度变化（度）	－8	0	－－－	－－－	－1
		体积变化率（\％）	10	10	－－－	－－－	3

＊添加硫化促进剂
－耐油性（使用文中第4页的标准配比，JIS3号哑铃形式片）

			AFLAS。 100 S	AFLAS。 150P	AFLAS 200 P	AFLAS． 300 S	2－FKM＊
齿轮油A 175 C	70 h	扯断强度保持率（\％）	－－－	67	－－－	－－－	53
		延伸保持率（\％）	－－－	93	－－－	－－－	34
		硬度变化（度）	－－－	－11	－－－	－－－	＋5
		体积变化率（\％）	－－－	8	－－－	－－－	1
	168h	扯断强度保持率（\％）	70	－－－	－－－	88	41
		延伸保持率（\％）	84	－－－	－－－	98	33
		硬度变化（度）	－11	－－	－－	－4	－1
		体积变化率（\％）	9	－－－	－－－	4	－－－
	500h	扯断强度保持率（\％）	－－－	78	－－－	－－－	42
		延伸保持率（\％）	－－－	101	－－－	－－－	37
		硬度变化（度）	－－－	－6	－－－	－－－	0
		体积变化率（\％）	－－－	5	－－－	－－－	－－
	1000h	扯断强度保持率（\％）	79	65	－－－	－－－	－－－
		延伸保持率（\％）	86	85	－－－	－－－	－－
		硬度变化（度）	－6	－14	－－－	－－－	－－－
		体积变化率（\％）	6	21	－－－	－－－	－－－
齿轮油B 175 C	200 h	扯断强度保持率（\％）	65	66	－－－	－－－	73
		延伸保持率（\％）	82	88	－－－	－－	86
		硬度变化（度）	－17	－15	－－	－－	－11
		体积变化率（\％）	22	22	－－－	－－－	15
	500h	扯断强度保持率（\％）	66	64	－－－	－－－	74
		延伸保持率（\％）	88	102	－－－	－－－	85
		硬度变化（度）	－14	－23	－－－	－－－	－11
		体积变化率（\％）	21	21	－－－	－－－	17
	1000h	扯断强度保持率（\％）	62	－－－	－－－	－－－	64
		延伸保持率（\％）	89	－－－	－－－	－－－	89
		硬度变化（度）	－18	－－	－－－	－－－	－19
		体积变化率（\％）	20	－－－	－－－	－－－	24
50\％LLC $160^{\circ} \mathrm{C}$	70h	扯断强度保持率（\％）	81	82	－－－	－－	67
		延伸保持率（\％）	94	104	－－－	－－	72
		硬度变化（度）	－6	－6	－－－	－－－	－4
		体积变化率（\％）	4	5	－－－	－－－	10

[^0]－耐油性（使用文中第4页的标准配比，JIS3号哑铃形试片）

			AFLAS． 100 S	AFLAS． 150 P	AFLAS。200P	AFLAS。300S	2－FKı＊
$\begin{aligned} & \text { C重油 } \\ & 140^{\circ} \mathrm{C} \times 72 \mathrm{~h} \end{aligned}$	100\％	扯断强度保持率（\％） 延伸保持率（\％） 硬度变化（度） 体积变化率（\％）	85	84	－－－	－－－	87
			92	98	－－－	－－－	88
			－8	－6	－－－	－－－	－1
			8	9	－－－	－－－	3
	60\％	扯断强度保持率（\％）	68	69	－－－	－－－	83
		延伸保持率（\％）	87	101	－－－	－－－	93
		硬度变化（度）	－9	－6	－－－	－－－	－5
		体积变化率（\％）	9	10	－－－	－－－	8
$\begin{aligned} & \text { CNG油 } \\ & 175^{\circ} \mathrm{C} \end{aligned}$	168h	扯断强度保持率（\％）	87	92	89	91	65
		延伸保持率（\％）	99	100	75	90	61
		硬度变化（度）	－8	－7	－4	－6	0
		体积变化率（\％）	6	8	3	7	1
	720 h	扯断强度保持率（\％）	85	94	88	87	52
		延伸保持率（\％）	99	96	68	93	42
		硬度变化（度）	－7	－9	－3	－8	0
		体积变化率（\％）	9	9	4	6	1
ASTM No．3油 $175^{\circ} \mathrm{C}$	168h	扯断强度保持率（\％）	－－－	84	－－－	80	－－－
		延伸保持率（\％）	－－－	105	－－－	83	－－－
		硬度变化（度）	－－－	－11	－－－	－9	－－－
		体积变化率（\％）	－－－	15	－－－	12	－－－
	720 h	扯断强度保持率（\％）	－－－	87	－－－	79	－－－
		延伸保持率（\％）	－－－	95	－－－	87	－－－
		硬度变化（度）	－－－	－10	－－－	－7	－－－
		体积变化率（\％）	－－－	16	－－－	12	－－－
发动机油（SM） $175^{\circ} \mathrm{C}$	168h	扯断强度保持率（\％）	87	90	102	92	88
		延伸保持率（\％）	98	92	82	84	89
		硬度变化（度）	－8	－7	－4	－6	0
		体积变化率（\％）	6	7	2	7	1
	720 h	扯断强度保持率（\％）	88	91	95	97	73
		延伸保持率（\％）	102	92	72	98	65
		硬度变化（度）	－6	－7	－2	－4	＋2
		体积变化率（\％）	6	7	3	6	0
乙二胺	168h	扯断强度保持率（\％）	105	105	－－	－－－	
$25^{\circ} \mathrm{C}$		延伸保持率（\％）	93	108	－－－	－－－	
		硬度变化（度）	＋1	5	－－－	－－－	崩坏
		值积变化率（\％）	0	1	－－－	－－－	

＊添加硫化促进剂

- 耐油性图表
- 发动机油（SM，浸渍温度 $175^{\circ} \mathrm{C}$ ）

■CNG汽车用发动机油（浸渍温度 $175^{\circ} \mathrm{C}$ ）

－发动机油浸渍实验之后

AFLAS ${ }^{1} 150 \mathrm{P}$ （没有裂纹）
SJ， $175^{\circ} \mathrm{C} \times 240 \mathrm{~h}$

2－FKM
（有裂纹）

9．电气特性

AFLAS®具有FKM所没有的优异电气绝缘性。

－电气特性

	体积固有电阳率 $(\Omega \bullet \mathrm{cm})$	介电常数（1 1 kHz ）	介电损耗（1 1 kHz ）	绝缘击穿电压（kv／mm）
$\overline{\text { AFLASs（ } 100,150,300 S \text { ）}}$	3×10^{16}	2.8	0.03	23
AFLAS（200P）	4×10^{15}	5.9	0.03	16
FKM	2×10^{13}	17	0.03	20
EPDM	5×10^{16}	2	0． 0015	40
硅棌胶	5×10^{15}	$3 \sim 4$	0． 007	25
丁基橡胶	1×10^{15}	3	0．005	30
SBR	1×10^{15}	2～3	0.006	25
氯丁二㧞橡胶	2×10^{13}	7	0.04	15

氯丁二秌隐腋
纯椽胶配比R．T．
－电气特性的温度依存性

－由电子束照射桥架所产生的基本属性

	AFLAS。 100 S	AFLAS．150E	AFLAS ${ }^{\text {150C }}$	AFLAS。 150 CS
比重	1.55	1.55	1.55	1.55
硬度（JIS－A）	50	39	52	51
100% 模量（MPa）	1.5	1.1	1.5	1.4
扯断强度（ MPa ）	18	9	19	17
延伸率（\％）	330	460	400	360
体积固有电阳率 $(\Omega \cdot \mathrm{cm})$	$>10^{16}$	$>10^{16}$	$>10^{16}$	$>10^{16}$
介电常数（1kHz）	2.8	2.8	2.8	2.8
绝缘击穿电压（kV／mm）	25	23	24	23

电子束照射100kGy，不添加填充剂，硫化剂

10．其他特性

－耐放射性
AFLAS®针对200KGy的 γ－射线也具有优异特性。

γ－ray（kGy）		0	100	200	500	1000	2000
AFLAS 150 P ＊	扯断强度（MPa）	17	18	19	18	18	18
	延伸率（\％）	280	260	250	130	100	50
2－FKM	扯断强度（MPa）	16	15	12	12	14	17
	延伸率（\％）	440	200	170	110	60	20
PTFE树脂	扯断强度（ MPa ）	30	脆化	脆化	－－－	－－－	－－－
	延伸率（\％）	320	脆化	脆化	－－－	－－－	－－－

＊＊使用标准配比，JIS3豆哑铃形试片
－透气性
AFLAS®针对各种气体都具有优异的透气性。

	氮气	氧气	碳酸气体
$\overline{\text { AFLAS }{ }^{\text {® }} 150 \mathrm{P}}$	7	23	29
2－FKM	4	15	78
表氯醇椽胶	－－－	5	－－－
丁基榷胶	3	10	39
氯磺化聚乙烯龽胶	12	28	210
氯丁二抪椽胶	9	30	200
SBR	50	130	940
天然椽胶	60	180	1，000
EPDM	60	190	820
硅椽胶	2000	4000	16，000

生胶配比 $(\mathrm{cc} \cdot \mathrm{mm} / \mathrm{cm} 2 \cdot \mathrm{~s} \cdot \mathrm{cmHg}) \times 10-10, \mathrm{R}, \mathrm{T}$
－难燃性
AFLAS®在火中会燃烧，但是，从火中离开则会熄灭。
－耐候性
$\mathrm{AFLAS}_{\circledR}$ 即使在露天放置1年，其属性几乎没有任何变化。
－耐臭氧性
在 50 ppm 的臭氧中， $40^{\circ} \mathrm{C}$ 温度下放置 1 个月，其属性几乎没有任何变化。
－低温特性
在压缩永久变形与TR实验中， 2 元 $A F L A S_{\otimes}$ 的橡胶弹性在 $0^{\circ} \mathrm{C}$ 附近， 3 元AFLAS D_{8} 的橡胶弹性在 $-10^{\circ} \mathrm{C}$ 附近消失。但是，AFLAS ${ }_{\infty} 100 S$ 与 150 P的脆化温度为 $-40^{\circ} \mathrm{C}$ ，可以在更低的温度环境下使用。（脆化温度根据配比的不同而改变，在敝公司推荐的配比之外使用时，需格外注意）

	AFLAS。 100 S	AFLAS。150P	AFLAS。200P	AFLAS。300S	2－FKM	3－FKM
$\operatorname{Tg}(C)$	-3	-3	-13	-3	-22	-6
$\operatorname{TR-10}$	3	3	-8	3	-17	-7

－低残留味性

$A F L A S_{\odot}$ 具有优异的低残留味性，而且因为针对在杀菌与消毒时使用的化学溶剂，蒸汽，紫外线等也具有优异的耐久性，所以最适合用于食品•饮料制造流程中的希望降低异味转移的密封件。
 3 的D－2，合成树脂器具以及容器包装规格试验（使用温度超过 $100^{\circ} \mathrm{C}$ ）］的分析实验的材料，所以很安全。并且，AFLAS ${ }_{\text {® }} 100$ S是符合美国［USP Class VI］的材料。

■异味指数

异味指数相当值

※［异味指数相当值］是指进行相当于人的咏觉的修正（极限值修正）后，以与异味指数同等的值为纵轴单位来表示异味的强度，另外，［异味指数 10 ］是表示把异味大约稀释 10 倍，已经没有异味左右的强度。 ※测试了在零售的憰子汁饮料（果汁 30% ）中浸渍 $80^{\circ} \mathrm{C} \times 24 \mathrm{~h}$ 之后，用流水冲洗 30 分钟的测试片。
※使用的测试仪器：岛津气味辨别仪FF－2A

11．用途
AFLAS®被广泛应用在食品加工，核电，电气，石油采掘，化工厂，汽车，机械以及其他多种行业。

1．密封件，0－型圈
AFLAS®具有优异的耐热性和耐化学品性，被应用于化工厂，石油采掘，食品加工等行业的设备类的密封件，0－型圈。

2．发动机垫片

AFLAS 不仅针对发动机油，对于冷却水也具有优异的耐久性。

3．电线护套
AFLAS®的2元生胶具有优异的电气绝缘性，适合用于电线护套。

4．轴密封
AFLAS®对添加在发动机油中的分散剂和抗氧化剂等添加剂具有优异的耐久性。

5．薄膜
AFLAS®拥有挤出加工性出色的各种等级，可以进行薄膜加工。被应用在大面积薄膜和切割加工等产品中。

6．海绵胶
$\mathrm{AFLAS}_{\circledR}$ 可以海绵成形。兼顾了耐久性和柔软性的AFLAS®海绵胶使氟橡胶的用途更加广泛

7．乳胶
AFLAS®乳胶是水性分散溶剂，可以作为各种镀膜和粘结剂材料使用。

[^0]: ＊添加硫化促进剂

