
艾默生CT一级代理商及全国联保维修中心,联系电话: 021-51093

User Guide Unidrive SPM

Universal Variable Speed AC Drive Modular Solutions for induction and servo motor applications

Part Number: 0471-0053-03 Issue: 3

General Information

The manufacturer accepts no liability for any consequences resulting from inappropriate, negligent or incorrect installation or adjustment of the optional operating parameters of the equipment or from mismatching the variable speed drive with the motor.

The contents of this guide are believed to be correct at the time of printing. In the interests of a commitment to a policy of continuous development and improvement, the manufacturer reserves the right to change the specification of the product or its performance, or the contents of the guide, without notice.

All rights reserved. No parts of this guide may be reproduced or transmitted in any form or by any means, electrical or mechanical including photocopying, recording or by an information storage or retrieval system, without permission in writing from the publisher.

Drive software version

This product is supplied with the latest version of software. If this product is to be used in a new or existing system with other drives, there may be some differences between their software and the software in this product. These differences may cause this product to function differently. This may also apply to drives returned from a Control Techniques Service Centre.

The software version of the drive can be checked by looking at Pr **11.29** (or Pr **0.50**) and Pr **11.34**. The software version takes the form of zz.yy.xx, where Pr **11.29** displays zz.yy and Pr **11.34** displays xx, i.e. for software version 01.01.00, Pr **11.29** would display 1.01 and Pr **11.34** would display 0.

If there is any doubt, contact a Control Techniques Drive Centre.

Environmental statement

Control Techniques is committed to minimising the environmental impacts of its manufacturing operations and of its products throughout their life cycle. To this end, we operate an Environmental Management System (EMS) which is certified to the International Standard ISO 14001. Further information on the EMS, our Environmental Policy and other relevant information is available on request, or can be found at www.greendrives.com.

The electronic variable-speed drives manufactured by Control Techniques have the potential to save energy and (through increased machine/process efficiency) reduce raw material consumption and scrap throughout their long working lifetime. In typical applications, these positive environmental effects far outweigh the negative impacts of product manufacture and end-of-life disposal.

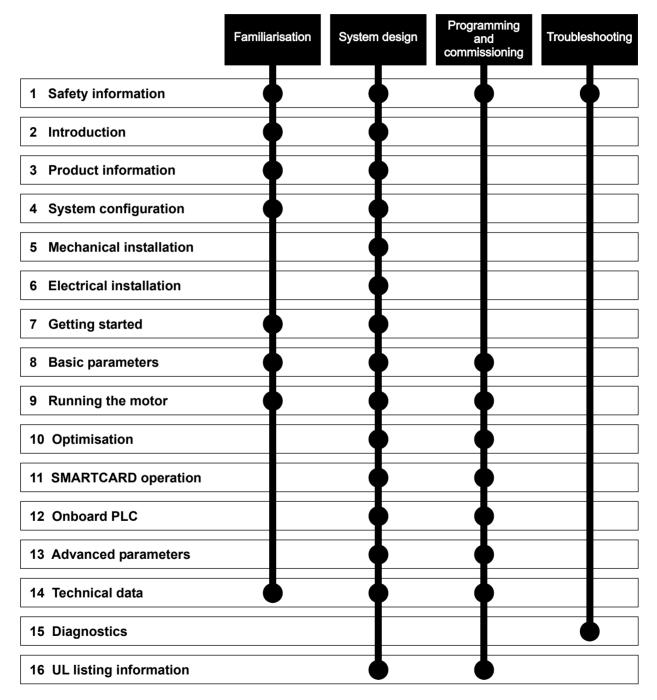
Nevertheless, when the products eventually reach the end of their useful life, they can very easily be dismantled into their major component parts for efficient recycling. Many parts snap together and can be separated without the use of tools, while other parts are secured with conventional screws. Virtually all parts of the product are suitable for recycling.

Product packaging is of good quality and can be re-used. Large products are packed in wooden crates, while smaller products come in strong cardboard cartons which themselves have a high recycled fibre content. If not re-used, these containers can be recycled. Polythene, used on the protective film and bags for wrapping product, can be recycled in the same way. Control Techniques' packaging strategy favours easily-recyclable materials of low environmental impact, and regular reviews identify opportunities for improvement.

When preparing to recycle or dispose of any product or packaging, please observe local legislation and best practice.

Copyright © January 2008 Control Techniques Drives Limited Issue Number: 3 Software: 01.15.00 onwards

How to use this guide


This guide provides complete information for installing and operating a Unidrive SPMA and SPMD, with a SPMC or SPMU rectifier, from start to finish.

The information is in logical order, taking the reader from receiving the drive through to fine tuning the performance.

NOTE

There are specific safety warnings throughout this guide, located in the relevant sections. In addition, Chapter 1 *Safety Information* contains general safety information. It is essential that the warnings are observed and the information considered when working with or designing a system using the drive.

This map of the user guide helps to find the right sections for the task you wish to complete, but for specific information, refer to *Contents* on page 4 to 5:

Contents

6

	Declaration of Conformity	6
1	Safety Information	7
1.1	Warnings, Cautions and Notes	
1.2	Electrical safety - general warning	
1.3	System design and safety of personnel	
1.4	Environmental limits	
1.5	Compliance with regulations	7
1.6	Motor	
1.7	Adjusting parameters	7
2	Introduction	8
2.1	Rectifier (SPMC/U)	8
2.2	SPMA inverter	9
2.3	SPMD inverter	10
2.4	Input line reactor	10
2.5	Output sharing choke	10
2.6	Model number	11
3	Product Information	12
3.1	Ratings	12
3.2	Operating modes	
3.3	Compatible encoders	
3.4	Features	
3.5	Nameplate description	19
3.6	Options	20
3.7	Items supplied with the drive	24
4	System configuration	25
5	Mechanical Installation	33
5.1	Safety information	33
5.2	Planning the installation	
5.3	Terminal cover removal	
5.4	Solutions Module installation/removal	
5.5	Mounting of control master/slave pod	
5.6	Docking a Unidrive SPMC/U to an SPMD .	
5.7	Mounting methods	
5.8	Enclosure	
5.9	Heatsink fan operation	54
5.10	Enclosing drive for high environmental protection	56
5.11	External EMC filter	50 58
5.12	Line reactor mounting dimensions	
5.13	Electrical terminals	
5.14	Routine maintenance	

6	Electrical Installation	64
6.1	Power connections	65
6.2	AC supply requirements	
6.3	Output sharing choke specification	
6.4	Supplying the drive with DC / DC bus paralleling	
6.5	Resistor sizing for Unidrive SPMU softstart	70
6.6	Heatsink fan supply	73
6.7	Control 24Vdc supply	
6.8	Low voltage DC power supply	
6.9	Ratings	
6.10	Output circuit and motor protection	
6.11	Braking	
6.12	Ground leakage	
6.13	EMC (Electromagnetic compatibility)	
6.14	SPMC/U control connections	87
6.15	Low voltage DC mode enable, heatsink fan	
	supply connections (SPMA/D) and status	~~
0.40	input connections (SPMD)	
6.16	Serial communications connections	
6.17	Control connections - master interface	
6.18	Encoder connections	
6.19	SAFE TORQUE OFF (SECURE DISABLE)	99
7	Getting Started 1	01
7.1	Understanding the display 1	
7.2	Keypad operation1	
7.3	Menu structure 1	
7.4	Menu 0 1	
7.5	Advanced menus 1	04
7.6	Changing the operating mode 1	05
7.7	Saving parameters 1	05
7.8	Restoring parameter defaults 1	05
7.9	Parameter access level and security 1	06
7.10	Displaying parameters with non-default values	
	only 1	
7.11	Displaying destination parameters only 1	
7.12	Serial communications 1	07
8	Basic parameters1	09
8.1	Single line descriptions 1	
8.2	Full descriptions	
9	Dunning the motor 1	24
	Running the motor1	
9.1	Quick start Connections 1	24
9.2	Quick start Connections	24 24
9.2 9.3	Quick start Connections 1 Changing the operating mode 1 Changing keypad mode 1	24 24 24
9.2 9.3 9.4	Quick start Connections 1 Changing the operating mode 1 Changing keypad mode 1 Quick Start commissioning/start-up 1	24 24 24 28
9.2 9.3	Quick start Connections 1 Changing the operating mode 1 Changing keypad mode 1	24 24 24 28 32

10	Optimization	136
10.1	Motor map parameters	.136
10.2	Maximum motor rated current	
10.3	Current limits	
10.4	Motor thermal protection	.146
10.5	Switching frequency	
10.6	High speed operation	.147
11	SMARTCARD operation	149
11.1	Introduction	
11.2	Transferring data	
11.3	Data block header information	
11.4	SMARTCARD parameters	.152
11.5	SMARTCARD trips	
12	Onboard PLC	155
12.1	Onboard PLC and SYPTLite	
12.2	Benefits	
12.2	Limitations	
12.4	Getting started	
12.5	Onboard PLC parameters	
12.6	Onboard PLC trips	
12.7	Onboard PLC and the SMARTCARD	
13	Advanced perspectors	1 5 0
-	Advanced parameters	
13.1	Menu 1: Frequency / speed reference	
13.2	Menu 2: Ramps	.170
13.3	Menu 3: Frequency slaving, speed feedback	170
13.4	and speed control	
13.4	Menu 4: Torque and current control Menu 5: Motor control	
13.6	Menu 6: Sequencer and clock	
13.7	Menu 7: Analog I/O	
13.8	Menu 8: Digital I/O	
13.9	Menu 9: Programmable logic, motorized pot,	.132
10.0	binary sum and timers	195
13.10	Menu 10: Status and trips	
	Menu 11: General drive set-up	
	Menu 12: Threshold detectors, variable	
	selectors and brake control function	.200
13.13	Menu 13: Position control	
	Menu 14: User PID controller	
13.15	Menus 15, 16 and 17: Solutions Module set-up	215
	Menu 18: Application menu 1	
	Menu 19: Application menu 2	
	Menu 20: Application menu 3	
	Menu 21: Second motor parameters	
	Menu 22: Additional Menu 0 set-up	
	Advanced features	
14	Technical Data	263
14.1	Drive	
14.2	Optional external EMC filters	

15	Diagnostics	275
15.1	Trip indications	275
15.2	Alarm indications	
15.3	Status indications	
15.4	Displaying the trip history	
15.5	Behaviour of the drive when tripped	
16	UL Listing Information	294
16.1	Common UL information	
16.2	Power dependant UL information	294
16.3	AC supply specification	
16.4	Maximum continuous output current	
16.5	Safety label	
16.6	UL listed accessories	294
	List of figures	295
	List of tables	297
	Index	299

Control Techniques Ltd The Gro Newtown Powys UK SY16 3BE

SPMA1401	SPMA1402	SPMA1421	SPMA1422
SPMA1601	SPMA1602	SPMA1621	SPMA1622
	•		
SPMD1201	SPMD1202	SPMD1203	SPMD1204
SPMD1221	SPMD1222	SPMD1223	SPMD1224
SPMD1401	SPMD1402	SPMD1403	SPMD1404
SPMD1421	SPMD1422	SPMD1423	SPMD1424
SPMD1601	SPMD1602	SPMD1603	SPMD1604
SPMD1621	SPMD1622	SPMD1623	SPMD1624
		•	
SPMC1402	SPMC1601	SPMC2402	SPMC2601
SPMU1402	SPMU1601	SPMU2402	SPMU2601

The AC variable speed drive products listed above have been designed and manufactured in accordance with the following European harmonized standards:

EN 61800-5-1	Adjustable speed electrical power drive systems - safety requirements - electrical, thermal and energy
EN 61800-3	Adjustable speed electrical power drive systems. EMC product standard including specific test methods
EN 61000-6-2	Electromagnetic compatibility (EMC). Generic standards. Immunity standard for industrial environments

These products comply with the Low Voltage Directive 2006/95/EC, the Electromagnetic Compatibility (EMC) Directive 89/336/EEC and the CE Marking Directive 93/68/EEC.

20-

Executive Vice President, Technology Newtown

Date: 7th March 2007

These electronic drive products are intended to be used with appropriate motors, controllers, electrical protection components and other equipment to form complete end products or systems. Compliance with safety and EMC regulations depends upon installing and configuring drives correctly, including using the specified input filters. The drives must be installed only by professional assemblers who are familiar with requirements for safety and EMC. The assembler is responsible for ensuring that the end product or system complies with all the relevant laws in the country where it is to be used. Refer to the User Guide. An EMC Data Sheet is also available giving detailed EMC information.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical		UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters		Optimization	operation	PLC	parameters	Data	Diagnostics	Information

1 Safety Information

1.1 Warnings, Cautions and Notes

A Warning contains information which is essential for avoiding a safety hazard.

A Caution contains information which is necessary for avoiding a risk of damage to the product or other equipment.

NOTE

A Note contains information which helps to ensure correct operation of the product.

1.2 Electrical safety - general warning

The voltages used in the drive can cause severe electrical shock and/or burns, and could be lethal. Extreme care is necessary at all times when working with or adjacent to the drive.

Specific warnings are given at the relevant places in this User Guide.

1.3 System design and safety of personnel

The drive is intended as a component for professional incorporation into complete equipment or a system. If installed incorrectly, the drive may present a safety hazard.

The drive uses high voltages and currents, carries a high level of stored electrical energy, and is used to control equipment which can cause injury.

Close attention is required to the electrical installation and the system design to avoid hazards either in normal operation or in the event of equipment malfunction. System design, installation, commissioning/ start-up and maintenance must be carried out by personnel who have the necessary training and experience. They must read this safety information and this User Guide carefully.

The STOP and SAFE TORQUE OFF (SECURE DISABLE) function functions of the drive do not isolate dangerous voltages from the output of the drive or from any external option unit. The supply must be disconnected by an approved electrical isolation device before gaining access to the electrical connections.

With the sole exception of the SAFE TORQUE OFF (SECURE DISABLE) function, none of the drive functions must be used to ensure safety of personnel, i.e. they must not be used for safety-related functions.

Careful consideration must be given to the functions of the drive which might result in a hazard, either through their intended behaviour or through incorrect operation due to a fault. In any application where a malfunction of the drive or its control system could lead to or allow damage, loss or injury, a risk analysis must be carried out, and where necessary, further measures taken to reduce the risk - for example, an over-speed protection device in case of failure of the speed control, or a fail-safe mechanical brake in case of loss of motor braking.

The SAFE TORQUE OFF (SECURE DISABLE) function has been approved¹ as meeting the requirements of EN954-1 category 3 for the prevention of unexpected starting of the drive. It may be used in a safety-related application. The system designer is responsible for ensuring that the complete system is safe and designed correctly according to the relevant safety standards.

1.4 Environmental limits

Instructions in this User Guide regarding transport, storage, installation and use of the drive must be complied with, including the specified environmental limits. Drives must not be subjected to excessive physical force.

1.5 Compliance with regulations

The installer is responsible for complying with all relevant regulations, such as national wiring regulations, accident prevention regulations and electromagnetic compatibility (EMC) regulations. Particular attention must be given to the cross-sectional areas of conductors, the selection of fuses or other protection, and protective earth (ground) connections.

This User Guide contains instruction for achieving compliance with specific EMC standards.

Within the European Union, all machinery in which this product is used must comply with the following directives:

98/37/EC: Safety of machinery.

89/336/EEC: Electromagnetic Compatibility.

1.6 Motor

Ensure the motor is installed in accordance with the manufacturer's recommendations. Ensure the motor shaft is not exposed.

Standard squirrel cage induction motors are designed for single speed operation. If it is intended to use the capability of the drive to run a motor at speeds above its designed maximum, it is strongly recommended that the manufacturer is consulted first.

Low speeds may cause the motor to overheat because the cooling fan becomes less effective. The motor should be installed with a protection thermistor. If necessary, an electric forced vent fan should be used.

The values of the motor parameters set in the drive affect the protection of the motor. The default values in the drive should not be relied upon.

It is essential that the correct value is entered in parameter **0.46** motor rated current. This affects the thermal protection of the motor.

1.7 Adjusting parameters

Some parameters have a profound effect on the operation of the drive. They must not be altered without careful consideration of the impact on the controlled system. Measures must be taken to prevent unwanted changes due to error or tampering.

¹Independent approval by BGIA has been given.

	Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Inf	formation	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

2 Introduction

The Unidrive **S**olutions **P**latform **M**odular drive offers the possibility of implementing many custom power systems with a wide range of power modules. The power range is 45kW to 1.9MW and the modular design of input and output stages enables a wide range of very compact and efficient systems to be realized. These include:

- · Parallel output stages for higher power motors:
 - Up to a maximum of 10 SPMA/D modules (1 master module with up to 9 slave modules, OR 1 remote mounted control master pod controlling up to 10 slaves. This allows the user to place all circuitry in one low voltage cabinet)
- Common DC bus multi-drive systems for: Connection to larger existing power supplies Energy sharing between motoring and regenerating drives
- Active front end drive systems for: Minimising supply current harmonics Four guadrant motor control
- Multiple controlled rectifier bridges (SPMC) for: Minimising supply current harmonics by drawing 6, 12 or 18 pulse supply load currents
- Uncontrolled rectifier bridges (SPMU) for use in applications with poor quality power supplies, very long motor cables and where DC bus pre-charge is done by other means

2.1 Rectifier (SPMC/U)

There are two distinct types of rectifier available

SPMC: Controlled SCR/thyristor rectifier SPMU: Uncontrolled diode rectifier

Different current and voltage ratings are available for both types.

A separate input line reactor (INLXXX) of at least the value shown in Table 6-2 and Table 6-3 on page 68 must be used with the rectifiers. Failure to provide sufficient reactance could damage or reduce the service life of the rectifier or inverter.

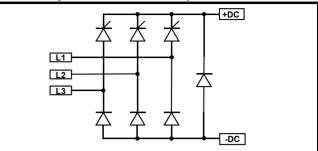
The Unidrive SPMC is a half controlled SCR/thyristor bridge and is used as a front end to the SPMD inverter module or as a stand alone rectifier for several smaller drives. Soft-start is built in.

The Unidrive SPMU is used as a front end to the SPMD inverter module or as a stand alone rectifier for several smaller drives. **Softstart must be supplied externally using a resistor and contactor or SPMC**.

An external 24V, 3A power supply is required in addition to the AC supply to allow the rectifier to operate. See section 6.14.3 *Unidrive SPMC/U control connections* on page 89 and section 14.1.4 *Unidrive SPM 24V power supply* on page 267. Control wiring is required between the rectifier and motoring drive(s) so that if the rectifier indicates a fault the motoring drive(s) will be disabled.

The 24V supply must be protected using a 4A slow-blow fuse, one for each supply pole.

Control connections to the Unidrive SPMC/U should be made with 0.5mm^2 cable.


The status relay contacts are rated for switching non-inductive loads at 250Vac 6A non-inductive, up to 4Adc if the voltage is limited to 40V or up to 400mA dc if the voltage is limited to 250Vdc. Protection from overcurrent must be provided.

2.1.1 Half controlled SCR/thyristor rectifier (SPMC)

The half controlled SCR/thyristor bridge is used as a front end to the SPMD inverter module or as a stand alone rectifier for several smaller drives. Control wiring is linked to the inverter for trip monitoring. Soft-start is built in.

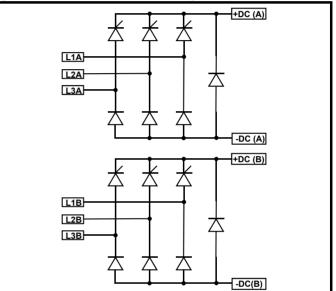
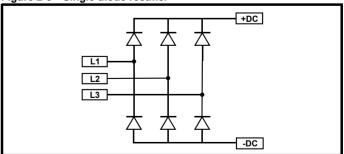
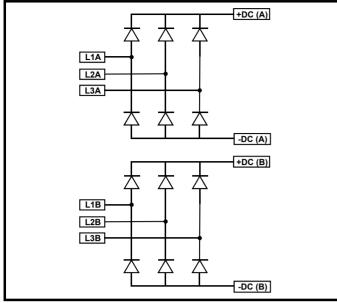

SPMC14X2 and 16X1

Figure 2-1 Single half controlled SCR/thyristor

SPMC2X0X


Figure 2-2 Dual half controlled SCR/thyristor

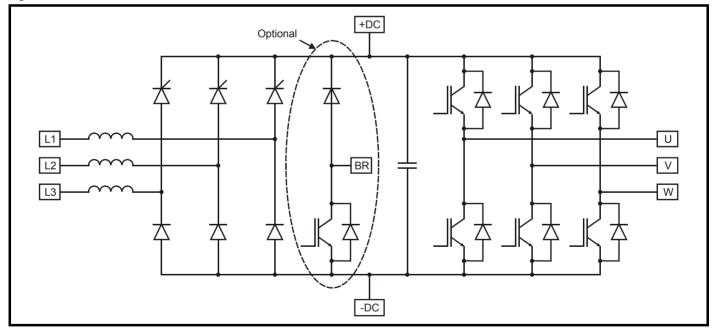
2.1.2 Diode rectifier (SPMU)


The uncontrolled diode rectifier is supplied as an alternative to the half controlled SCR/thyristor rectifier. Control wiring is limited to a thermal trip. Soft-start is achieved by the use of an external contactor and resistor.

SPMU14X2 and 16X1 Figure 2-3 Single diode rectifier

ſ	Safety	Introduction	Product Information		Mechanical		Getting	Basic	Running	Optimization			Advanced	Technical Data	Diagnostics	UL Listing
l	Information		Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	3	Information

SPMU24X2 and SPMU26X1 Figure 2-4 Dual diode rectifier


NOTE

To gain access to the second power stage terminals, the housing covers must be removed. See Figure 5-3 on page 35.

2.2 SPMA inverter

The SPMA is a complete drive with internal rectifier and AC input line chokes (AC in to AC out). It can provide a maximum continuous output current of 236A (400V drive). DC connections are available for use in regen and bus-parallel applications. The SPMA is available with or without a braking IGBT fitted.

Figure 2-5 SPMA inverter schematic



Ir	Safety	Introduction	Product Information	-)	Mechanical		Getting	Basic parameters		Optimization	SMARTCARD	Onboard PLC	Advanced	Technical Data	Diagnostics	UL Listing
Ir	formation		Information	configuration	Installation	Installation	Started	parameters	the motor	•	operation	PLC	parameters	Data	U	Information

2.3 SPMD inverter

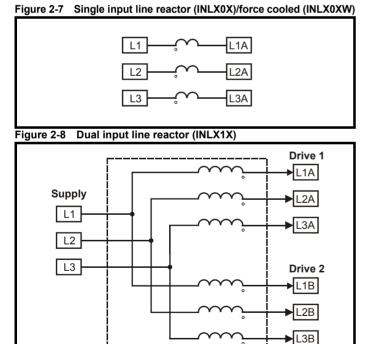
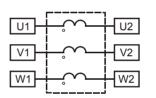

The SPMD is an inverter stage only (DC in to AC out). If a rectifier is required, then an SPMC or SPMU and AC input line reactor must also be installed. It can provide a maximum continuous output current of 350A (400V drive). DC connections can be used for regen and bus-parallel applications. The SPMD is available with or without a braking IGBT fitted.

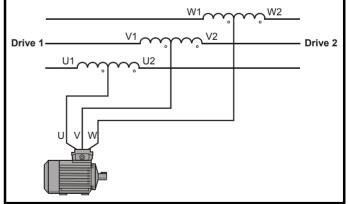
Figure 2-6 SPMA inverter schematic

2.4 Input line reactor

The INL line reactor must be used in conjunction with the Unidrive SPMC/U rectifiers. See section 6.2.2 *Input line reactor specifications* on page 67 for further information.


NOTE

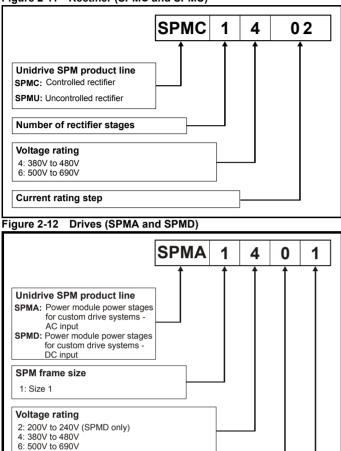
This is not an interbridge reactor.


2.5 Output sharing choke

The OTL output sharing choke must be used on the output of Unidrive SPMA/D when more than one module is paralleled together.

Figure 2-9 Single output sharing choke (OTLX0X)

Figure 2-10 Dual output sharing choke (OTLX1X)


For a physical representation of the input line reactors and output sharing chokes, see Figure 3-4 on page 21.

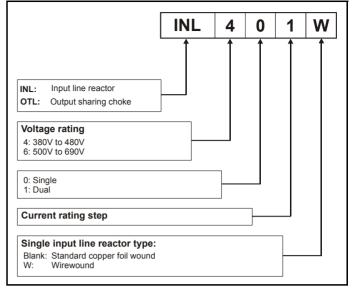
Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	Onboard	Advanced	Technical		UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

2.6 Model number

The way in which the model numbers for the Unidrive SPM range are formed is illustrated below.

Figure 2-11 Rectifier (SPMC and SPMU)

Configuration Indicates if an internal brake transistor is fitted:


0: Brake fitted 2: Brake not fitted

Current rating step

NOTE

200V to 240V SPMD modules can only be supplied by an SPMU or separate soft start circuit.

Figure 2-13 Input line reactor / output sharing choke

NOTE

The wirewound type of input line reactor is the minimum material version. Minimum airflow and maximum ambient temperature must be maintained. Refer to Table 14-24 on page 270.

Safety	Introduction	Product	System	Mechanical		Getting	Basic	Running	Optimization			Advanced	Technical	Diagnostics	
Information		Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	g.	Information

3 Product Information

3.1 Ratings

The Unidrive SPM is dual rated. Available output The setting of the motor rated current determines which rating applies -Overload limit current Heavy Duty Heavy Duty or Normal Duty. Maximum The two ratings are compatible with motors designed to IEC60034. Overload limit continuous The graph aside illustrates the difference between Normal Duty and Normal Duty current (above Heavy Duty with respect to continuous current rating and short term 50% base overload limits. speed) -Normal Duty Maximum continuous current -Heavy Duty Motor rated current set in the drive Heavy Duty - with high Normal Duty overload capability Normal Duty Heavy Duty (default) For applications which use self ventilated (TENV/TEFC) induction For constant torgue applications or applications which require a high motors and require a low overload capability (e.g. fans, pumps). overload capability (e.g. winders, hoists). Self ventilated (TENV/TEFC) induction motors require increased The thermal protection is set to protect force ventilated induction motors protection against overload due to the reduced cooling effect of the fan and permanent magnet servo motors by default. at low speed. To provide the correct level of protection the I²t software NOTE operates at a level which is speed dependent. This is illustrated in the If the application uses a self ventilated (TENV/TEFC) induction motor graph below. and increased thermal protection is required for speeds below 50% base speed, then this can be enabled by setting Pr 4.25 = 1. NOTE The speed at which the low speed protection takes effect can be changed by the setting of Pr 4.25. The protection starts when the motor speed is below 15% of base speed when Pr 4.25 = 0 (default) and below 50% when Pr 4.25 = 1. Operation of motor I²t protection (It.AC trip) Motor I²t protection is fixed as shown below and is compatible with: Motor I²t protection defaults to be compatible with: Self ventilated (TENV/TEFC) induction motors Forced ventilation induction motors Permanent magnet servo motors Motor total Motor total current (Pr 4.01) current (Pr 4.01) as a percentage as a percentage of motor rated of motor rated I²t protection operates in this region I²t protection operates in this region current current 100% 100% 70% 70% Max, permissible Max. permissible continuous continuous current current Pr 4.25 = 0 Pr 4.25 = 0 Pr 4.25 = 1 ---- Pr 4.25 = 1 Motor speed as a Motor speed as a 15% 50% 100% 50% 100% percentage of base speed percentage of base speed

Safety Information	Introduction	Product Information	System configuration	Mechanical	Electrical	Getting Started	Basic parameters	the motor	Optimization	SMARTCARD operation	Onboard PLC	naramotore	Technical Data	Diagnostics	UL Listing Information
IIIUIIIauuii		intornation	connyuration	Installation	Installation	Starteu	parameters			operation	FLC	parameters	Data		iniomation

The continuous current ratings given are for maximum $40^{\circ}C$ ($104^{\circ}F$), 1000m altitude and 3.0 kHz switching. Derating is required for higher switching frequencies, ambient temperature > $40^{\circ}C$ ($104^{\circ}F$), high altitude and parallel applications. For further information, refer to section 14.1.1 *Power and current ratings (Derating for switching frequency and temperature)* on page 263.

Table 3-1 SPMA 400V drive ratings (380V to 480V ±10%)

			No	rmal Duty				Heavy D	uty		
Мс	odel	Maximum continuous output current	Peak current	Nominal motor power at 400V	Nominal motor power at 460V	Maximum continuous output current	Open loop peak current	Closed loop peak current	Nominal motor power at 400V	Nominal motor power at 460V	External 24V current consumption
		Α	Α	kW	hp	Α	Α	Α	kW	hp	A
• • • • • • • • • • • • • • • • • • •	SPMA14X1	205	225	110	150	180	232	270	90	150	3.3
	SPMA14X2	236	259	132	200	210	271	315	110	150	0.0

Table 3-2 Paralleled SPMA 400V motor drive ratings (380V to 480V ±10%)

					Nor	mal Duty				Heavy Du	ty		
Pa	aralle	led S	PMA modules	Maximum continuous output current	Peak current	Nominal motor power at 400V	Nominal motor power at 460V	Maximum continuous output current	Open loop peak current	Closed loop peak current	Nominal motor power at 400V	Nominal motor power at 460V	Required output sharing choke
				Α	Α	kW	hp	Α	Α	Α	kW	hp	
	: A		2 x SPMA14X1	389	428	225	300	342	439	512	185	300	1 x OTL411
	ó—∎ ⊃	0	2 x SPMA14X2	448	493	250	400	399	513	598	225	350	1 x OTL412
			3 x SPMA14X1	584	642	315	500	513	659	769	280	450	3 x OTL401
			3 x SPMA14X2	672	739	355	550	598	769	897	315	500	3 x OTL402
٩	>	۰	4 x SPMA14X1	779	859	400	650	684	878	1025	355	600	4 x OTL401
			4 x SPMA14X2	896	986	500	750	798	1026	1197	400	700	4 x OTL402
		Q	5 x SPMA14X1	973	1071	550	850	855	1098	1281	450	750	5 x OTL401
		\Box	5 x SPMA14X2	1121	1233	600	950	997	1282	1496	550	850	5 x OTL402
	• .		6 x SPMA14X1	1168	1285	650	1000	1026	1318	1538	550	900	6 x OTL401
	<u>•</u> [হ	6 x SPMA14X2	1345	1479	750	1150	1197	1539	1795	650	1050	6 x OTL402

NOTE When connecting drives in parallel they must be derated. Table 3-2, Table 3-4, Table 3-6, Table 3-8 and Table 3-10 have already the required de-rating.

Table 3-3 SPMA 690V drive ratings (500V to 690V ±10%)

			Noi	mal Duty				Heavy Du	ıty		
Ma	odel	Maximum continuous output current	Peak current	Nominal motor power at 690V	Nominal motor power at 575V	Maximum continuous output current	Open Ioop peak current	Closed loop peak current	Nominal motor power at 690V	Nominal motor power at 575V	External 24V current consumption
		Α	Α	kW	hp	Α	Α	Α	kW	hp	A
	SPMA16X1	125	137	110	125	100	128	149	90	100	3.3
	SPMA16X2	144	158	132	150	125	160	187	110	125	5.5

Safety	Introduction	Product	System	Mechanical	La stall at so	Getting	Basic	Running	Optimization	SMARTCARD	Onboard		Technical	Diagnostics	UL Listing
Informatio	n	Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	g	Information

Table 3-4 Paralleled SPMA 690V motor drive ratings (500V to 690V ±10%)

			Norma	al Duty			H	eavy Duty			
Paralleled	SPMA modules	Maximum continuous output current	Peak current	Nominal motor power at 690V	Nominal motor power at 575V	Maximum continuous output current	Open loop peak current	Closed loop peak current	Nominal motor power at 690V	Nominal motor power at 575V	Required output sharing choke
		Α	Α	kW	hp	Α	Α	Α	kW	hp	
	2 x SPMA16X1	237	261	250	250	190	244	284	200	200	1 x OTL611
	2 x SPMA16X2	273	300	280	300	237	305	356	250	250	1 x OTL612
	3 x SPMA16X1	356	391	355	400	285	366	427	300	300	3 x OTL601
	3 x SPMA16X2	410	451	450	450	356	457	534	355	400	3 x OTL602
O o	4 x SPMA16X1	475	522	500	500	380	488	569	400	400	4 x OTL601
	4 x SPMA16X2	547	601	560	600	475	610	712	500	500	4 x OTL602
	5 x SPMA16X1	593	653	610	600	475	610	712	500	500	5 x OTL601
\square	5 x SPMA16X2	684	752	710	700	593	763	890	610	600	5 x OTL602
	6 x SPMA16X1	712	783	710	800	570	732	854	610	600	6 x OTL601
	6 x SPMA16X2	820	902	875	900	712	915	1068	710	800	6 x OTL602

The Unidrive SPMD can be connected to its rectifier module in two ways, directly above the inverter (docked) or independently mounted in different vertical planes (undocked). Changes in the flow of air mean that the ratings are different for the two mounting methods for SPMD12x4. For details on docking, refer to section 5.6 *Docking a Unidrive SPMC/U to an SPMD* on page 39.

Table 3-5 SPMD 200V drive ratings (200V to 240V ±10%) based on AC supply voltage

			Norma	l Duty			н	eavy Duty	1				
	Model	Maximum continuous output current	Peak current	Nominal motor power at 230V	Nominal motor power at 230V	Maximum continuous output current	Open loop peak current	Closed loop peak current	Nominal motor power at 230V	Nominal motor power at 230V	Required rectifier	Required input line reactor	
		Α	Α	kW	hp	Α	Α	Α	kW	hp			Α
	SPMD12X1*	192	211	55	75	156	201	234	45	60		1 x	
	SPMD12X2*	248	272	75	100	192	247	288	55	75		INL401	
	SPMD12X3*	312	343	90	125	250	322	375	75	100	1 x SPMU1402		3.3
U D	SPMD12X4**	335	365	90	125	290	374	435	90	125		1 x INL402	
	SPMD12X4***	350	385	110	150	290	374	435	90	125			

*SPMD12X1 to 12X3 ratings apply with the rectifier docked and undocked.

SPMD12X4 rating with the rectifier docked. The overload rating for the SPMD12X4 is only available if the ambient temperature is 35°C or lower. *SPMD12X4 rating with the rectifier undocked. The maximum continuous output current and overload rating for the SPMD12X4 is only available if the ambient temperature is 35°C or lower.

NOTE

When using an SPMU a separate soft start circuit must be provided for the DC bus. Refer to Figure 4-6 on page 30 and section 6.5 *Resistor sizing for Unidrive SPMU softstart* on page 70.

Table 3-6 Paralleled SPMD 200V motor drive ratings (200V to 240V ±10%) based on AC supply voltage

				Norm	al Duty			ŀ	leavy Dut	у				
P	Paralleled	d SPMD modules	Maximum continuous output current	Peak current	Nominal motor power at 230V	power at 230V	Maximum continuous output current	Open loop peak current	Closed loop peak current	Nominal motor power at 230V	Nominal motor power at 230V	Required rectifier	Required line reactor	Required output sharing choke
			Α	Α	kW	hp	A	Α	Α	kW	hp			
	0	2 x SPMD12X1	364	401	110	150	296	381	444	90	125		1 x INL411	1 x OTL411
		2 x SPMD12X2	471	518	132	200	364	468	546	110	150	1 x	1 x INL411	1 x OTL412
		2 x SPMD12X3	592	652	160	250	475	610	712	150	200	SPMU2402	1 x INL412	1 x OTL413
	₽	2 x SPMD12X4	636	700	200	250	551	708	826	160	200		1 x INL412	1 x OTL414

NOTE

The Unidrive SPMD can be connected to its rectifier module in two ways, directly above the inverter (docked) or independently mounted in different vertical planes (undocked). Changes in the flow of air mean that the ratings are different for the two mounting methods for SPMD14x4. For details on docking, refer to section 5.6 *Docking a Unidrive SPMC/U to an SPMD* on page 39.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting			Optimization	SMARTCARD	01100010	Advanced	Technical	UL Listing
Information		Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	 Information

Table 3-7 SPMD 400V motor drive ratings (380V to 480V ±10%) based on AC supply voltage

				Norma	al Duty			He	eavy Duty	/				
	ľ	Model	Maximum continuous output current	Peak current	Nominal motor power at 400V	Nominal motor power at 460V	Maximum continuous output current	Open loop peak current	Closed loop peak current	Nominal motor power at 400V	Nominal motor power at 460V	Required rectifier	Required input line reactor	External 24V current consumption
			Α	Α	kW	hp	Α	Α	Α	kW	hp			Α
	0	SPMD14X1*	205	225	110	150	180	232	270	90	150		1 x INL401	3.3
	0	SPMD14X2*	246	270	132	200	210	271	315	110	150			0.0
I	<u> </u>	SPMD14X3*	290	319	160	250	246	310	359	132	200	1 x SPMC1402		
	Q	SPMD14X4**	335	365	185	300	290	374	435	160	250		1 x INL402	4.5
	÷ Ř	SPMD14X4***	350	385	200	300	290	374	435	160	250			

*SPMD14X1 to 14X3 ratings apply with the rectifier docked and undocked.

SPMD14X4 rating with the rectifier docked. The overload rating for the SPMD14X4 is only available if the ambient temperature is 35°C or lower. *SPMD14X4 rating with the rectifier undocked. The maximum continuous output current and overload rating for the SPMD14X4 is only available if the ambient temperature is 35°C or lower.

Table 3-8 Paralleled SPMD 400V motor drive ratings (380V to 480V ±10%) based on AC supply v	voltage
---	---------

			Norma	al Duty			He	eavy Duty	/				
Paralleled	SPMD modules	Maximum continuous output current	Peak current	Nominal motor power at 400V	Nominal motor power at 460V	Maximum continuous output current	Open loop peak current	Closed loop peak current	Nominal motor power at 400V	Nominal motor power at 460V	Required rectifier	Required input line reactor	Required output sharing choke
		Α	Α	kW	hp	Α	Α	Α	kW	hp			
	2 x SPMD14X1	389	428	225	300	342	439	512	185	300		1 x INL411	1 x OTL411
	2 x SPMD14X2	467	514	280	400	399	513	598	225	300	1 x SPMC2402		1 x OTL412
	2 x SPMD14X3	551	606	315	450	467	586	683	280	400	1 X 3F WC2402	1 x INL412	1 x OTL413
	2 x SPMD14X4	636	700	355	500	551	708	826	315	450			1 x OTL414
o P	3 x SPMD14X2	701	771	400	600	598	769	897	315	500	1 x SPMC2402 + 1 x SPMC1402	1 x INL411 + 1 x INL401	3 x OTL402
° C	4 x SPMD14X1	779	856	450	650	684	878	1025	355	600	2 x SPMC2402	2 x INL411	4 x OTL401
Ô	3 x SPMD14X3	826	909	450	700	701	879	1025	400	650	1 x SPMC2402 + 1 x SPMC1402		3 x OTL403
	4 x SPMD14X2	934	1028	500	800	798	1026	1197	450	700	2 x SPMC2402		4 x OTL402
	3 x SPMD14X4	954	1050	560	800	826	1062	1239	450	750	1 x SPMC1402 + 1 x SPMC2402	1 x INL412 + 1 x INL402	3 x OTL404
	4 x SPMD14X3	1102	1212	630	900	934	1172	1367	550	800	2 x SPMC2402	2 x INL412	4 x OTL403
	4 x SPMD14X4	1272	1400	710	1000	1102	1416	1652	630	900	2 X 3F 1/102402	2 x INL412	4 x OTL404

NOTE When connecting drives in parallel they must be derated. Table 3-2, Table 3-4, Table 3-6, Table 3-8 and Table 3-10 have already the required de-rating.

Table 3-9 SPMD 690V motor drive ratings (500V to 690V ±10%)

			Norma	Duty			He	eavy Duty	/				
	Model	Maximum continuous output current	Peak current	Nominal motor power at 690V	Nominal motor power at 575V	Maximum continuous output current	Open loop peak current	Closed loop peak current	Nominal motor power at 690V	Nominal motor power at 575V	Required rectifier	Required input line reactor	
		Α	Α	kW	hp	Α	Α	Α	kW	hp			Α
0	SPMD16X1	125	137	110	125	100	129	150	90	100		1 x INL601	3.3
	SPMD16X2	144	158	132	150	125	161	188	110	125	1 x		5.5
	SPMD16X3	168	184	160	150	144	185	216	132	150	SPMC/U1601	1 x INL602	4.5
	SPMD16X4	192	211	160	200	168	216	252	150	150		T A IINLOUZ	4.5

	0-6-6-		Duration	0	Marshard and	Els states	0.11	Desis	D	SMARTCARD	Orthornal	Advanced	To should all		1.11. 1.2 a flore of
	Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running		011000.0	Advanced	lechnical		UL Listing
	Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	operation	PLC	parameters	Data	Diagnostics	Information
L				J							-	P			

Table 3-10 Paralleled SPMD 690V motor drive ratings (500V to 690V ±10%) based on AC supply voltage

			Norma	al Duty			He	eavy Duty	/				
Paralleled	SPMD modules	Maximum continuous output current		Nominal motor power at 690V	Nominal motor power at 575V	Maximum continuous output current	Open loop peak current	Closed loop peak current	motor	Nominal motor power at 575V	Required	Required input line reactor	Required output sharing choke
		Α	Α	kW	hp	Α	Α	Α	kW	hp			
	2 x SPMD16X1	237	261	250	250	190	244	284	200	200		1 x INL611	1 x OTL611
	2 x SPMD16X2	273	300	280	300	237	305	356	250	250	1 x SPMC2601	I X INLOTI	1 x OTL612
0	2 x SPMD16X3	319	351	315	350	273	351	410	250	300		4	1 x OTL613
0 7	2 x SPMD16X4	364	401	315	350	319	410	478	280	350	2 x SPMC1601	1 x INL612	1 x OTL614
	3 x SPMD16X2	410	451	450	450	356	457	534	355	400	1 x SPMC2601 +	1 x INL611 + 1 x INL601	3 x OTL602
\Box	3 x SPMD16X3	478	526	500	500	410	527	615	450	450	1 x SPMC1601	1 x INL612 +	3 x OTL603
	3 x SPMD16X4	547	601	545	600	478	615	718	450	500	3 x SPMC1601	1 x INL602	3 x OTL604
	4 x SPMD16X3	638	702	630	700	547	703	820	545	600	2 x SPMC2601	2 x INL612	4 x OTL603
	4 x SPMD16X4	729	802	710	800	638	820	957	630	700	4 x SPMC1601	2 X INL012	4 x OTL604

NOTE When connecting drives in parallel they must be derated. Table 3-2, Table 3-4, Table 3-6, Table 3-8 and Table 3-10 have already the required de-rating.

Table 3-11 Unidrive SPMC/U 400V ratings

Мос	lel	Maximum AC input current	Maximum DC output current	External 24V current consumption
		A	А	А
0	SPMC/U1402	344	379	3.0
	SPMC/U2402	2 x 312	2 x 345	3.0

Table 3-12 Unidrive SPMC/U 690V ratings

Мо	del	Maximum AC input current	Maximum DC output current	External 24V current consumption
		Α	Α	Α
0	SPMC/U1601	195	209	3.0
	SPMC/U2601	2 x 173	2 x 185	5.0

3.1.1 Typical short term overload limits

The maximum percentage overload limit changes depending on the selected motor. Variations in motor rated current, motor power factor and motor leakage inductance all result in changes in the maximum possible overload. The exact value for a specific motor can be calculated using the equations detailed in Menu 4 in the *Unidrive SP Advanced User Guide*.

Typical values are shown in the tables below for closed loop vector (VT) and open loop (OL) modes.

Table 3-13 Typical overload limits for all Unidrive SPM modules

Operating mode	Closed loop/RFC/ Servo/Regen from cold	Closed loop/RFC/Servo/ Regen from 100%	Open loop from cold	Open loop from 100%
Normal Duty overload with motor rated current = drive rated current	110% for 165s	110% for 9s	110% for 165s	110% for 9s
Heavy Duty overload with motor rated current = drive rated current	150% for 60s	150% for 8s	129% for 97s	129% for 15s

Generally the drive rated current is higher than the matching motor rated current allowing a higher level of overload than the default setting. The time allowed in the overload region is proportionally reduced at very low output frequency on some drive ratings.

NOTE

The maximum overload level which can be attained is independent of the speed.

1	Safety Information	Introduction	Product Information		Mechanical Installation				Running the motor	Optimization	SMARTCARD operation	PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
	Information		information	configuration	Installation	Installation	Starteu	parameters	the motor		operation	PLC	parameters	Dala	-	mormation

3.2 Operating modes

The Unidrive SPM is designed to operate in any of the following modes:

1. Open loop mode

Open loop vector Fixed V/F mode (V/Hz) Quadratic V/F mode (V/Hz)

- 2. RFC mode
- 3. Closed loop vector
- 4. Servo
- 5. Regen

3.2.1 Open loop mode

For use with induction motors.

The drive applies power to the motor at frequencies varied by the user. The motor speed is a result of the output frequency of the drive and slip due to the mechanical load. The drive can improve the speed control of the motor by applying slip compensation. The performance at low speed depends on whether V/F mode or open loop vector mode is selected.

Open loop vector mode

The voltage applied to the motor is directly proportional to the frequency except at low speed where the drive uses motor parameters to apply the correct voltage to keep the flux constant under varying load conditions.

Typically 100% torque is available down to 1Hz for a 50Hz motor.

For further details refer to section 10.1.1 *Open loop motor control* on page 136.

Fixed V/F mode

The voltage applied to the motor is directly proportional to the frequency except at low speed where a voltage boost is provided which is set by the user. This mode can be used for multi-motor applications.

Typically 100% torque is available down to 4Hz for a 50Hz motor.

Quadratic V/F mode

The voltage applied to the motor is directly proportional to the square of the frequency except at low speed where a voltage boost is provided which is set by the user. This mode can be used for running fan or pump applications with quadratic load characteristics or for multi-motor applications. This mode is not suitable for applications requiring a high starting torque.

3.2.2 RFC mode

Rotor flux control provides closed loop control without the need for position feedback by using current, voltages and key motor parameters to estimate the motor speed. It can eliminate instability traditionally associated with open loop control such as operating large motors with light loads at low frequencies.

For further details refer to section 10.1.2 RFC mode on page 138.

3.2.3 Closed loop vector mode

For use with induction motors with a feedback device installed.

The drive directly controls the speed of the motor using the feedback device to ensure the rotor speed is exactly as demanded. Motor flux is accurately controlled at all times to provide full torque all the way down to zero speed.

For further details refer to section 10.1.3 *Closed loop vector motor control* on page 141.

3.2.4 Servo

For use with permanent magnet brushless motors with a feedback device installed.

The drive directly controls the speed of the motor using the feedback device to ensure the rotor speed is exactly as demanded. Flux control is not required because the motor is self excited by the permanent magnets which form part of the rotor.

Absolute position information is required from the feedback device to ensure the output voltage is accurately matched to the back EMF of the motor. Full torque is available all the way down to zero speed.

For further details refer to section 10.1.4 Servo motor control on page 144.

3.2.5 Regen

For use as a regenerative front end for four quadrant operation.

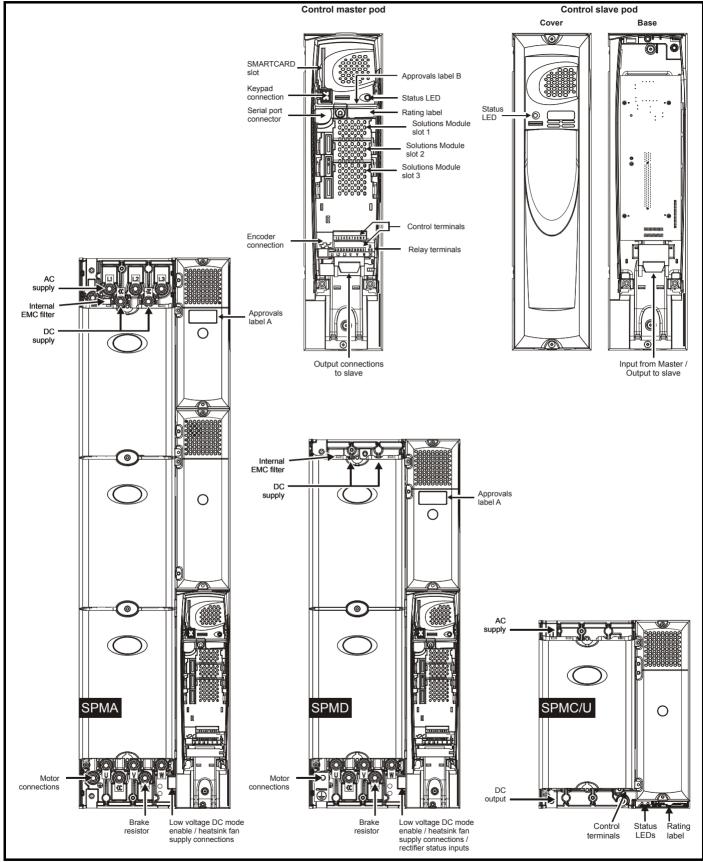
Regen operation allows bi-directional power flow to and from the AC supply. This provides far greater efficiency levels in applications which would otherwise dissipate large amounts of energy in the form of heat in a braking resistor.

The harmonic content of the input current is negligible due to the sinusoidal nature of the waveform when compared to a conventional bridge rectifier or SCR/thyristor front end.

See the *Unidrive SP Regen Installation Guide* for more information about operation in this mode.

3.3 Compatible encoders

Table 3-14 Encoders compatible with Unidrive SPM


Encoder type	Pr 3.38 setting
Quadrature incremental encoders with or without marker pulse	Ab (0)
Quadrature incremental encoders with UVW commutation signals for absolute position for permanent magnet motors with or without marker pulse	Ab.SErvo (3)
Forward / reverse incremental encoders with or without marker pulse	Fr (2)
Forward / reverse incremental encoders with UVW commutation signals for absolute position for permanent magnet motors with or without marker pulse	Fr.SErvo (5)
Frequency and direction incremental encoders with or without marker pulse	Fd (1)
Frequency and direction incremental encoders with UVW commutation signals for absolute position for permanent magnet motors with or without marker pulse	Fd.SErvo (4)
Sincos incremental encoders	SC (6)
Heidenhain sincos encoders with Endat comms for absolute position	SC.EndAt (9)
Stegmann sincos encoders with Hiperface comms for absolute position	SC.HiPEr (7)
Sincos encoders with SSI comms for absolute position	SC.SSI (11)
SSI encoders (Gray code or binary)	SSI (10)
Endat comms only encoders	EndAt (8)
UVW commutation only encoders*	Ab.SErvo (3)

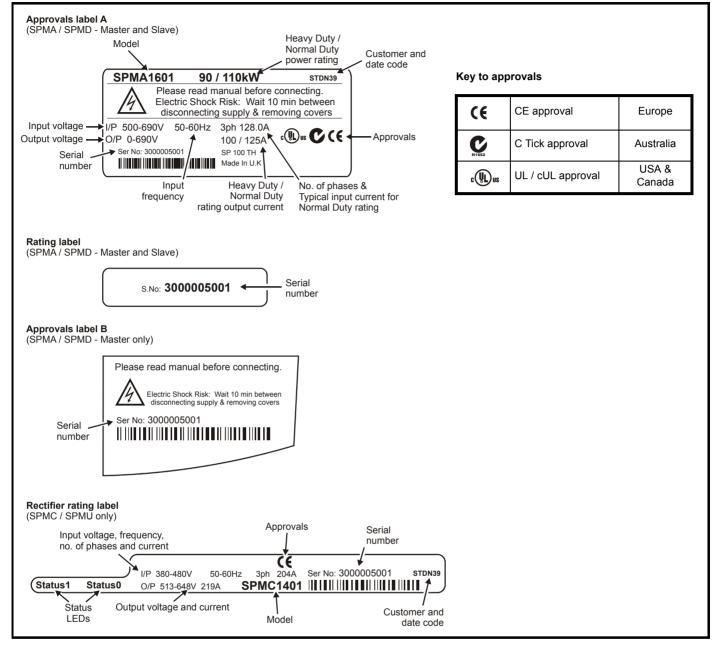
* This feedback device provides very low resolution feedback and should not be used for applications requiring a high level of performance

Safety		Product	System	Mechanical	Electrical	Gettina	Basic	Running			Onboard	Advanced	Technical		UL Listina
Information	Introduction	Product Information	-)	Installation	Installation		parameters	i turining	Optimization		PLC	parameters	Data	Diagnostics	Information
inionnation		monnadon	oorniguruuorr	motaliation	motanation	otartea	parametero			operation	1 20	parametere	Dulu		mormation

3.4 Features

Figure 3-1 Features of the Unidrive SPM Modules

NOTE

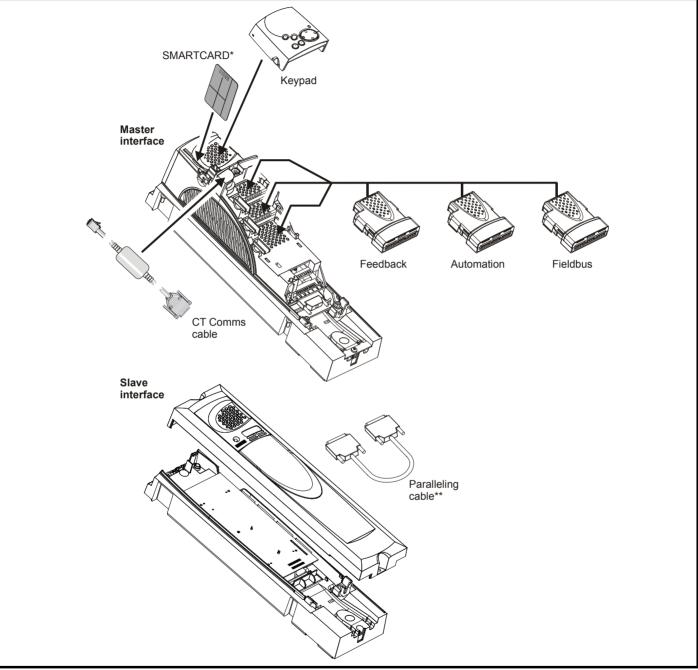

24V supply is required for fans on all modules.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

3.5 Nameplate description

See Figure 3-1 Features of the Unidrive SPM Modules for location of rating labels.

Figure 3-2 Typical drive rating labels


S	Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running		SMARTCARD	Onboard	Advanced	Technical		UL Listing
Info	ormation	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

3.6 Options

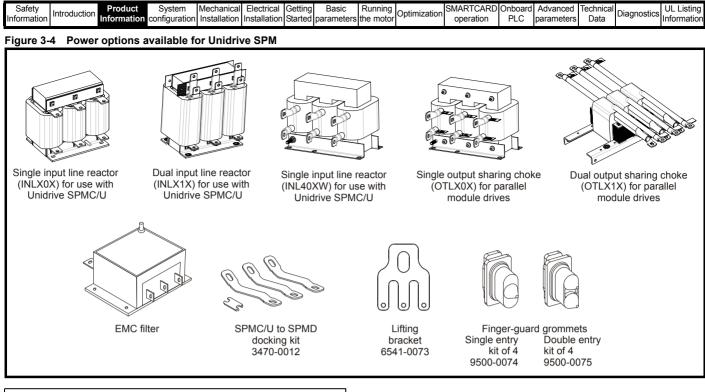

Power down the drive before installing / removing the Solutions Module.

Figure 3-3 Control options available with Unidrive SPM

* A SMARTCARD is provided as standard. Only one SMARTCARD can be installed at any one time. For further information, refer to Chapter 11 SMARTCARD operation on page 149.

** Paralleling cable is only supplied with a control slave pod.

A separate input line reactor of at least the value shown in Table 6-2 and Table 6-3 on page 68 must be used with the rectifiers. Failure to provide sufficient reactance could damage or reduce the service life of the rectifier or inverter.

All Unidrive SPM Solutions Modules are color-coded in order to make identification easy. The following table shows the color-code key and gives further details on their function.

Power down the drive before installing / removing the Solutions Module. Failure to do so may result in damage to the product.

Table 3-15 Solutions Module identification

Туре	Solutions Module	Color	Name	Further Details
		Light Green	SM-Universal Encoder Plus	Universal Feedback interface Feedback interface for the following devices: Inputs Outputs • Incremental encoders • Quadrature • SinCos encoders • Frequency and direction • SSI encoders • SSI simulated outputs • EnDat encoders • SSI simulated outputs
		Light Blue	SM-Resolver	Resolver interface Feedback interface for resolvers. Simulated quadrature encoder outputs
Feedback		Brown	SM-Encoder Plus	Incremental encoder interface Feedback interface for incremental encoders without commutation signals. No simulated encoder outputs available
		Dark Brown	SM-Encoder Output Plus	Incremental encoder interface Feedback interface for incremental encoders without commutation signals. Simulated encoder output for quadrature, frequency and direction signals
	A COLORINA IN C	N/A	15-way D-type converter	Drive encoder input converter Provides screw terminal interface for encoder wiring and spade terminal for shield
	a second a s	N/A	Single ended encoder interface (15V)	Single ended encoder interface Provides an interface for 15V single ended ABZ or UVW encoder signals, such as those from hall effect sensors

Safety Information	Introduction	Product Information	Mechanical Installation	 Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	PLC	Advanced parameters	Technical Data	UL Listing Information

Туре	Solutions Module	Color	Name	Further Details
		Yellow	SM-I/O Plus	Additional I/O interface Increases the I/O capability by adding the following to the existing I/O in the drive: • Digital inputs x 3 • Digital I/O x 3 • Analog output (voltage) x 1 • Relay x 2
		Yellow	SM-I/O 32	Additional I/O interface Increase the I/O capability by adding the following to the existing I/O in the drive: • High speed digital I/O x 32 • +24V output
Automation		Dark Yellow	SM-I/O Lite	Additional I/O 1 x Analog input (± 10V bi-polar or current modes) 1 x Analog output (0-10V or current modes) 3 x Digital input and 1 x Relay
(I/O Expansion)		Dark Red	SM-I/O Timer	Additional I/O with real time clock As per SM-I/O Lite but with the addition of a Real Time Clock for scheduling drive running
		Turquoise	SM-I/O PELV	Isolated I/O to NAMUR NE37 specifications For chemical industry applications 1 x Analog input (current modes) 2 x Analog outputs (current modes) 4 x Digital input / outputs, 1 x Digital input, 2 x Relay outputs
		Olive	SM-I/O 120V	Additional I/O conforming to IEC 61131-2 120Vac 6 digital inputs and 2 relay outputs rated for 120Vac operation
-		Cobalt Blue	SM-I/O 24V Protected	Additional I/O with overvoltage protection up to 48V 2 x Analog outputs (current modes) 4 x Digital input / outputs, 3 x Digital inputs, 2 x Relay outputs
		Dark Green	SM-Applications	Applications Processor (with CTNet) 2 nd processor for running pre-defined and /or customer created application software with CTNet support
Automation		White	SM-Applications Lite	Applications Processor 2 nd processor for running pre-defined and /or customer created application software
(Applications)		Dark Blue	SM-EZMotion	Motion Controller 1 ¹ / ₂ axis motion controller with processor for running customer created application specific software.
		Moss Green	SM-Applications Plus	Applications Processor (with CTNet) 2 nd processor for running pre-defined and /or customer created application software with CTNet support. Enhanced performance over SM-Applications.

Safety Information		anical Electrical G lation Installation St	etting Basic Running arted parameters the motor	Optimization SMARTCARD Onboard Advanced Technical Diagnostics UL Listing PLC parameters Data Diagnostics Information
	olutions Module identificati			
Туре	Solutions Module	Color	Name	Further Details
		Purple	SM-PROFIBUS-DP	Profibus option PROFIBUS DP adapter for communications with the drive
		Medium Grey	SM-DeviceNet	DeviceNet option Devicenet adapter for communications with the drive
		Dark Grey	SM-INTERBUS	Interbus option Interbus adapter for communications with the drive
		Pink	SM-CAN	CAN option CAN adapter for communications with the drive
Fieldbus		Light Grey	SM-CANopen	CANopen option CANopen adapter for communications with the drive
		Red	SM-SERCOS	SERCOS option Class B compliant. Torque velocity and position control modes supported with data rates (bit/sec): 2MB, 4MB, 8MB and 16MB. Minimum 250µsec network cycle time. Two digital high speed probe inputs 1µsec for position capture
		Beige	SM-Ethernet	Ethernet option 10 base-T / 100 base-T; Supports web pages, SMTP mail and multiple protocols: DHCP IP addressing; Standard RJ45 connection
		Pale Green	SM-LON	LonWorks option LonWorks adapter for communications with the drive
		Brown Red	SM-EtherCAT	EtherCAT option EtherCAT adapter for communication with the drive
SLM		Orange	SM-SLM	 SLM interface The SM-SLM allows SLM feedback to be connected directly to the Unidrive SP drive and allows operation in either of the following modes: Encoder only mode Host mode

Table 3-16 Keypad identification

Туре	Keypad	Name	Further Details
Keypad	000	SM-Keypad	LED keypad option Keypad with a LED display
Reypud	800 A	SM-Keypad Plus	LCD keypad option Keypad with an alpha-numeric LCD display with Help function

Table 3-17 Other options

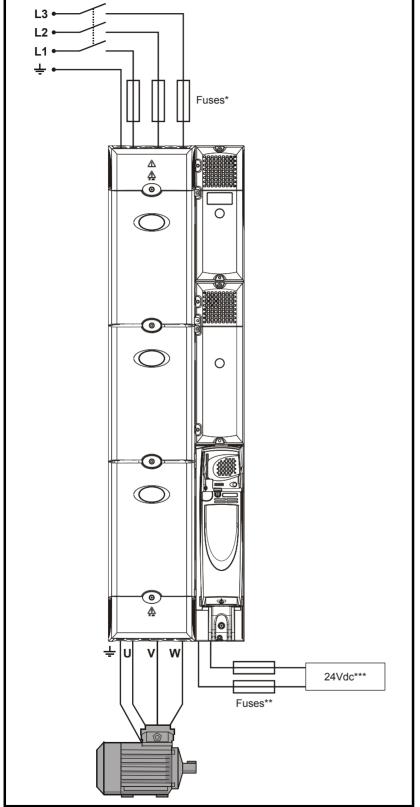
Туре	Option	Name	Further Details
Power supply		24V power supply	24V, 10A power supply (Part No: 8510-0000)

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data		Information

3.7 Items supplied with the drive

The drive is supplied with a copy of the *Unidrive SPM User Guide*, a SMARTCARD (control master pod only), the safety booklet, the certificate of quality, an accessory kit box including the items shown in Table 3-18, and two CD ROMs. The Unidrive SPM CD ROM contains information specific to this product, and the standard Unidrive SP CD ROM contains general documentation and software tools.

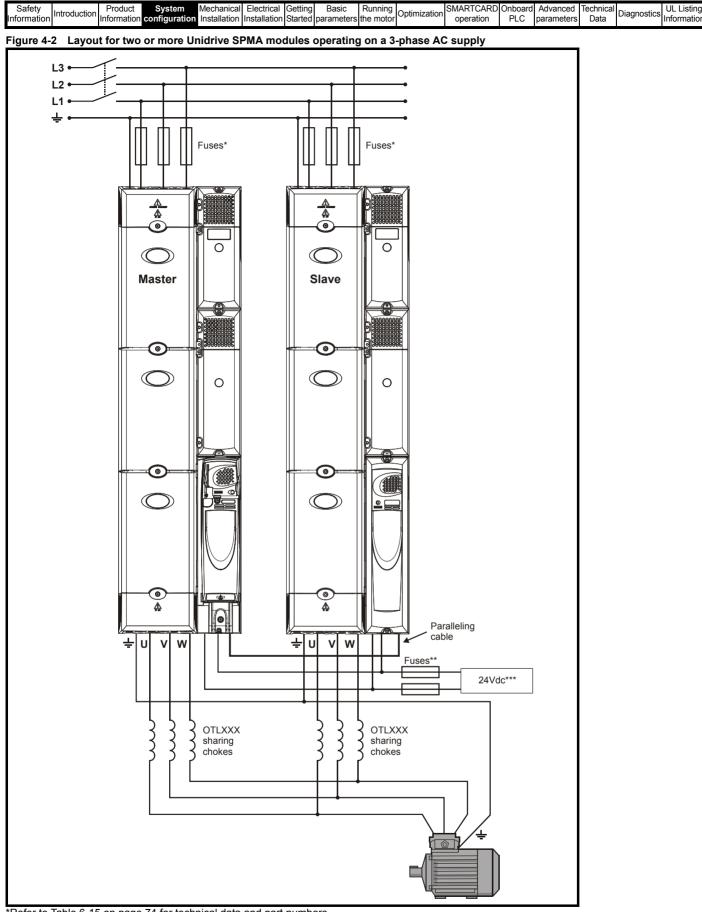
Table 3-18 Accessories supplied with Unidrive SPM


Description	SPMA	SPMD	SPMC/U
UL warning label		CAUTION Risk of Electric Shock Power down unit Unminutes before removing cover	
Nylon washers		CARA M8 M6	
Sealing clips			
Through panel mounting gasket			
Mounting bracket		le l	e la
Fan / control connector(s)			
Paralleling cable	Ex.	Slave only	
Mounting screws		M8x20	
Control connectors	The second s	Master only	
Relay connector		Master only	
Grounding bracket		Master only	
Top surface mounting brackets			
Surface mounting brackets			
Grounding busbar			
EMC output bracket			

1	Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	01100010	Advanced	Technical	Diagnostics	UL Listing
	Information		Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	g	Information

4 System configuration

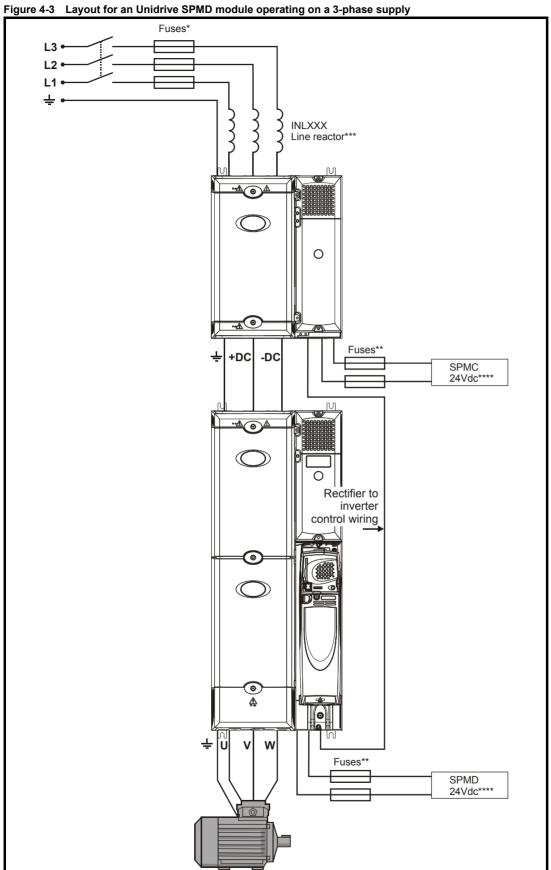
This chapter demonstrates various Unidrive SPM system configurations. A suitable external 24Vdc power supply is available from the supplier of the drive. See section 14.1.4 *Unidrive SPM 24V power supply* on page 267 for further details.


Figure 4-1 Layout for a Unidrive SPMA module operating on a 3-phase AC supply

*Refer to Table 6-15 on page 74 for technical data and part numbers.

**Fuses are needed only if the power supply has a current rating of more than 10A.

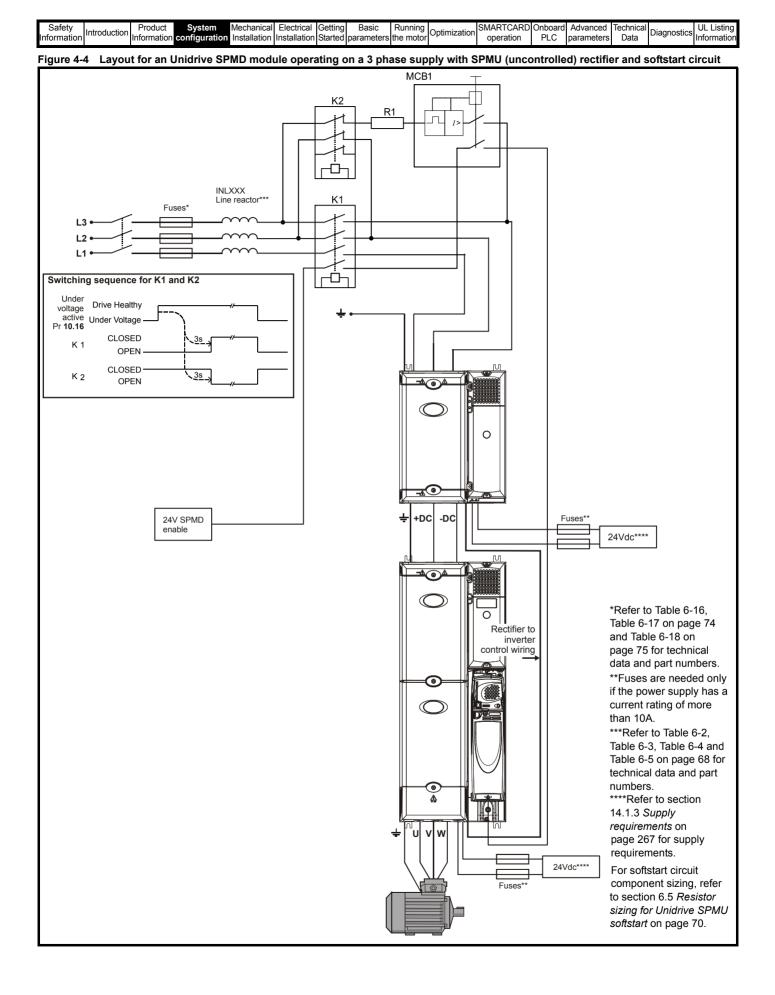
***Refer to section 14.1.3 *Supply requirements* on page 267 for supply requirements.

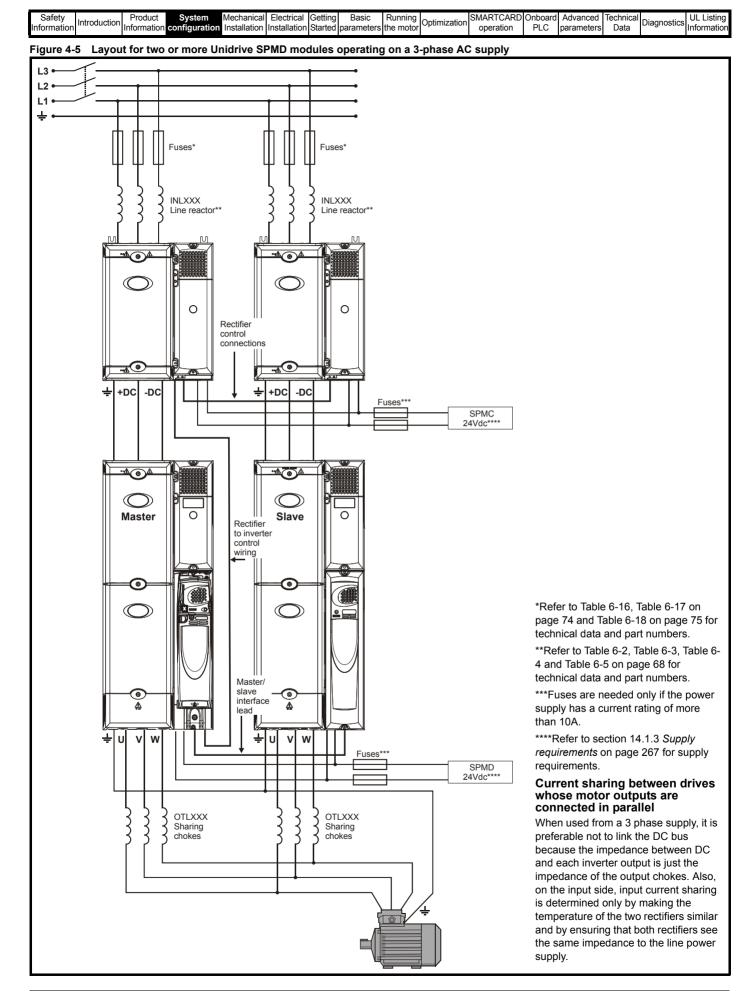

*Refer to Table 6-15 on page 74 for technical data and part numbers.

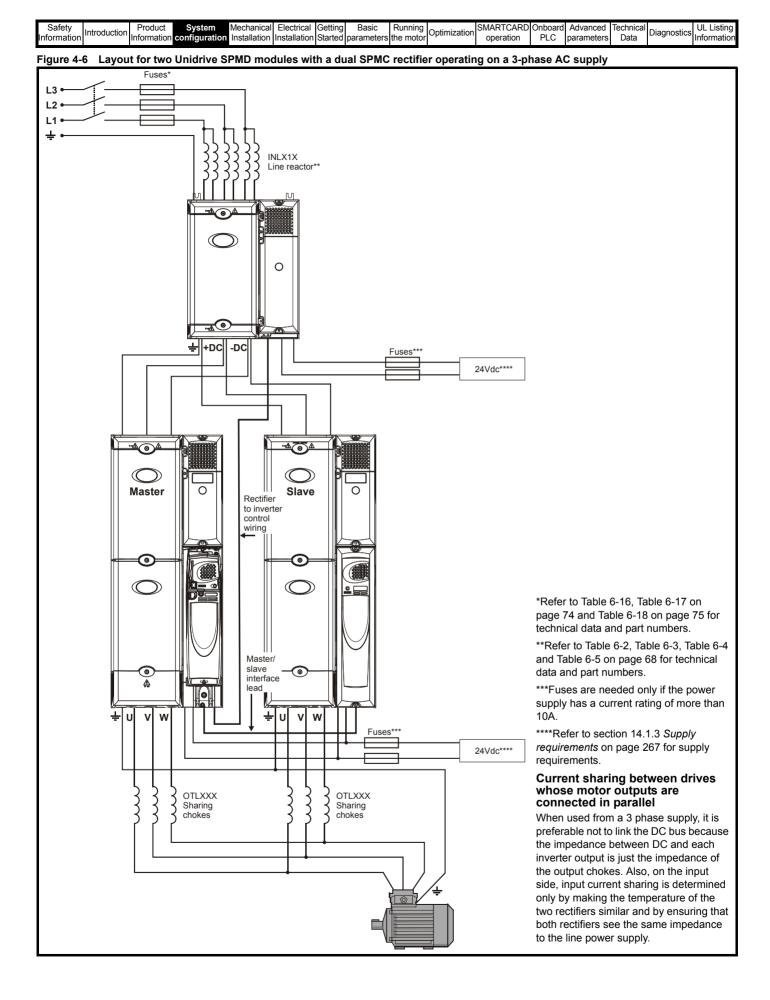
**Fuses are needed only if the power supply has a current rating of more than 10A.

***Refer to section 14.1.3 Supply requirements on page 267 for supply requirements.

Refer to the external 24V power supply current consumption column in the ratings tables in section 3.1 Ratings on page 12.

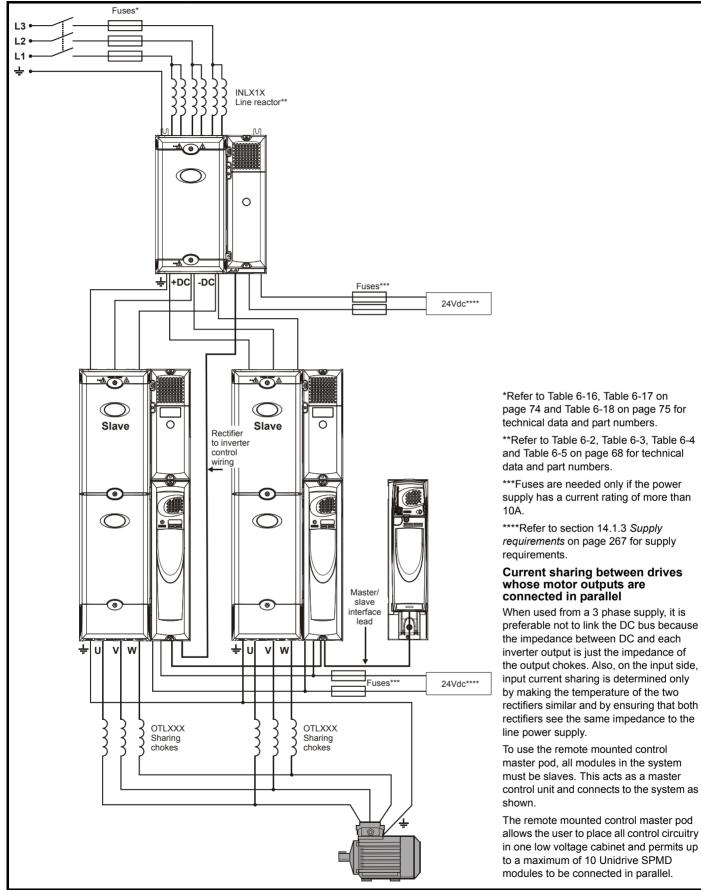





*Refer to Table 6-16, Table 6-17 on page 74 and Table 6-18 on page 75 for technical data and part numbers. **Fuses are needed only if the power supply has a current rating of more than 10A.

***Refer to Table 6-2, Table 6-3, Table 6-4 and Table 6-5 on page 68 for technical data and part numbers.

****Refer to section 14.1.3 Supply requirements on page 267 for supply requirements.



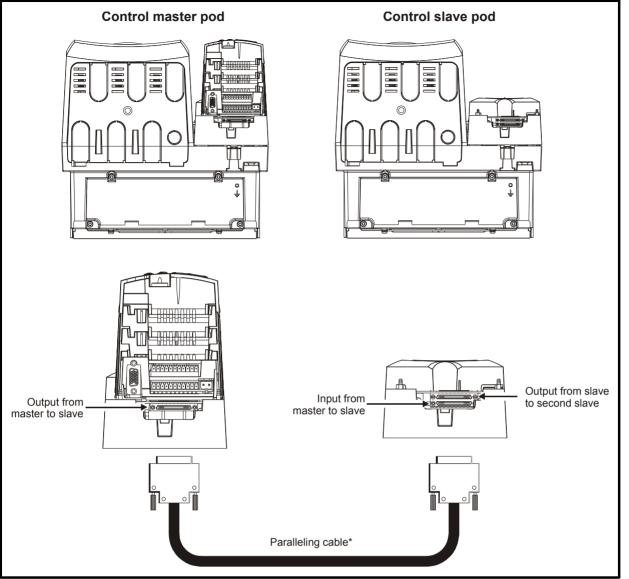

							1									
	Safety		Product	Svstem	Mechanical	Electrical	Gettina	Basic	Runnina		ISMARTCARD	Onboard	Advanced	Technical		UL Listina
		Introduction								Optimization					Diadnostics	
In	formation		Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data		Information
												-				

Figure 4-7 Layout for two Unidrive SPMD slave modules with a dual SPMC rectifier operating on a 3-phase AC supply with a remote mounted control master pod

	3	afety mation	Introduction	Product Information	System configuration	Mechanical Installation	Installation	Getting Started			Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	---	-----------------	--------------	------------------------	-------------------------	----------------------------	--------------	--------------------	--	--	--------------	------------------------	----------------	---------------------	-------------------	-------------	---------------------------

Parallel control connections Figure 4-8 Parallel control connections

*Only supplied with slave drive.

NOTE

The parallel cable should be routed according to the rules shown in Figure 6-25 *Sensitive signal circuit clearance* on page 84 for the control cable.

NOTE

The screw locks on the parallel cable must be fully tightened.

Sa	afety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running		SMARTCARD	Onboard	Advanced	Technical	UL Listing
Infor	rmation	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Information

5 Mechanical Installation

This chapter describes all the mechanical details required to install the drive. The drive is intended to be installed in an enclosure. Key features of this chapter include:

- · Surface and through-panel mounting
- · Remote mounting of control master pod
- Enclosure sizing and layout
- Solutions Module installation
- Terminal location and torque settings
- Docking the Unidrive SPMD and SPMC/U

5.1 Safety information

Follow the instructions The mechanical and electrical installation instructions must be adhered to. Any questions or doubt should be referred to the supplier of the equipment. It is the responsibility of the owner or user to ensure that the installation of the drive and any external option unit, and the way in which they are operated and maintained, comply with the requirements of the Health and Safety at Work Act in the United Kingdom or applicable legislation and regulations and codes of practice in the country in which the equipment is used.

Competence of the installer

The drive must be installed by professional assemblers who are familiar with the requirements for safety and EMC. The assembler is responsible for ensuring that the end product or system complies with all the relevant laws in the country where it is to be used.

Lifting the drive

The weights of the drives are as follows: SPMA 80kg (176.4lb) SPMD 42kg (92.6lb) SPMC/U20kg (44lb) Use appropriate safeguards when lifting these models.

5.2 Planning the installation

The following considerations must be made when planning the installation:

5.2.1 Access

Access must be restricted to authorized personnel only. Safety regulations which apply at the place of use must be complied with.

The IP (Ingress Protection) rating of the drive is installation dependent. For further information, please refer to section 5.10 *Enclosing drive for high environmental protection* on page 56.

5.2.2 Environmental protection

The drive must be protected from:

- moisture, including dripping water or spraying water and condensation. An anti-condensation heater may be required, which must be switched off when the drive is running.
- · contamination with electrically conductive material
- contamination with any form of dust which may restrict the fan, or impair airflow over various components
- · temperature beyond the specified operating and storage ranges
- corrosive gasses

5.2.3 Cooling

The heat produced by the drive must be removed without its specified operating temperature being exceeded. Note that a sealed enclosure gives much reduced cooling compared with a ventilated one, and may need to be larger and/or use internal air circulating fans.

For further information, please refer to section 5.8.4 *Enclosure sizing* on page 51.

5.2.4 Electrical safety

The installation must be safe under normal and fault conditions. Electrical installation instructions are given in Chapter 6 *Electrical Installation on page 64*.

5.2.5 Fire protection

The drive enclosure is not classified as a fire enclosure. A separate fire enclosure must be provided.

5.2.6 Electromagnetic compatibility

Variable speed drives are powerful electronic circuits which can cause electromagnetic interference if not installed correctly with careful attention to the layout of the wiring.

Some simple routine precautions can prevent disturbance to typical industrial control equipment.

If it is necessary to meet strict emission limits, or if it is known that electromagnetically sensitive equipment is located nearby, then full precautions must be observed. In-built into the drive, is an internal EMC filter, which reduces emissions under certain conditions. If these conditions are exceeded, then the use of an external EMC filter may be required at the drive inputs, which must be located very close to the drives. Space must be made available for the filters and allowance made for carefully segregated wiring. Both levels of precautions are covered in section 6.13 *EMC (Electromagnetic compatibility) on page 79*.

5.2.7 Hazardous areas

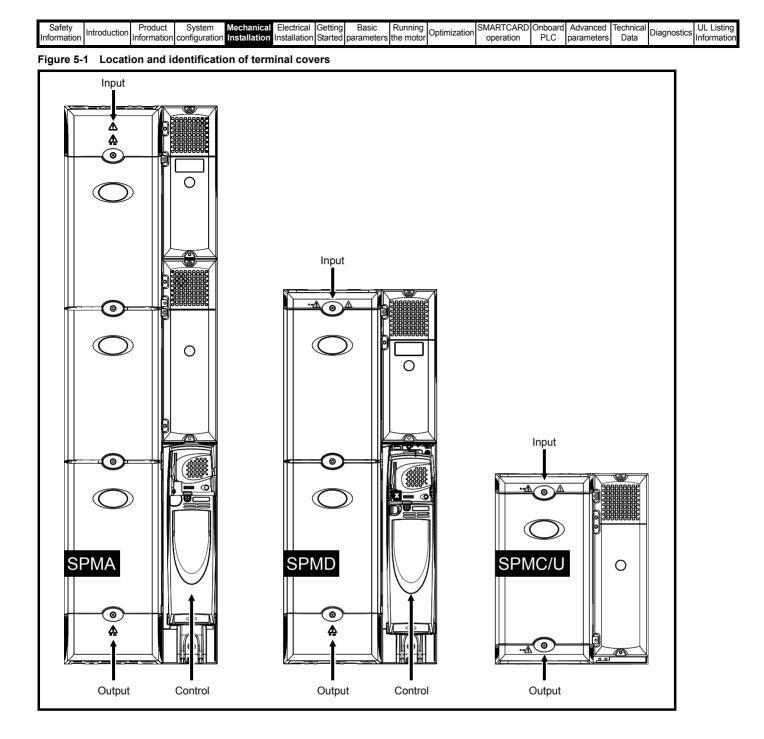
The drive must not be located in a classified hazardous area unless it is installed in an approved enclosure and the installation is certified.

5.3 Terminal cover removal

Isolation device

The AC supply must be disconnected from the drive using an approved isolation device before any cover is removed from the drive or before any servicing work is performed.

Stored charge

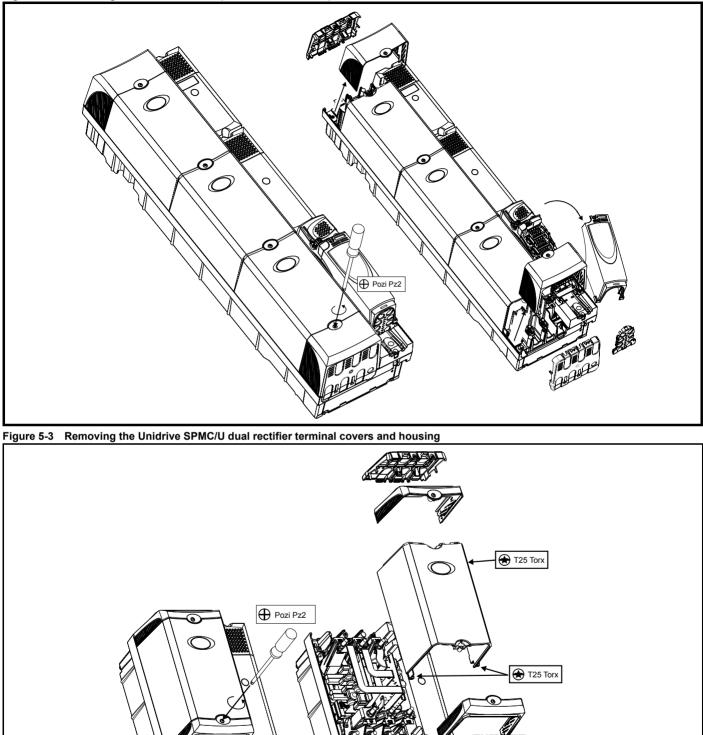

The drive contains capacitors that remain charged to a potentially lethal voltage after the AC supply has been disconnected. If the drive has been energized, the AC supply must be isolated at least ten minutes before work may continue.

Normally, the capacitors are discharged by an internal resistor. Under certain, unusual fault conditions, it is possible that the capacitors may fail to discharge, or be prevented from being discharged by a voltage applied to the output terminals. If the drive has failed in a manner that causes the display to go blank immediately, it is possible the capacitors will not be discharged. In this case, consult Control Techniques or their authorized distributor.

5.3.1 Removing the terminal covers

Unidrive SPMA and SPMD are fitted with three terminal covers: Control, input and output terminal covers.

Unidrive SPM/C are fitted with two terminal covers: Input and output terminal covers. For the dual SPMC/U rectifier, the terminal covers and housing must be removed to gain access to all the terminals.

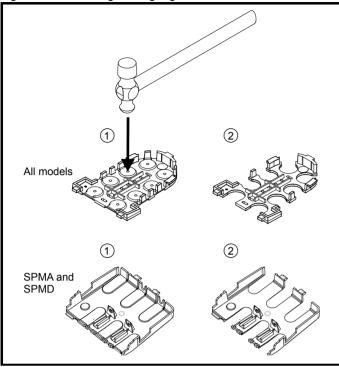


Safety		Product	Svstem	Mechanical	Electrical	Gettina	Basic	Runnina		SMARTCARD	Onboard	Advanced	Technical		UL Listina
Ouldry	Introduction	TTOQUOL	Oystem	Meenamea	Licculcul	Octung	Dasic	rturning	Optimization		Onboard	Advanced	recimical	Diagnostics	
Information	introduction	Information	configuration	Installation	Installation	Started	paramotore	the motor	Optimization	operation		parameters	Data	Diagnostics	Information
Information		momation	configuration	Installation	Installation	Starteu	parameters	THE THOLOI		operation	FLC	parameters	Dala		momation
			-				-			-		-			

To remove a terminal cover, undo the screw and lift the terminal cover off as shown.

When replacing the terminal covers the screws should be tightened with a maximum torque of 1 N m (0.7 lb ft).

Figure 5-2 Removing the terminal covers (Uni SPMA illustrated)

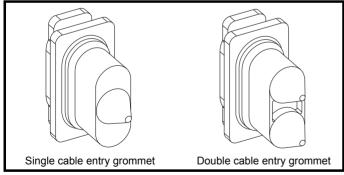


When removing the Unidrive SPMC/U dual rectifier centre housing, undo the 3 x T25 torx head screws as shown in Figure 5-3. When the housing is replaced, the screws should be tightened with a maximum torque of 2.5 N m (1.8 lb ft).

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

5.3.2 Removing the finger-guard and DC terminal cover break-outs

Figure 5-4 Removing the finger-guard break-outs


Place finger-guard on a flat solid surface and hit relevant break-outs with hammer as shown (1). Continue until all required break-outs are removed (2). Remove any flash / sharp edges once the break-outs are removed.

Grommets are available for the Unidrive SPM finger-guards. Two versions are available allowing for either single or double cable entries.

NOTE

These grommets are required to meet IP20 when installed in an open environment.

Figure 5-5 Unidrive SPM finger-guard grommets

The grommets are available as a kit of four grommets under the following part numbers:

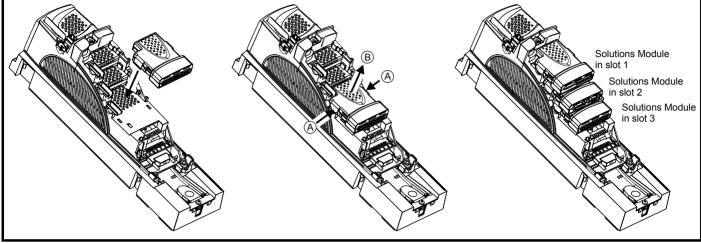
9500-0074	Kit of four single entry grommets
-----------	-----------------------------------

9500-0075 Kit of four double entry grommets

The drive must not be run without the finger guards and grommets installed because In the event of a catastrophic failure, sparks maybe emitted.

NOTE

The finger guards and grommets must be installed correctly to meet UL.


Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running		SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

5.4 Solutions Module installation/removal

Power down the drive before installing / removing the Solutions Module.

Figure 5-6 Installation and removal of a Solutions Module

To instal the Solutions Module, press down in the direction shown above until it clicks into place.

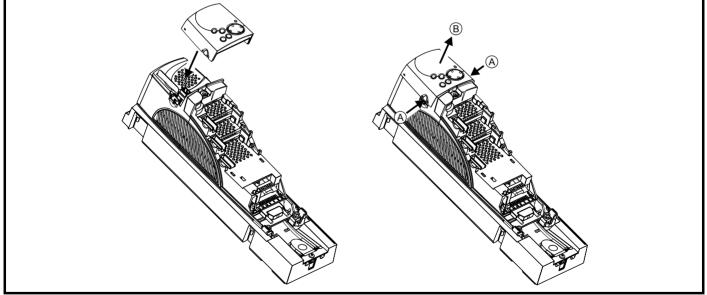
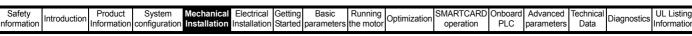

To remove the Solutions Module, press inwards at the points shown (A) and pull in the direction shown (B).

Figure 5-7 Installation and removal of a keypad

The drive has the facility for all three Solutions Module slots to be used at the same time, as illustrated.

NOTE

It is recommended that the Solutions Module slots are used in the following order: slot 3, slot 2 and slot 1.

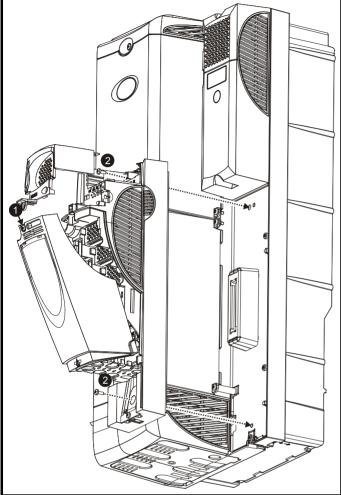


To install, align the keypad and press gently in the direction shown until it clicks into position.

To remove, while pressing the tabs inwards (A), gently lift the keypad in the direction indicated (B).

NOTE

The keypad can be installed / removed while the drive is powered up and running a motor, providing that the drive is not operating in keypad mode.



5.5 Mounting of control master/slave pod

5.5.1 Mounting the control master/slave pod on the drive

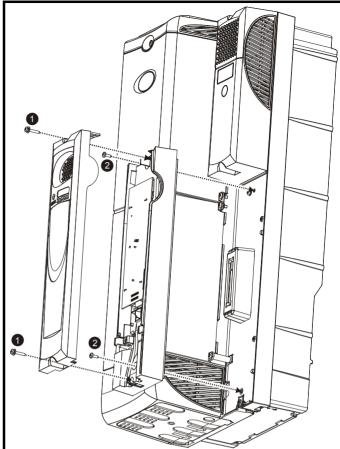
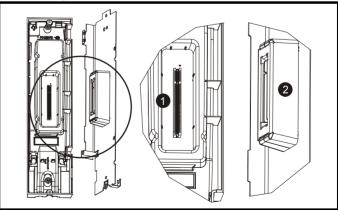
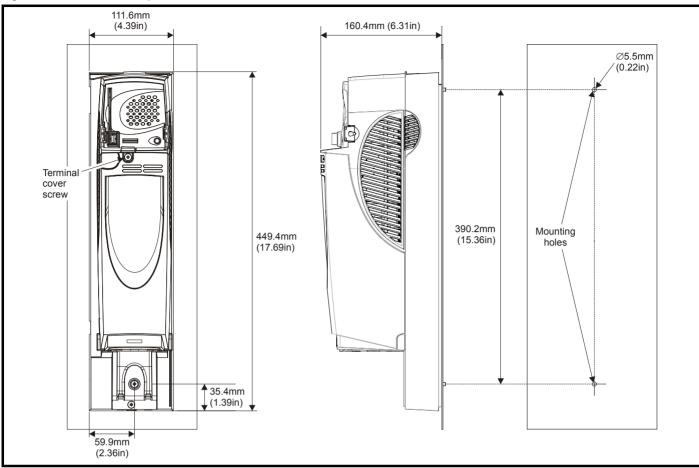

For control master/slave pod paralleling connections, refer to section *Parallel control connections* on page 32.

Figure 5-8 Mounting the control master pod on the drive



- 1. In order to expose the top mounting hole, the terminal covers need to be removed. This is done by undoing the terminal cover screw highlighted and then removing the two plastic covers.
- Care must be taken when installing master control pod. Refer to Figure 5-10. Use the 2 x M6 screws to mount the control master pod to the drive in the position shown.
- 3. The terminal covers can then be re-installed.

Figure 5-9 Mounting the control slave pod on the drive


- In order to expose the mounting holes, remove the control slave pod cover. This is done by undoing the screws highlighted and pulling the cover off.
- Care must be taken when installing control slave pod. Refer to Figure 5-10. Use the 2 x M6 screws to mount the control slave pod to the drive in the position shown.
- 3. The cover can then be re-installed.
- Figure 5-10 Control master/slave pod and power module base plate connectors

Ensure that the connector on the back of the control master/slave pod (1) is securely fitted to the power module metal base plate connector (2).

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running		SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

5.5.2 Remote mounting control master pod Figure 5-11 Control master pod dimensions

The control master pod can be mounted remotely.

In order to meet IP20, the control master pod should be mounted to a solid surface to restrict access to the back of the module.

In order to expose the top mounting hole, the terminal covers need to be removed. This is done by undoing the terminal cover screw highlighted in Figure 5-11, and then removing the two plastic covers.

Use 2 x M6 screws to mount the control master pod to pre-drilled holes using the dimensions shown in Figure 5-11.

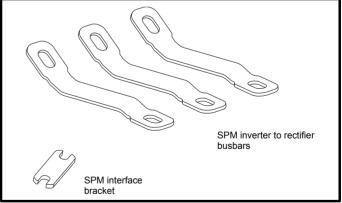
NOTE

The parallel cable for the control master pod is 2m long, as such it should be mounted close to the appropriate power module.

5.6 Docking a Unidrive SPMC/U to an SPMD

Docking a Unidrive SPMC/U to an SPMD allows the user to create an AC input/AC output drive. The advantages of docking are:

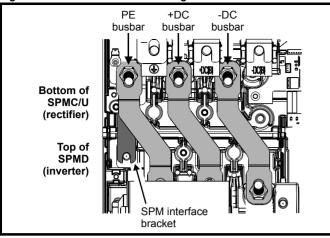
- · Optimization of enclosure layout
- Reduced cabling


Docking results in a reduction of heatsink air flow which has an effect on the drive rating. Refer to section 14.1.1 *Power and current ratings* (*Derating for switching frequency and temperature*) on page 263.

5.6.1 Installing the docking kit

When mounting an SPMD and SPMC/U in a vertical plane, as shown in Figure 5-17 on page 43 and Figure 5-21 on page 46, the following

docking kit (3470-0012) can be used to electrically connect the two modules together.


Figure 5-12 Docking kit

The SPM interface bracket should be connected first, followed by the SPM inverter to rectifier busbars, to the appropriate terminals as shown in Figure 5-13.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced		Diagnostics	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

Figure 5-13 Location of the docking kit when installed

NOTE

A current derating must be applied to the Unidrive SPMD1404 when docked with the Unidrive SPMC/U. Details can be found insection 14.1.1 *Power and current ratings (Derating for switching frequency and temperature)* on page 263.

- 62																
	Safety		Product	Svstem	Mechanical	Electrical	Gettina	Basic	Runnina		SMARTCARD	Onboard	Advanced	Technical		UL Listina
	ounory	Introduction		Cycloni						Optimization		011000110	/ 10/01/000		Diagnostics	
	nformation		Information	configuration	Installation	Installation	Started	parameters	the motor	optimization	operation	PLC	parameters	Data	Diagnostics	Information
				oomgaraaon		motanation	0.0	paramotoro			oporation	. 20	paramotoro	2010		

5.7 Mounting methods

Unidrive SPMA, SPMD and SPMC can be either surface or throughpanel mounted using the appropriate brackets.

Surface mounting is where the drive is simply secured to the enclosure wall/backplate.

Through-panel mounting is where the drive is secured with the heatsink protruding through the enclosure panel to the external environment. This has the effect of reducing the temperature within the enclosure.

The following drawings show the dimensions of the drive and mounting holes for each method to allow a back plate to be prepared.

5.7.1 Surface mounting

The weights of the drives are as follows: SPMA 80kg (176.4lb) SPMD 42kg (92.6lb) SPMC/U20kg (44lb)

Use appropriate safeguards when lifting these models.

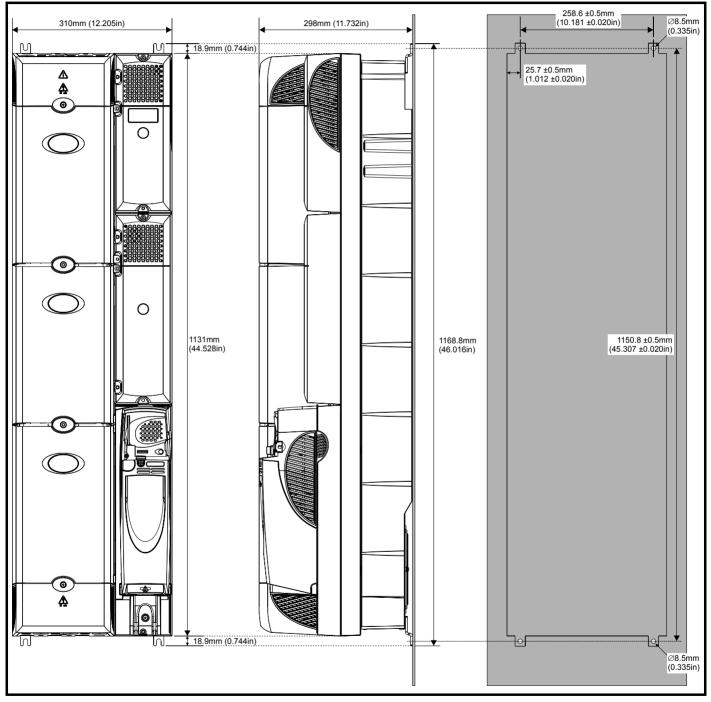
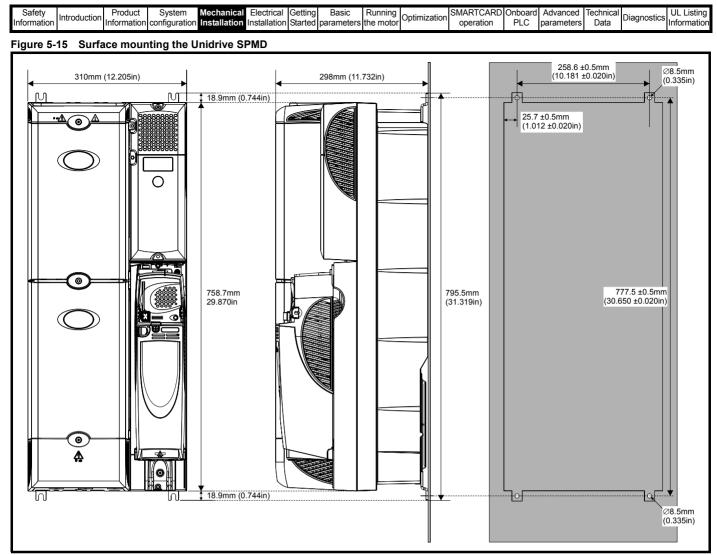
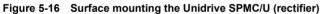
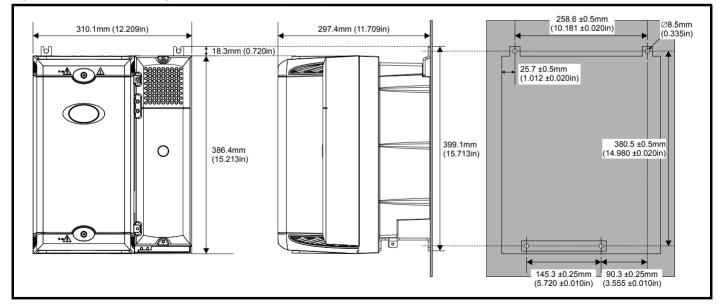
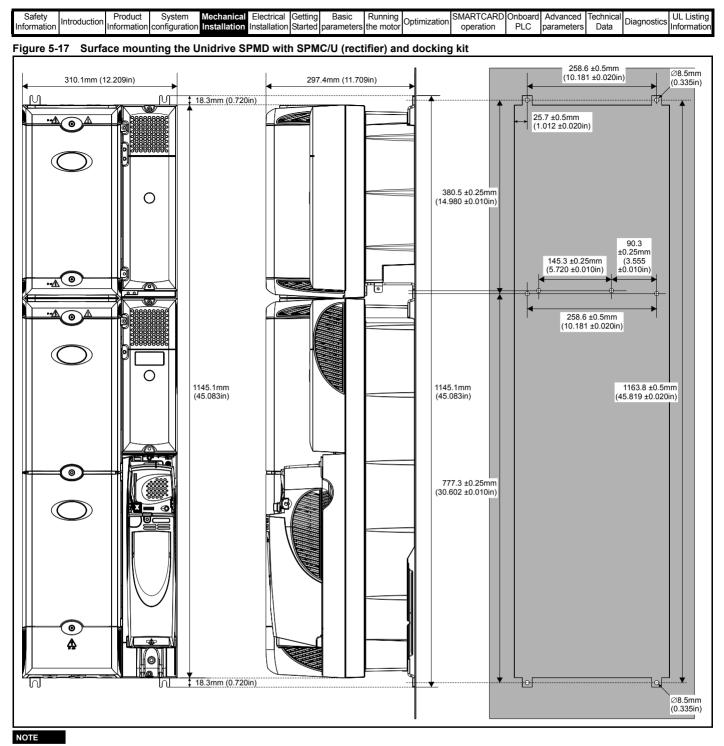
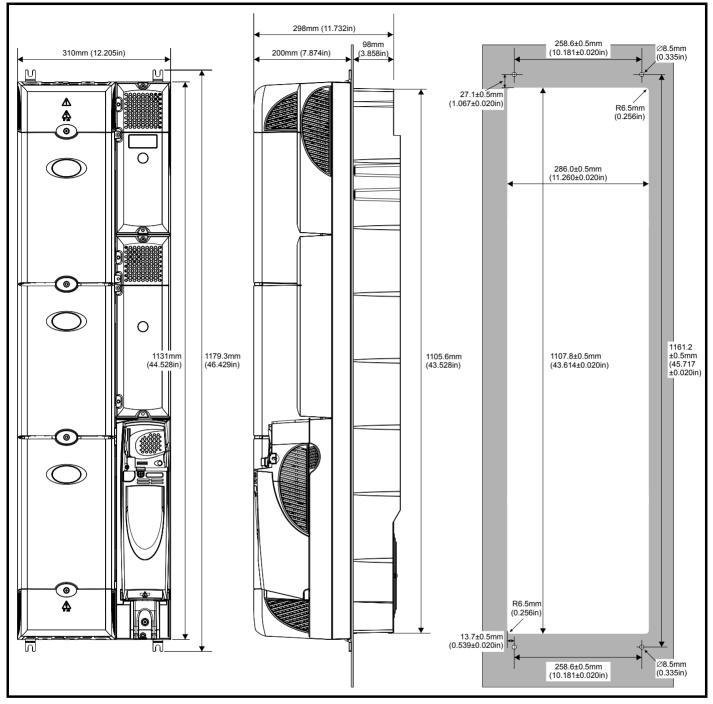
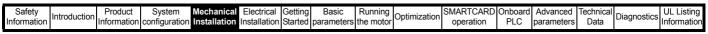
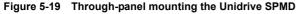






Figure 5-14 Surface mounting the Unidrive SPMA




A current derating must be applied to the Unidrive SPMD1404 when docked with the Unidrive SPMC/U. Details can be found in section 14.1.1 *Power and current ratings (Derating for switching frequency and temperature)* on page 263.


Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

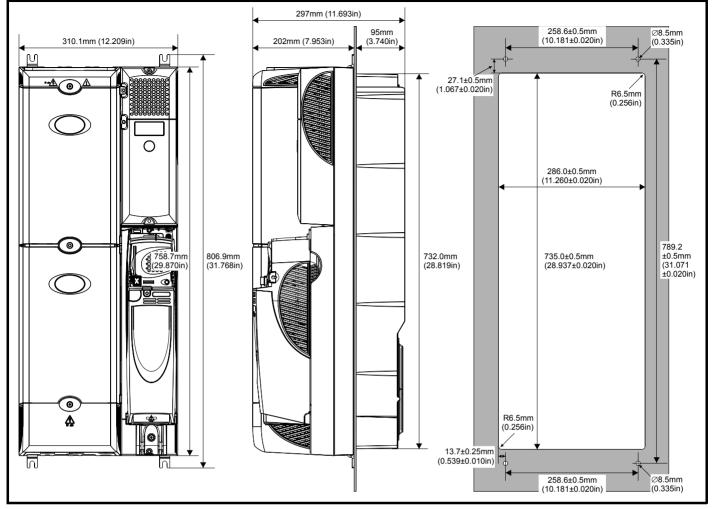
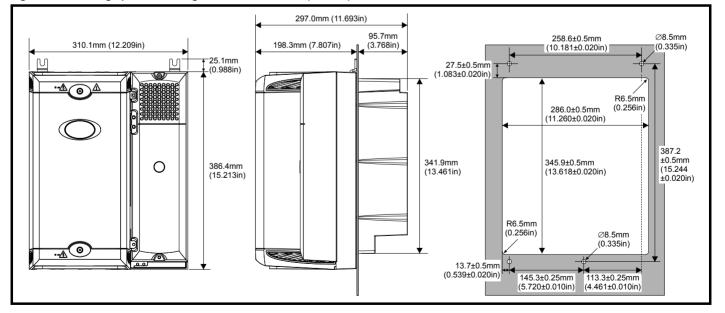
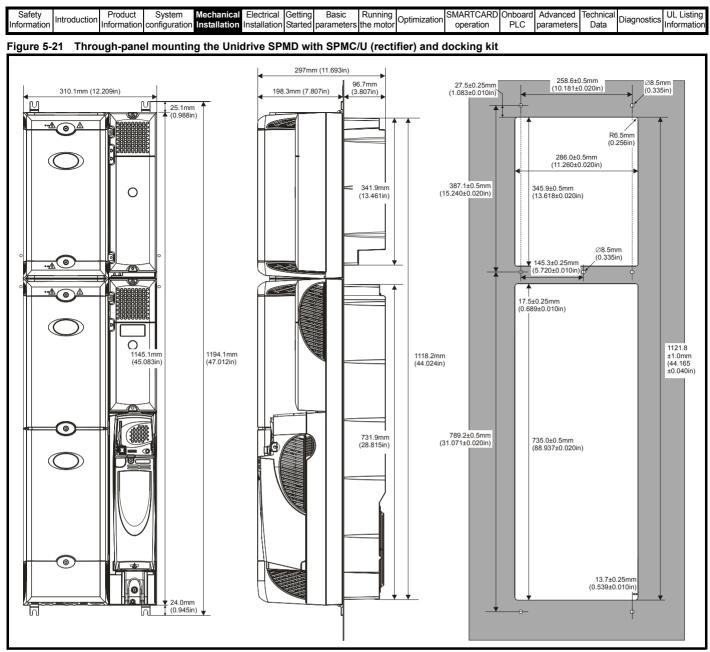
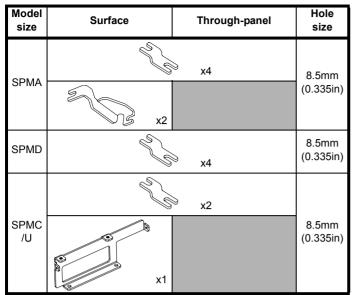

5.7.2 Through-panel mounting

Figure 5-18 Through-panel mounting the Unidrive SPMA





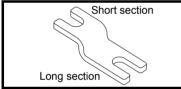

NOTE

A current derating must be applied to the Unidrive SPMD when docked with the Unidrive SPMC/U. Details can be found insection 14.1.1 *Power and current ratings (Derating for switching frequency and temperature)* on page 263.

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation		Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation		Advanced parameters	Technical Data	Diagnostics	UL Listing Information
intornation		iniomation	conngulation	Installation	mstanation	Starteu	parameters			operation	I LO	parameters	Data		mormation

5.7.3 Mounting brackets

Table 5-1 Mounting brackets


5.7.4 Installation of the Unidrive SPM mounting brackets

Common

The Unidrive SPM range use the same mounting brackets for surface and through-panel mounting.

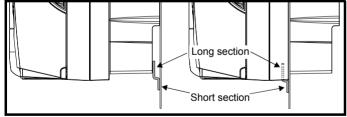
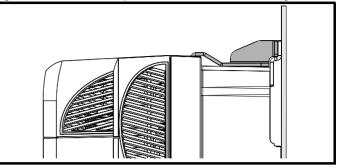

The mounting bracket has a long section and a short section.

Figure 5-22 Unidrive SPM mounting bracket

The mounting bracket must be installed in the correct orientation with the long section inserted into or attached to the drive and the short section is attached to the back plate. Figure 5-23 shows the orientation of the mounting bracket when the drive is surface and through-panel mounted.

Figure 5-23 Orientation of the Unidrive SPM mounting bracket


When through-panel mounted, the mounting brackets on the left hand side of the Unidrive SPMA and SPMD can be secured using the screws already located there. This only applies to the bottom of the Unidrive SPMC/U rectifier.

On the right hand side, the mounting brackets are just inserted into the slots in the chassis of the drive; no mounting screws are present here.

Drive specific brackets Unidrive SPMA

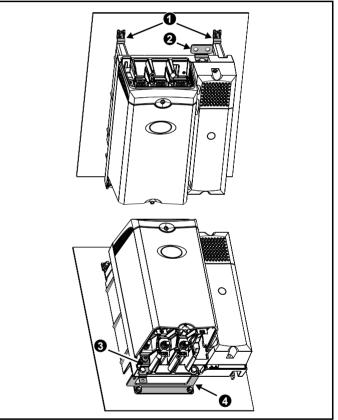
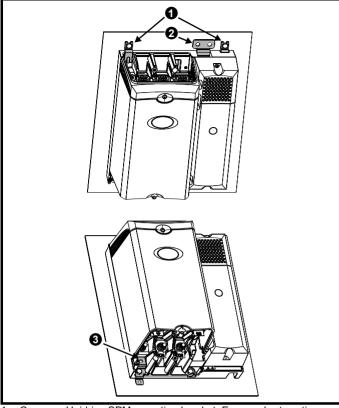

Unidrive SPMA also requires two top mounting brackets when the drive is surface mounted. The two brackets should be installed to the top of the drive as shown in Figure 5-24.

Figure 5-24 Location of top Unidrive SPMA surface mounting brackets

Unidrive SPMC and SPMU


Figure 5-25 Installation of the Unidrive SPMC/U surface mounting brackets

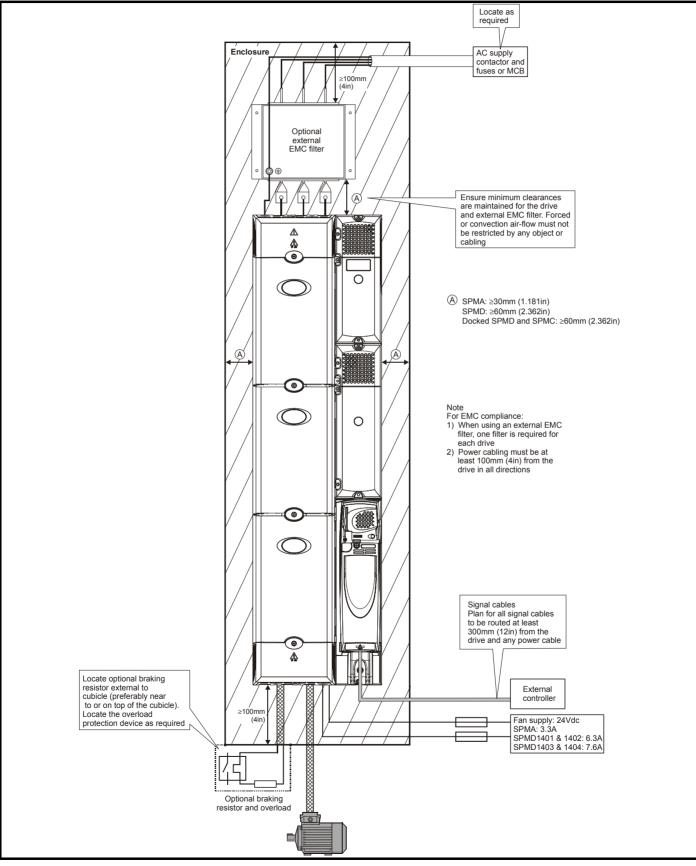
- 1. Common Unidrive SPM mounting bracket. Ensure short section attached to backplate
- Unidrive SPMC/U supply ground bracket. M10x20 screw required to mount bracket, maximum length 40mm (1.575in) used with vibration resistant washer. Torque setting of 15 N m (11.1 lb.ft)
- 3. Unidrive SPMC/U motor ground bracket
- Unidrive SPMC/U surface mounting bracket. M8 screws required to mount bracket, minimum length 20mm (0.787in) used with vibration resistant washer. Torque setting of 9 N m (6.6 lb.ft)

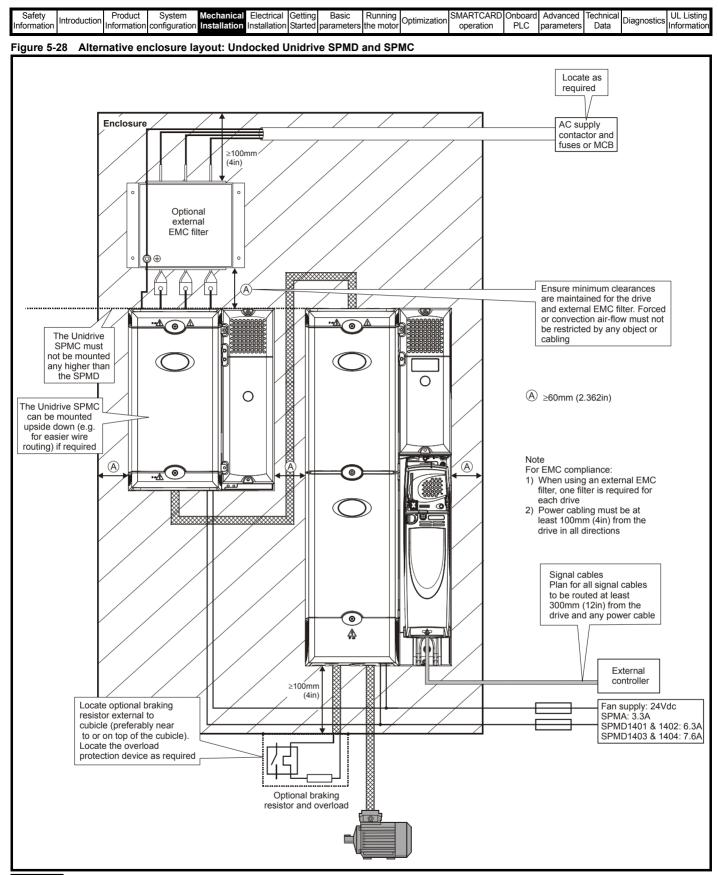
Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Ontinuination	SMARTCARD	Onboard	Advanced	Technical		UL Listing
Informatio		Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

Figure 5-26 Installation of the Unidrive SPMC/U through panel mounting brackets

1. Common Unidrive SPM mounting bracket. Ensure short section attached to backplate

- Unidrive SPMC/U supply ground bracket. M10x20 screw required to mount bracket, maximum length 40mm (1.575in) used with vibration resistant washer. Torque setting of 15 N m (11.1 lb.ft)
- 3. Unidrive SPMC/U motor ground bracket


Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization		Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
mormation		monnation	configuration	motanation	motanation	Otaricu	parameters			operation	1 20	parameters	Data		monnauon


5.8 Enclosure

5.8.1 Enclosure layout

Observe the clearances in Figure 5-3 taking into account any appropriate notes for other devices / auxiliary equipment when planning the installation. A Unidrive SPMA is shown, but the illustration also applies to a docked Unidrive SPMD and SPMC.

Figure 5-27 Enclosure layout

NOTE

The Unidrive SPMC must not be mounted any higher than the SPMD. This is to prevent the heated air expelled from the Unidrive SPMD being recirculated through the SPMC.

Safety	Product	System	Mechanical	Electrical	Getting	Basic	Running	Ontimination	SMARTCARD	Onboard	Advanced	Technical	Discussion	UL Listing
Information	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

5.8.2 Enclosure ambient temperature

Drive derating is required for operation in high ambient temperatures

Totally enclosing or through panel mounting the drive in either a sealed cabinet (no airflow) or in a well ventilated cabinet makes a significant difference on drive cooling.

The chosen method affects the ambient temperature value (T_{rate}) which should be used for any necessary derating to ensure sufficient cooling for the whole of the drive.

The ambient temperature for the four different combinations is defined below:

- 1. Totally enclosed with no air flow (<2 m/s) over the drive $T_{rate} = T_{int} + 5^{\circ}C$
- 2. Totally enclosed with air flow (>2 m/s) over the drive $T_{rate} = T_{int}$
- 3. Through panel mounted with no airflow (<2 m/s) over the drive T_{rate} = the greater of T_{ext} +5°C, or T_{int}
- Through panel mounted with air flow (>2 m/s) over the drive T_{rate} = the greater of T_{ext} or T_{int}

Where:

T_{ext} = Temperature outside the cabinet

 T_{int} = Temperature inside the cabinet

T_{rate} = Temperature used to select current rating from tables in Chapter 14 *Technical Data*.

5.8.3 Altitude derating

Multiply the maximum rated output current by the derate factor (Df) in Figure 5-29 and the ambient correction factor (Cf) in Figure 5-30.

Rated output current = Df x Cf x Oc

Figure 5-29 Altitude derate factor

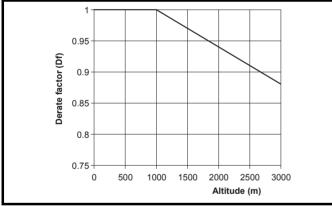
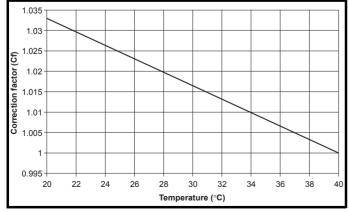



Figure 5-30 Ambient temperature correction factor

Note:

 The ambient temperature correction factor used is for altitude calculation only. If the ambient is less than 40°C the drive cannot be over rated. The maximum permissible output currents should remain the same as those given at 40° C.

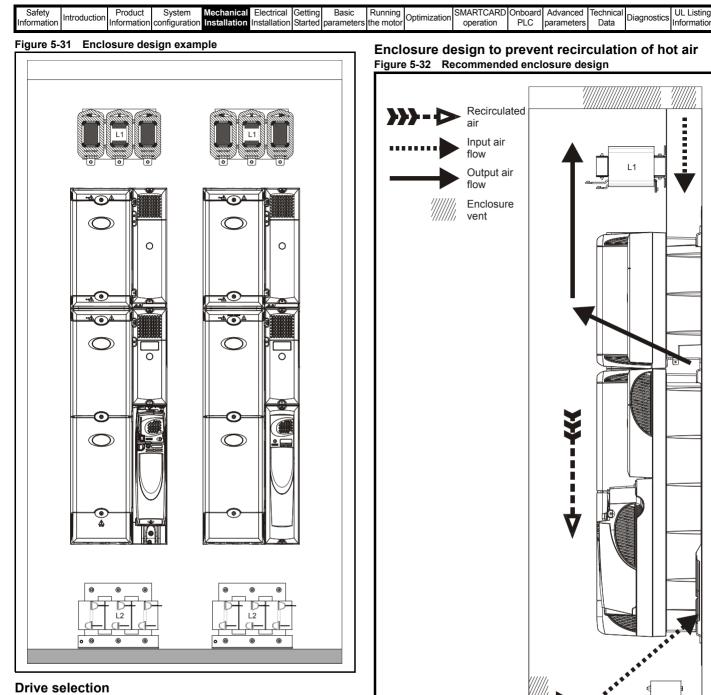
- If the drive is required to operate above 40°C the derates at 50°C should be applied. Refer to section 14.1.1 Power and current ratings (Derating for switching frequency and temperature) on page 263
- The same applies for altitude below 1000m. There should be no over rating at lower altitude

NOTE

For applications over 3000m, contact the supplier of the drive.

5.8.4 Enclosure sizing

This section looks at a method for cooling a medium power density enclosure. By running through a worked example it brings out the issues associated with cooling the drives when they are completely mounted inside an enclosure.


This example only considers one possible method of enclosing the drives and tries to highlight and solve thermal issues created by hot air recirculating inside an enclosure. Other methods of enclosure design are also possible, such as through panel mounting, which removes many of the issues discussed in this chapter. Refer to section 5.7.2 *Throughpanel mounting* on page 44.

The enclosure design example will use the following conditions:

- Enclosure placed in a room with a 30°C ambient and an altitude <1000m
- Continuous output current requirement from the system = 650A Parts used in system model:

1800mm (70.87in) x 800mm (31.5in) x 500mm (19.69in) enclosure

- with input and output ventilation
- 2 x SPMD1404
- 2 x docking SPMC1402
- 2 x input line reactors (L1)
- 2 x output sharing chokes (L2)

Drive selection

Select drives necessary to achieve desired output current based on altitude calculation and other drive derates (e.g. paralleling derates, switching frequency derates, ambient derate etc).

For front view of enclosure, refer to Figure 5-31. Spacing between units and sides of enclosure: >60mm

(oi `

 \odot

L2

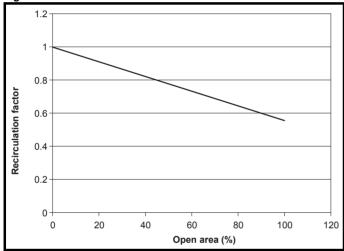
Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started		Running the motor	Optimization	SMARTCARD operation		Advanced parameters		Diagnostics	UL Listing
information		Information	configuration	Installation	Installation	Started	parameters	the motor	•	operation	PLC	parameters	Data	Ū.	information

Calculation of temperature rise in enclosure Inputs

Table 5-2 Example data

Output sharing choke loss under single unit (L2)	250W
Total loss of single drive (Uni SPMC + SPMD)	4290W
Number of drives in enclosure	2
Width of enclosure	0.8m
Depth of enclosure	0.5m
Open area of roof vent (outlet)	0.27m ³
Open area of inlet vent	0.15m ³
External ambient	30°C
Altitude derate factor (Cf x Df)	1

For this example it is assumed the drive is in an altitude below 1000m and the enclosure it is mounted in has input and output ventilation.


Calculate open area % of venting and recirculation factor

Open area of venting $\% = \frac{\text{Open area of roof + open area of inlet x 100}}{1000}$ 2 x cubicle width x cubicle depth

- = (0.27 + 0.15) x 100 / (2 x 0.8 x 0.5)
- = 52.5%

From Figure 5-33 the re-circulation factor = 0.76.

Figure 5-33 Recirculation factor

This is an approximation to the amount of air that is re-circulated within the enclosure due to inlet and outlet venting restrictions. The factor has a safety factor built in to it to ensure a safe result. The factor has been calculated using CFD software, testing the amount of heat flow back into the drive when different vent restrictions are given. The factor can also be applied to an SPMA and separated SPMD.

Calculate loss which affects the drive inlet air temperature Loss affecting drive temperature (Pr) = Lower choke Loss (Pc) + (Total loss of single drive (Dp) x Recirculation factor (Rf))

- $= 250 + (4290 \times 0.76)$
- = 3510 W

NOTE

This is the loss from 1 drive unit only as simulations have shown that with drives mounted inline and in a symmetric system the losses are shared equally.

Calculate temperature rise

Table 5-3 Unidrive SPM air flow rates

Modules	Flow rate (m3/hr)
SPMA (All)	250
SPMD 1201 to 1204, SPMD1401/2, SPMD1601/2	250
SPMD1403/4, SPMD 1603/4	305
SPMC/U	200

Calculating temperature rise in enclosure

dT = 3kPr/V

Where:

V = Airflow in m^3/hr (Unidrive SPMD1404 flow rate = 305)

Pr = Loss affecting drive temp

k = 1 / Altitude de-rate

Therefore ambient temperature rise (dT): 3510.4) / 305

= 34.5°C

Ambient temperature inside enclosure = External ambient + temperature rise = 64.5°C

This shows that with a maximum allowable drive ambient temperature of 40°C, the enclosure will get 24.5°C too hot.

Processing results

Option 1: If the absolute temperature inside the enclosure is still less than 50°C, select a drive with the correct rating at 50°C.

Option 2: Add more venting, if possible, to reduce the recirculation and recalculate.

Option 3: Add enclosure fan.

Option 4: Redesign the enclosure so that the drives can be through panel mounted. This means that most of the heat can escape outside the main enclosure and the input air into the heat sinks will remain at the external ambient and not be affected by recirculation. Refer to section 5.7.2 Through-panel mounting on page 44.

NOTE

Heat loss through the front of the drive still needs to be considered.

Adding enclosure fan

Calculate required flow rate

- Fan needs to remove the effect of re-circulation and the added choke loss
- Loss effecting drive temp (Pr) = 3510.4W
- The above Loss of 3510.4W is for one drive only, so with an enclosure of 2 units the total loss to remove = 7020.8W

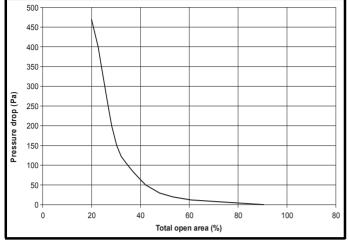
Calculate the temperature rise allowed in the enclosure:

Temperature rise (dT) = (Allowable drive ambient - 5 {safety factor}) - External ambient

= 5°C

Then using:

V = 3kPr/(dT)


Flow rate required to remove loss = (3x1x7020.8) / 5 $= 4212.5 \text{ m}^3/\text{hr}$

Calculate back pressure on fan

Open area of venting $\% = \frac{\text{Open area of roof + open area of inlet x 100}}{2}$ 2 x cubicle width x cubicle depth

	Safety		Product	System	Mechanical	Electrical	Gettina	Basic	Runnina		SMARTCARD	Onboard	Advanced	Technical		UL Listina
	ounory	Introduction	Tiouuot	Cycloni		Licothour	Cotting	Duolo	i turining	Optimization			/ lavanoca	Teorinioui	Diagnostics	OL LIGUING
IIr	formation	introduction	Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	Diagnostics	Information
				g				p					P			

Figure 5-34 Pressure drop

Best practice: Size the enclosure air inlet and exit vents at least as large as the venturi opening of the fan used. This will ensure a negligible back pressure.

With 52.5% open area: Pressure drop = 34

Selecting fan

Considerations when selecting fan:

- · Dimensions and space limitation
- Required flow rate
- Static pressure
- Noise level
- Power supply

Table 5-4 Type of fan

Backward curved Blower (Centrifugal)

- Outward flow perpendicular to inward flow
- Good at high + low back pressures
- Good resistance to dust and dirt due to impeller design
- Do not need cowling
- Relatively small diameters required for high airflow

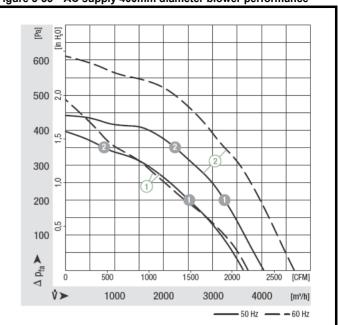
Forward curved blower (Centrifugal)

- Requires cowling
- Good at directing flow

Axial Fan

- Not good at high pressure but good for low pressure applications such as room venting and ducting
- Inward flow and outward flow is in same direction
- Good in straight line duct applications.
- Large diameters required for high air flows

Fan curves


Once the type of fan has been selected the next step is to match the system characteristics of your enclosure to the fan performance curve.

System operating point is:

Static pressure = 34 Pa

Flow rate= 4212.5 m³/hr

Selected fan is a Backward curved centrifugal blower to place in the roof and take advantage of the perpendicular flow and high flow rate properties.

Final summary

- Enclosure fans can be placed on inlet and outlet depending on system limitations.
- 2. Considerations with fan on outlet:
 - Higher Ambient temperature surrounding fan, can affect fan life.
 - Depressurisation of enclosure which may draw in dust through any apertures.
- 3. Considerations with fan on inlet:
 - Proximity of dust filter to fan, can create excess back pressure
 on fan
 - Non-uniform flow across internal components
- 4. Dust filters:

Use the largest filter possible, in order to:

- a. Increase dust capacity
- b. Reduce pressure drop
- 5. Make sure Drive inlets are as close to the enclosure air inlet as possible
- Do not block the inlet and outlets of the drive airflow. Keep to best practice spacing between drives and other parts in enclosure.
- 7. Beware of blocking air inlets or outlets with cable routing.

5.9 Heatsink fan operation

The Unidrive SPMA, SPMD and SPMC/U are ventilated by a heatsink mounted fan and an auxiliary fan to ventilate the drive box. The fan housing forms a baffle plate, channelling the air through the heatsink chamber. Thus, regardless of mounting method (surface mounting or through-panel mounting), the installation of additional baffle plates is not required.

Ensure the minimum clearances around the drive are maintained to allow air to flow freely.

The heatsink fan on Unidrive SPMA, SPMD and SPMC/U is variable speed. The drive controls the speed at which the fan runs based on the temperature of the heatsink and the drive's thermal model system. The Unidrive SPMA and SPMD are also installed with variable speed fan to ventilate the capacitor bank.

All Unidrive SPM models require an external 24Vdc supply to drive the fans. See section 6-12 *Location of the heatsink fan supply connections (SPMA & SPMD)* on page 73 for more information.

To avoid premature failure, regular cleaning on the fan is recommended as outlined in Table 5-8 on page 58. See the following diagrams which demonstrate how to remove the fan from the drive.

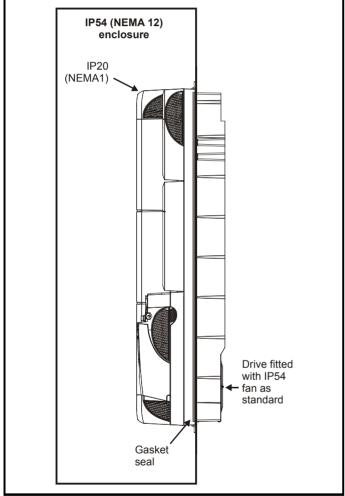
Figure 5-35 AC supply 400mm diameter blower performance

-igure 5-36	Removal of Unidrive SPMA/D fan (part 1)	Figure 5-37 Removal of Unidrive SPMA/D fan (part 2)
	Image: Constraint of the second of the se	 Remove the cable from the fan connector Undo fan cassette screws Silde fan cassette out of heatsink chamber Remove fan screws in order to remove fan from cassette
iauro E 29	Removal of Unidrive SPMC/U fan	
-301 G 2-30	Removal of Unidive SPMC/0 fail	
	V	Table 5-5 Unidrive SPM fan assembly part numbers
OTE	g rectifiers only have one fan included in their assembly:	Table 5-5 Officience Servicial assembly part numbers

SPMU1402 SPMC/U1601

Model	Fan assembly
SPMA, SPMD14X1, SPMD14X2, SPMD16X1, SPMD16X2	9701-0019
SPMD14X3, SPMD14X4, SPMD16X3, SPMD16X4	9701-0020
SPMC1402, SPMC/U2402, SPMC/U2601	9701-0021
SPMU1402, SPMC/U1601	9701-0022

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

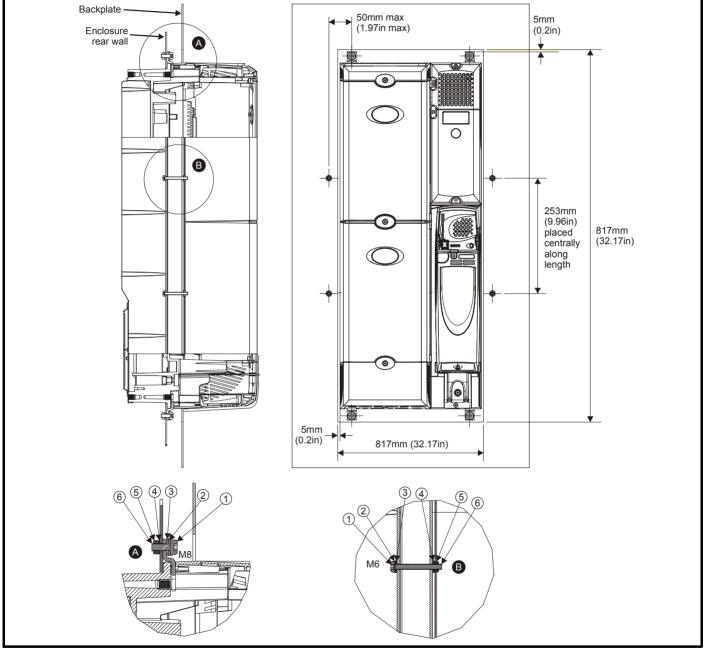

5.10 Enclosing drive for high environmental protection

An explanation of IP Rating is provided in section 14.1.10 *IP Rating* (*Ingress Protection*) on page 267.

The standard drive is rated to IP20 pollution degree 2 (dry, nonconductive contamination only) (NEMA 1). However, it is possible to configure the drive to achieve IP54 rating (NEMA 12) at the rear of the heatsink for through-panel mounting.

This allows the front of the drive, along with various switchgear, to be housed in an IP54 (NEMA 12) enclosure with the heatsink protruding through the panel to the external environment. Thus, the majority of the heat generated by the drive is dissipated outside the enclosure maintaining a reduced temperature inside the enclosure. This also relies on a good seal being made between the heatsink and the rear of the enclosure using the gaskets provided.

Figure 5-39	Example of IP54	(NEMA 12) through-panel layout


The main gasket should be installed as shown in Figure 5-39. Any screws / bolts that are used for mounting should be installed with the nylon washers provided in the kit box to maintain a seal around the screw hole. See Figure 5-40.

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	 Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Cilibouru	Advanced parameters	Technical Data	Diagnostics	UL Listing Information

It may be necessary to improve the rigidity of the through panel mounting surface due to the larger distance between the top and bottom mounting brackets and the need to maintain compression on the gasket.

When the drive is mounted, if the gap between the drive flange (which the gasket rests on) and the rear wall of the enclosure is \geq 6mm at any point around the drive then the following methods can be used to compress the gasket further:

- 1. Use a thicker panel for the mounting wall of the enclosure through which the drive is mounted.
- Use an internal backplate to pull the rear wall of the enclosure up to the drive gasket. See Figure 5-40 for details. (Nylon washers are supplied in the standard drive kit for sealing off any nut and bolt mountings that exit through the rear wall of the panel).
- 3. If an internal backplate is not available a separate clamp can be used to simulate option 2. See Figure 5-41 on page 58. 4 off sealing clamps are supplied in the drive kit box.

Figure 5-40 Option 2 for achieving IP54 (NEMA 12) through-panel mounting

Table 5-6 Description of fixings

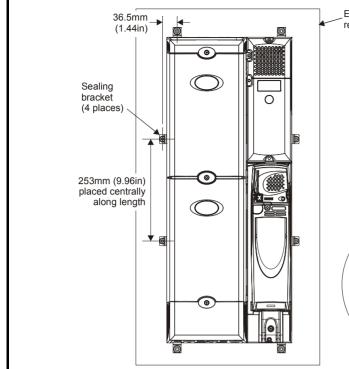

ltem	Description
1	Bolt
2	Flat washer
3	Nylon washer (from kitbox)
4	Flat washer
5	Spring washer
6	Nut

Table 5-7 Quantity of nylon washers included in the kit boxes

Size	Quantity of M8 (A)	Quantity of M6 (B)
All	4	4

Safety	latus du stisu	Product	System	Mechanical	Electrical	Getting	Basic	Running	Ontinuination	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Informati	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

Figure 5-41 Option 3 for achieving IP54 (NEMA 12) through panel mounting

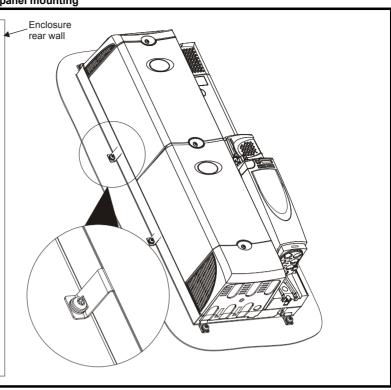
The heatsink fan installed on the Unidrive SPMC/U is IP21 rated as standard. To achieve IP54 rating (NEMA 12) at the rear of the heatsink for through panel mounting, the SPMC/U heatsink fan must be changed for the IP54 version, part number 3251-7824.

The procedures in section 5.9 *Heatsink fan operation* on page 54 should be followed to change the fan.

If the standard fan is used in a dirty/dusty environment, reduced fan lifetime will result. Regular cleaning of the fan and heatsink is recommended in this environment. The heatsink fan installed in Unidrive SPMA and SPMD are IP54 rated as standard.

The guidelines in Table 5-8 should be followed.

Table 5-8 Environment considerations


Environment	Fan	Comments				
Clean	Standard					
Dry, dusty (non- conductive)	Standard	Regular cleaning recommended. Fan lifetime may be reduced.				
Dry, dusty (conductive)	Standard / IP54	Regular cleaning recommended. Fan lifetime may be reduced.				
IP54 compliance	IP54	Regular cleaning recommended.				

NOTE

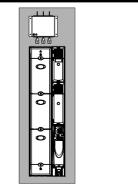
When designing an IP54 (NEMA 12) enclosure (Figure 5-39), consideration should be given to the dissipation from the front of the drive.

Table 5-9 Power losses from the front of the drive when throughpanel mounted

Model	Power loss
SPMA	≤480W
SPMD	≤300W
SPMC	≤50W
SPMU	≤50W

5.11 External EMC filter

In order to provide our customers with a degree of flexibility, external EMC filters have been sourced from two manufacturers: Schaffner & Epcos. Filter details for each drive rating are provided in the tables below. Both the Schaffner and Epcos filters meet the same specifications.


Table 5-10 Single drive EMC filter details

Drive	Scha	ffner	Epo	:05
Drive	CT part no.	Weight	CT part no.	Weight
SPMA14X1 to SPMA14X2	4200-6603	5.25 kg (11.6 lb)	4200-6601	8.6 kg (19.1 lb)
SPMA16X1 to SPMA16X2	4200-6604	5.25 kg (11.6 lb)	4200-6602	8.6 kg (19.1 lb)
SPMD12X1 to SPMD12X4	4200-6315	5.5 kg (12.11 lb)	4200-6313	8.6 kg (19.1 lb)
SPMD14X1 to SPMD14X4	4200-6315	5.5 kg (12.11 lb)	4200-6313	8.6 kg (19.1 lb)
SPMD16X1 to SPMD16X4	4200-6316	5.5 kg (12.11 lb)	4200-6314	8.5 kg (18.7 lb)

The external EMC filters for Unidrive SPMA and SPMD are designed to be mounted above the drive, as shown in Figure 5-42.

Mount the external EMC filter following the guidelines in section 6.13.5 *Compliance with generic emission standards* on page 84.

Figure 5-42 Mounting the external EMC filter

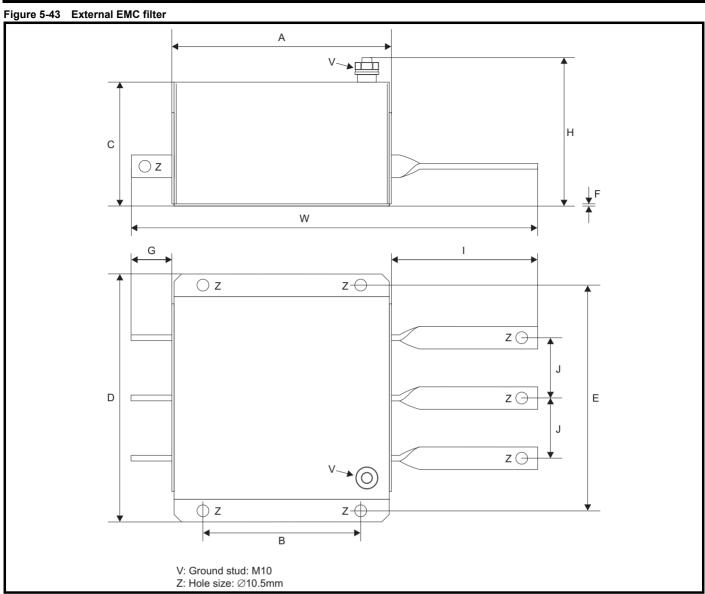
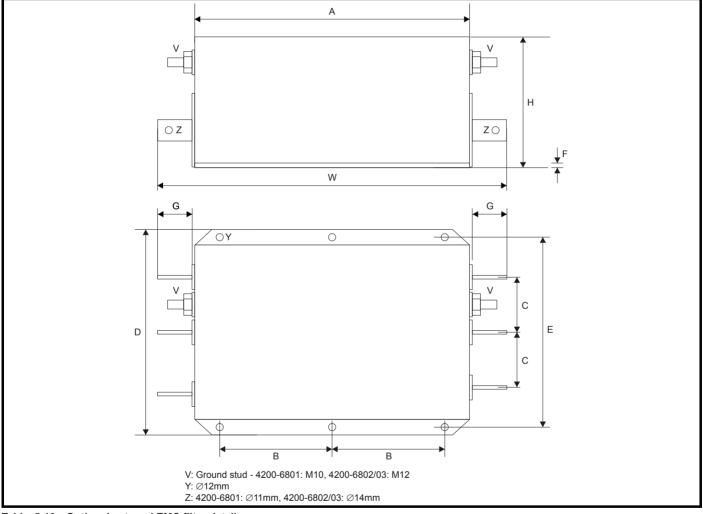


Table 5-11 Optional external EMC filter details

CT part no.	Manufacturer	Α	В	С	D	E	F	G	Н	I	J	W	v	
4200-6603		191 mm	140 mm					38 mm		66 mm (2.600 in)	53.5 mm	295 mm (11.614 in)		
4200-6604	Schaffner	(7.520 in)	(5.512 in)					(1.496 in)	136 mm	128 mm (5.040 in)	(2.106 in)	357 mm (14.055 in)	25Nm (18.4	
4200-6315	Schanner	220 mm (8.661 in)	170 mm	110 mm	230 mm	210 mm	2 mm	43 mm (1.700 in)	(5.354 in)	76 mm (3.000 in)	60 mm	339 mm	(18.4 lb ft)	
4200-6316		226 mm (8.900 in)	226 mm (6.	(6.700 in)	(4.330 in)	(9.055 in)	-	(0.079 in)	40 mm (1.574 in)		73 mm (2.874 in)	(2.362 in)	(13.346 in)	
4200-6601		191 mm	140 mm					42 mm	147 mm	127 mm	53.5 mm	364 mm		
4200-6602	Epcos	(7.520 in)	(5.512 in)					(1.654 in)	(5.787 in)	(5.000 in)	(2.106 in)	(14.330 in)	10Nm (7.4	
4200-6313	Lhcos	220 mm	170 mm					43 mm	149 mm	76 mm	60 mm	339 mm	(7.4 lb ft)	
4200-6314		(8.661 in)	(6.700 in)					(1.700 in)	(5.866 in)	(3.000 in)	(2.362 in)	(13.346 in)	,	


Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

The following EMC filters are available for multiple module drives.

Table 5-12 EMC filters for multiple drive combinations

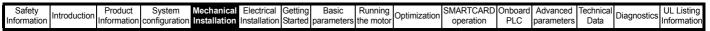
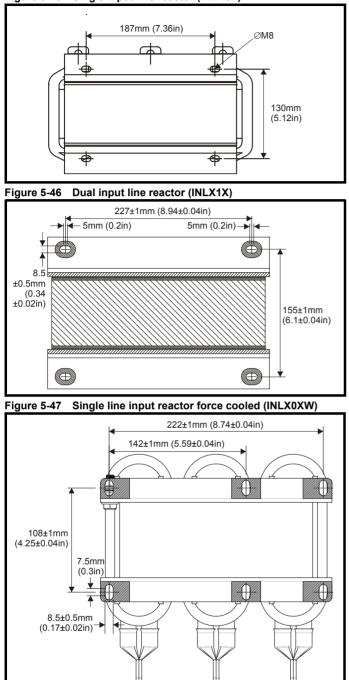
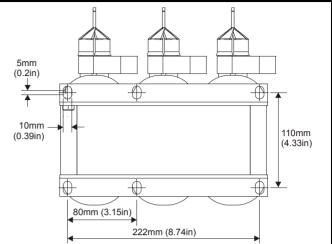

Combination	Ep	cos			
Combination	CT part no.	Weight			
2 x SPMD1401					
2 x SPMD1402	4200-6801	22kg (48.5lb)			
2 x SPMD1403					
2 x SPMD1404					
4 x SPMD1401	4200-6802	29kg (61 7lb)			
3 x SPMD1403	4200-0602	28kg (61.7lb)			
4 x SPMD1402					
4 x SPMD1403	4200-6803	34kg (75lb)			
4 x SPMD1404	4200-0003	34kg (75lb)			

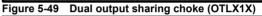
Figure 5-44 Multiple drive EMC filters

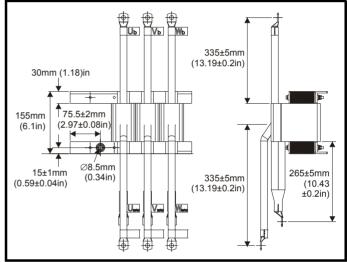

Table 5-13 Optional external EMC filter details

CT part no.	Manufacturer	Α	В	С	D	E	F	G	Н	W	V
4200-6801		350mm	145±0.5mm	60mm (2.36in)	260mm (10.24in)	235±1mm (9.2±0.04 in)	2mm (0.08in)	42±3mm (1.65±0.12in)	116mm (4.57in)	440±2.5mm (17.32±0.1in)	10 N m (7.4 lb ft)
4200-6802	Epcos	(13.78in)	(5.71±0.02in)	80mm	300mm	275±1mm	2.5mm	52±3mm (2.05±0.12in)	166mm	460±2.5mm (18.11±0.1in)	15.5 N m
4200-6803		400mm (15.75in)	170±0.5mm (6.71±0.02in)	(3.15in)	(11.81in)	(10.83±0.04in)	(0.1in)	92±3mm (3.62±0.12in)	(6.54in)	590±3mm (23.23±0.12in)	(11.4 lb ft)

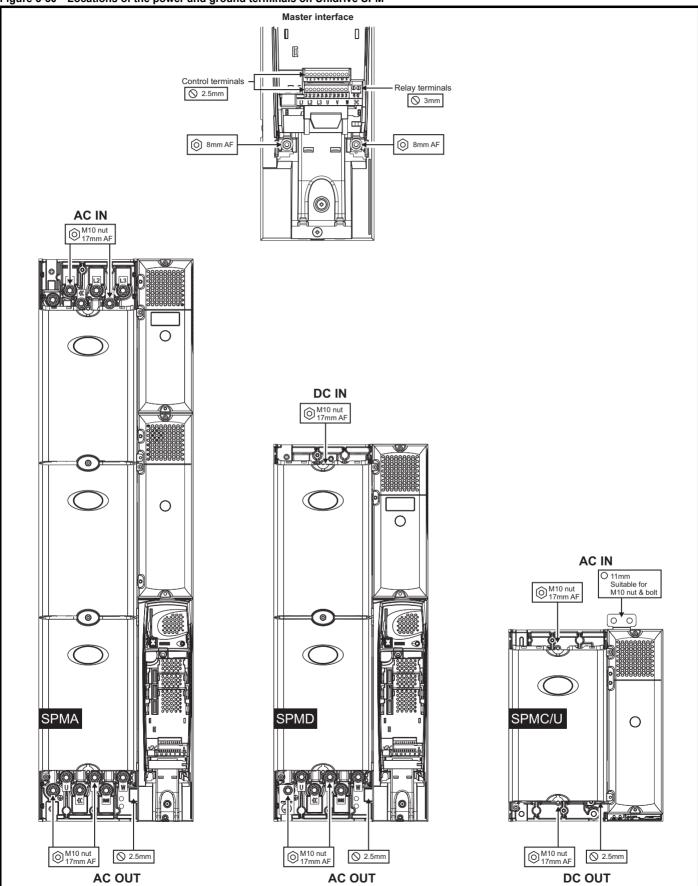
Line reactor mounting dimensions 5.12 5.12.1 Input line reactors


Figure 5-45 Single input line reactor (INLX0X)




For overall dimensions and other details, refer to section 6.2.2 Input line reactor specifications on page 67.

Output sharing chokes 5.12.2 Figure 5-48 Single output sharing choke (OTLX0X)


For overall dimensions and other details, refer to section 6.3 Output sharing choke specification on page 69.

	_															
Safe	tv/		Product	Svstem	Mechanical	Electrical	Gettina	Basic	Runnina		SMARTCARD	Onboard	Advanced	Technical		III Listing
Jaie	ιy	Introduction	TTOULOL	System	Wechanica	Electrical	Getting	Dasic	rturning	Optimization		Oliboalu	Auvanceu		Diagnostics	OL LISUNG
Informa	tion		Information	configuration	Installation	Installation	Ctortod	paramotoro	the motor	Optimization	operation	DIC	noromotoro	Data	Diagnostics	Information
IIIIOIIIIa				configuration	Installation	Installation	Slarleu	parameters	the motor	-	operation	PLC	parameters	Data	-	mormation
													•			

5.13 Electrical terminals

5.13.1 Location of the power and ground terminals

Figure 5-50 Locations of the power and ground terminals on Unidrive SPM

Safet	/	Product	System	Mechanical	Electrical	Gettina	Basic	Runnina		SMARTCARD	Onboard	Advanced	Technical		UL Listina
Informat	. Introduction	Information			Installation	Started		the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

5.13.2 Terminal sizes and torque settings

To avoid a fire hazard and maintain validity of the UL listing, adhere to the specified tightening torques for the power and ground terminals. Refer to the following tables.

Table 5-14 Master/slave control and relay terminal data

Model	Connection type	Torque setting
All	Plug-in terminal block	0.5 N m (0.4 lb ft)

 Table 5-15
 Drive power terminal data

Model	AC terminals	High current DC and braking	Ground terminal
All	-	stud N m	M10 stud or nut and bolt 15 N m
	Torque tolerar	nce	±10%

Table 5-16 Optional external EMC Filter terminal data

CT part	Manufacturer	Power connections	Ground co	nnections
number	Manufacturer	Max torque	Ground size	Max torque
4200-6603				
4200-6604	Schaffner	12 N m		25 N m
4200-6315	Schalliter	(8.8 lb ft)		(18.4 lb ft)
4200-6316				
4200-6601			M10	
4200-6602				10 N m
4200-6313		10 N -		(7.4 lb ft)
4200-6314	Epcos	10 N m (7.4 lb ft)		
4200-6801		(7.41010)		
4200-6802			M12	15.5 N m
4200-6803			IVI I Z	(11.4 lb ft)

5.14 Routine maintenance

The drive should be installed in a cool, clean, well ventilated location. Contact of moisture and dust with the drive should be prevented.

Regular checks of the following should be carried out to ensure drive / installation reliability are maximized:

Environment	
Ambient temperature	Ensure the enclosure temperature remains at or below maximum specified
Dust	Ensure the drive remains dust free – check that the heatsink and drive fan are not gathering dust. The lifetime of the fan is reduced in dusty environments.
Moisture	Ensure the drive enclosure shows no signs of condensation
Enclosure	
Enclosure door filters	Ensure filters are not blocked and that air is free to flow
Electrical	
Screw connections	Ensure all screw terminals remain tight
Crimp terminals	Ensure all crimp terminals remains tight – check for any discoloration which could indicate overheating
Cables	Check all cables for signs of damage

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	UL Listing
Information		Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Information

6 Electrical Installation

Many cable management features have been incorporated into the product and accessories, this chapter shows how to optimise them. Key features include:

- SAFE TORQUE OFF (SECURE DISABLE) function
- Internal EMC filter
- · EMC compliance with shielding / grounding accessories
- Product rating, fusing and cabling information
- Brake resistor details (selection / ratings)

Electric shock risk

The voltages present in the following locations can cause severe electric shock and may be lethal:

- AC supply cables and connections
- DC and brake cables, and connections
- Output cables and connections

• Many internal parts of the drive, and external option units Unless otherwise indicated, control terminals are single insulated and must not be touched.

WARNING

Isolation device

The AC supply must be disconnected from the drive using an approved isolation device before any cover is removed from the drive or before any servicing work is performed.

STOP function

The STOP function does not remove dangerous voltages from the drive, the motor or any external option units.

SAFE TORQUE OFF (SECURE DISABLE) function

The SAFE TORQUE OFF (SECURE DISABLE) function does not remove dangerous voltages from the drive, the motor or any external option units.

Stored charge

The drive contains capacitors that remain charged to a potentially lethal voltage after the AC supply has been disconnected. If the drive has been energized, the AC supply must be isolated at least ten minutes before work may continue.

Normally, the capacitors are discharged by an internal resistor. Under certain, unusual fault conditions, it is possible that the capacitors may fail to discharge, or be prevented from being discharged by a voltage applied to the output terminals. If the drive has failed in a manner that causes the display to go blank immediately, it is possible the capacitors will not be discharged. In this case, consult Control Techniques or their authorized distributor.

Equipment supplied by plug and socket

Special attention must be given if the drive is installed in equipment which is connected to the AC supply by a plug and socket. The AC supply terminals of the drive are connected to the internal capacitors through rectifier diodes which are not intended to give safety isolation. If the plug terminals can be touched when the plug is disconnected from the socket, a means of automatically isolating the plug from the drive must be used (e.g. a latching relay).

Permanent magnet motors

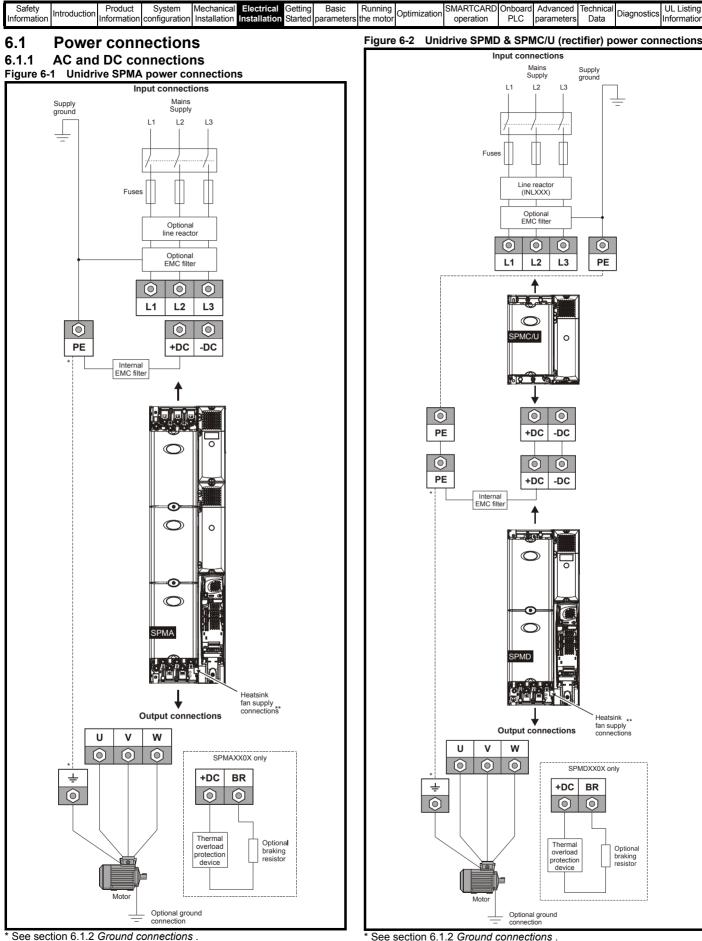
Permanent magnet motors generate electrical power if they are rotated, even when the supply to the drive is disconnected. If that happens then the drive will become energized through its motor terminals. If the motor load is capable of rotating the motor when the

If the motor load is capable of rotating the motor when the supply is disconnected, then the motor must be isolated from the drive before gaining access to any live parts.

WARNING

If a rectifier other than Unidrive SPMC/U is used with Unidrive SPMD, then it must be installed with line to ground varistors which are capable of reducing overvoltage transients from category III to values of category II. (ref. EN61800-5-2). This is to ensure L-E transients do not exceed 4kV because there are no varistors installed in a D module and the insulation system from power to ground is designed to category II.

Use of rectifiers other than Unidrive SPMC/U


Use of rectifiers other than Unidrive SPMC/U Any non Control Techniques rectifier must be installed with AC line fuses that correspond to those specified for the Unidrive SPMC/U. If this is not possible then DC fuses should be specified for the Unidrive SPMD. This is to ensure validity of the safety testing carried out to complete the safety file and for UL certification, especially in the event of a short circuit bus cap in the DC bus.

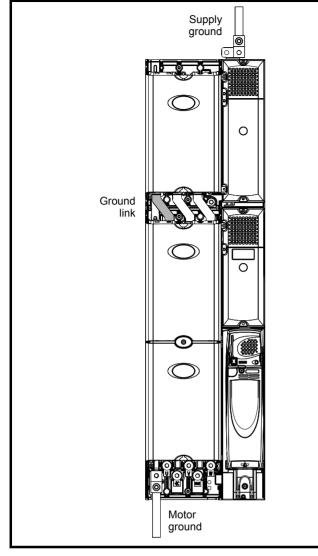
0V control connections on both SPMA and SPMD drives are internally earthed and cannot be disconnected. Ensure that there is adequate equipotential bonding between parts of a system with interconnected control wiring.

NOTE

The power supply to all modules in a multi-module system should be applied at the same time, to ensure the drive powers-up correctly. Otherwise the drive may power-up with a hardware fault (HF) trip code.

** See section 6-12 Location of the heatsink fan supply connections (SPMA & SPMD) on page 73 for more information.

** See section 6-12 Location of the heatsink fan supply connections


(SPMA & SPMD) on page 73 for more information.

Safety Introduction Product System Mechanical Electrical Getting Basic Information Information configuration Installation Installation Started parameters	Running the motor	Optimi	zation	SMARTCARI operation	Onboard PLC	Advanced parameters	Technica Data	Diagnostics	UL Listing Informatior
NOTE	Figure	ə 6-4	Uni	drive SPM	D grour	d conne	ctions		
For the dual rectifier, the power connections are repeated. See Figure 2- 4 on page 9 for terminal identification.				ſ	Supp	y			
NOTE A docking kit is available for electronically connecting the SPMD (inverter) to the SPMC/U (rectifier). See section 5.6.1 <i>Installing the docking kit</i> on page 39 for further details.				i ar	groun	d			
6.1.2 Ground connections On a Unidrive SPMA, SPMD, SPMC/U the supply and motor ground connections are made using an M10 bolt at the top (supply) and bottom (motor) of the drive. See Figure 6-3 on page 66.				<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		PC			
The supply ground and motor ground connections to the drive are connected internally by a copper conductor with a cross-sectional area given below:									
SPMA: 75mm ² SPMD: 120mm ² SPMC/U: 128mm ²									
Figure 6-3 Unidrive SPMA ground connections					\bigcirc				
Supply ground									
							J		
					Votor				
					ground				
	Figure	9 6-5	Uni	drive SPM	C/U gro	und conr	lection	S	
					2	Supply ground			
						© 0 0	-		
					Ú		5		
Motor ground									

Motor ground

Safety Information Product System Mechanical Installation Electrical Installation Basic Running Optimization SMARTCARD Onboard Advanced Technical Diagnostics UL Li	Giffeal Getting Basic Running ISMARTCARDTOnboard Advanced Llechnical III	Optimization	5		Getting					Introduction	
--	--	--------------	---	--	---------	--	--	--	--	--------------	--

Figure 6-6 Unidrive SPMD and SPMC/U (rectifier) ground connections

WARNING

The ground loop impedance must conform to the requirements of local safety regulations.

The drive must be grounded by a connection capable of carrying the prospective fault current until the protective device (fuse, etc.) disconnects the AC supply.

The ground connections must be inspected and tested at appropriate intervals.

6.2 AC supply requirements

Voltage:

SPMX X2XX 200V to 240V ±10% SPMX X4XX 380V to 480V ±10% SPMX X6XX 500V to 690V ±10%

Number of phases: 3

Maximum supply imbalance: 2% negative phase sequence (equivalent to 3% voltage imbalance between phases).

Frequency range: 48 to 62 Hz

The maximum supply symmetrical fault current must be limited to 100kA (also required for UL compliance).

6.2.1 Supply types

Drives rated for supply voltage up to 575V are suitable for use with any supply type, i.e. TN-S, TN-C-S, TT, IT, with grounding at any potential, i.e. neutral, centre or corner ("grounded-delta").

Grounded delta supplies >575V are not permitted.

Drives are suitable for use on supplies of installation category III and lower, according to IEC60664-1. This means they may be connected permanently to the supply at its origin in a building, but for outdoor installation additional over-voltage suppression (transient voltage surge suppression) must be provided to reduce category IV to category III.

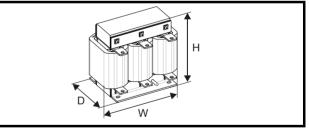
Operation with IT (ungrounded) supplies: Special attention is required when using internal or external EMC filters with ungrounded supplies, because in the event of a ground (earth) fault in the motor circuit the drive may not trip and the filter could be over-stressed. In this case, either the filter must not be used (removed) or additional independent motor ground fault protection must be provided. Refer to Table 6-1. For instructions on removal, refer to Figure 6-19 on page 80.

For instructions on removal, refer to Figure 6-19 on page 80. For details of ground fault protection contact the supplier of the drive.

A ground fault in the supply has no effect in any case. If the motor must continue to run with a ground fault in its own circuit then an input isolating transformer must be provided and if an EMC filter is required it must be located in the primary circuit.

Unusual hazards can occur on ungrounded supplies with more than one source, for example on ships. Contact the supplier of the drive for more information.

Table 6-1	Behaviour of the drive in the event of a ground (earth)
	fault with an IT supply


Drive size	Internal filter only	External filter (with internal)
SPMA SPMD	May not trip – precautions required: • Remove the EMC filter • Use ground leakage relay	May not trip – precautions required: • Do not use EMC filter • Use ground leakage relay

6.2.2 Input line reactor specifications

A separate input line reactor of at least the value shown in Table 6-2 and Table 6-3 must be used with the rectifiers. Failure to provide sufficient reactance could damage or reduce the service life of the rectifier or inverter.

Figure 6-7 Input line reactor/output sharing choke dimensions

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	Diagnostics	Information

Table	6-2	400V input line reactor ratings	
-------	-----	---------------------------------	--

Model	Current A	Inductance µH	Overall width (W) mm	Overall depth (D) mm	Overall height (H) mm	Weight kg	Max ambient temp (°C)	Min airflow (m/s)	Quantity required	Part No.
INL 401	245	63	240	190	225	32	50	1	1	4401-0181
INL 402	339	44	276	200	225	36	50	1	1	4401-0182
INL 401W*	245	63	255	235	200	27	40	3	1	4401-0208
INL 402W*	339	44	255	235	200	27	40	3	1	4401-0209

*May represent a more economic solution where operating temperature and cooling requirements are observed.

Table 6-3 400V dual input line reactor ratings

Model	Current A	Inductance µH	Overall width (W) mm	Overall depth (D) mm	Overall height (H) mm	Weight kg	Max ambient temp (°C)	Min airflow (m/s)	Quantity required	Part No.
INL411	2 x 245	2 x 31.5	320	220	360	55	50	1	1	4401-0206
INL412	2 x 339	2 x 22	320	220	360	55	50	1	1	4401-0207

Table 6-4 690V input line reactor ratings

Model	Current A	Inductance µH	Overall width (W) mm	Overall depth (D) mm	Overall height (H) mm	Weight kg	Max ambient temp (°C)	Min airflow (m/s)	Quantity required	Part No.
INL 601	145	178	240	190	225	33	50	1	1	4401-0183
INL 602	192	133	276	200	225	36	50	1	1	4401-0184

Table 6-5 690V dual input line reactor ratings

Model	Current A	Inductance μH	Overall width (W) mm	Overall depth (D) mm	Overall height (H) mm	Weight kg	Max ambient temp (°C)	Min airflow (m/s)	Quantity required	Part No.
INL 611	2 x 145	2 x 89	320	220	360	40	50	1	1	4401-0190
INL 612	2 x 192	2 x 66.5	320	220	360	55	50	1	1	4401-0191

NOTE

The INLX1X parallel line reactors have been designed to work in conjunction with the Unidrive SPMC/U, allowing one reactor to be used with the dual rectifier model or two separate rectifier units.

6.2.3 Supplies requiring additional line reactance

Additional line reactance reduces the risk of damage to the drive resulting from poor phase balance or severe disturbances on the supply network. It also reduces harmonic current emission. It can be implemented by adding external reactors with SPMA modules, and by adding additional series reactors or increased reactance values with rectifier modules.

Where additional line reactance is to be used, added reactance of approximately 2% is recommended. Higher values may be used if necessary, but may result in a loss of drive output (reduced torque at high speed) because of the voltage drop.

For all drive ratings, 2% additional reactance permits drives to be used with a supply unbalance of up to 3.5% negative phase sequence (equivalent to 5% voltage imbalance between phases).

Severe disturbances may be caused by the following factors, for example:

- Power factor correction equipment connected close to the drive.
- Large DC drives having no or inadequate line reactors connected to the supply.
- Direct-on-line started motor(s) connected to the supply such that when any of these motors are started, the voltage dip exceeds 20%.

Such disturbances may cause excessive peak currents to flow in the input power circuit of the drive. This may cause nuisance tripping, or in extreme cases, failure of the drive.

Drives of low power rating may also be susceptible to disturbance when connected to supplies with a high rated capacity.

When required, each drive must have its own reactor(s). Three individual reactors or a single three-phase reactor should be used.

Reactor current ratings

The current rating of the line reactors should be as follows:

Continuous current rating:

Not less than the continuous input current rating of the drive

Repetitive peak current rating:

Not less than twice the continuous input current rating of the drive

6.2.4 Additional input inductance calculation

To calculate the additional inductance required (at $\mathbf{Y}\%),$ use the following equation:

$$L = \frac{Y}{100} \times \frac{V}{\sqrt{3}} \times \frac{1}{2\pi fI}$$

Where:

- I = drive rated input current (A)
- L = inductance (H)
- f = supply frequency (Hz)
- V = voltage between lines

Safety Information	Introduction	Product Information	System configuration	Installation Inst	ectrical Gettin	3	 Optimization	SMARTCARD operation	01100010	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
iniomatio	1	mormation	conniguration	Installation IIIs		u parametera		operation	I LO	parameters	Data		iniomation

6.3 Output sharing choke specification

In order to achieve the best possible current sharing between paralleled Unidrive SPM modules, sharing chokes must be installed between the motor output connections and the drive's motor connections.

Table 6-6 400V output sharing choke ratings

Model	Current A	Inductance μH	Width (W) mm	Depth (D) mm	Height (H) mm	Weight kg	Max ambient temp °C	Min airflow m/s	Required SPM module	Part No.
OTL401	221	40.1	240	220	210	20	50	1	SPMA/D 14X1	4401-0197
OTL402	267	34	242	220	205	20	50	1	SPMA/D 14X2	4401-0198
OTL403	313	28.5	242	220	205	25	50	1	SPMD 14X3	4401-0199
OTL404	378	23.9	242	220	205	25	50	1	SPMD 14X4	4401-0200

Table 6-7 600V output sharing choke ratings

Model	Current A	Inductance μH	Width (W) mm	Depth (D) mm	Height (H) mm	Weight kg	Max ambient temp °C	Min airflow m/s	Required SPM module	Part No.
OTL601	135	103.9	242	170	203	20	50	1	SPMA/D 16X1	4401-0201
OTL602	156	81.8	242	170	203	20	50	1	SPMA/D 16X2	4401-0202
OTL603	181	70.1	242	200	203	20	50	1	SPMD 16X3	4401-0203
OTL604	207	59.2	242	200	203	20	50	1	SPMD 16X4	4401-0204

6.3.1 Dual output sharing chokes

The OTLX1X parallel output sharing chokes can only be used when two Unidrive SPM drives are paralleled together. For all other combinations the OTLX0X output sharing choke must be used.

Table 6-8 400V dual output sharing choke ratings

Model	Current A	Inductance μH	Width (W) mm	Depth (D) mm	Height (H) mm	Weight kg	Max ambient temp °C	Min airflow m/s	Part No.
OTL411	390	42.8	300	150	160	8	50	1	4401-0188
OTL412	470	36.7	300	150	160	8	50	1	4401-0189
OTL413	551	31.1	300	150	160	8	50	1	4401-0192
OTL414	665	26.6	300	150	160	9	50	1	4401-0186

Table 6-9 600V dual output sharing choke ratings

Model	Current A	Inductance μH	Width (W) mm	Depth (D) mm	Height (H) mm	Weight kg	Max ambient temp °C	Min airflow m/s	Part No.
OTL611	238	110.4	300	150	160	8	50	1	4401-0193
OTL612	274	88.4	300	150	160	8	50	1	4401-0194
OTL613	319	76.7	300	150	160	8	50	1	4401-0195
OTL614	365	65.7	300	150	160	8	50	1	4401-0196

6.3.2 Cooling requirements for higher output frequencies

Single OTL output sharing chokes - OTLX0X

Up to output frequencies of 300Hz, 1m/s airflow provides adequate cooling.

Above 300Hz, the following equation must be used to calculate the required airflow:

 $S = (f^{0.75}/72)$

Where:

S is the airflow in metres per seconds **f** is the drive output frequency in Hz

Example:

Output frequency is 450Hz

$$S = (450^{0.75}/72)$$

= 1.4m/s

Dual OTL output sharing chokes - OTLX1X

The OTLX1X dual output sharing choke core does not see the change in drive output frequency as this choke is a current cancelling choke. Only the drives switching frequency has an effect on the core loss.

Therefore motor frequency is not an issue until higher frequencies cause high copper losses due to skin effect.

Therefore with the dual OTL chokes, only 1m/s airflow is required.

Maximum output frequency for OTL chokes

The maximum allowable output frequency for OTL output sharing chokes, singles or duals, should be limited to 1000Hz.

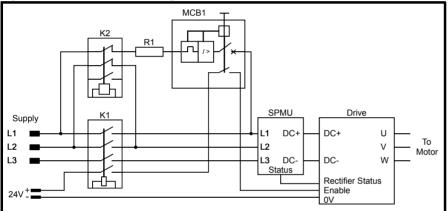
	Ir	Safety nformation	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started		Running the motor	Optimization	SMARTCARD operation		Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	----	----------------------	--------------	------------------------	-------------------------	----------------------------	----------------------------	--------------------	--	-------------------	--------------	---------------------	--	------------------------	-------------------	-------------	---------------------------

6.4 Supplying the drive with DC / DC bus paralleling

The drive may be supplied with DC instead of 3 phase AC.

The connecting of the DC bus between several drives is typically used to:

- 1. Return energy from a drive which is being overhauled by the load to a second motoring drive.
- 2. Allow the use of one braking resistor to dissipate regenerative energy from several drives.


There are limitations to the combinations of drives which can be used in this configuration.

For further information, contact the supplier of the drive for the Application Note *DC bus paralleling*.

6.5 Resistor sizing for Unidrive SPMU softstart

A separate soft-start must be provided for the DC bus of a Unidrive SPMD system when a Unidrive SPMC is not used. The start-up circuit limits the amount of current flowing into the DC bus of the drive when the supply is first switched on. The recommended configuration is shown in Figure 6-8.

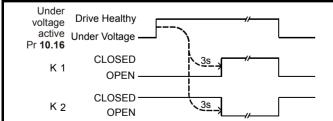
Figure 6-8 Softstart circuit configuration

K1: Main supply contactor to drive.

K2: Soft-start contactor

R1: Soft-start resistor

MCB1: Thermal / magnetic circuit breaker


K1 and K2 should be energized at the same time.

MCB1 is normally closed

Drive is not allowed to start until K1 has closed.

K1 is energized 3s after the drive OK parameter becomes active as shown in Figure 6-9 $\,$

Figure 6-9 Switching sequence for K1 and K2

6.5.1 Procedure

Selection of the resistor and contactor is an iterative process requiring calculations based on the total DC bus capacitance, supply voltage and knowledge of the available parts.

 Calculate the total DC bus capacitance of the system by simply adding the DC bus capacitances of each drive that is to be started by the soft-start circuit. 2. Calculate the energy stored in the systems DC bus capacitance at the maximum supply voltage using:

$$\mathbf{W} = \mathbf{1.45} \times \mathbf{C} \times \mathbf{V}_{||}^{\mathbf{2}}$$

V

- W: Maximum energy stored in the DC bus (Joules)
- **C**: Total DC bus capacitance (Farads)
- **V**_{II}: Nominal line-to-line supply voltage (Volts)

NOTE

20% over-rate has been applied to allow for component tolerances and a further 10% over-rate has been applied to allow for supply variations.

- Calculate the minimum number of resistors required to meet this energy value (round up to the nearest one), (Table 6-12). Then calculate the series parallel arrangement of resistors to produce the total resistor value in the required range (Table 6-12 and Table 6-13).
- 4. Calculate the peak supply current and select the MCB. Ensure that the peak current is less than that shown in Table 6-10. If the current is too high, then choose a series / parallel arrangement of resistors that will give a higher resistance and therefore a lower peak current.

$$I_{pk} = \frac{1.56 \times V_{II}}{R}$$

Where:

R: Total resistance of the soft-start resistor network. (Ohms) **I**_{pk}: Peak supply current (Amps)

The MCB must have a current rating no less than 13 x less than this peak current to avoid nuisance trips. See Figure 6-15. MCBs available from Control Techniques can be found in Table 6-13.

Safe	ety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	Onboard	Advanced		Diagnostics	UL Listing
Inform	ation		Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

5. Calculate the start-up time.

$\mathbf{t_{charge}} = \mathbf{5} \times \mathbf{R} \times \mathbf{C}$

Where:

t_{charge} : Approximate time to charge the DC bus.

R: Total resistance of the soft-start resistor network. (Ohms)

Start-up time should not be less than 0.5s and generally should not be more than 4s although this upper limit can be chosen by the user. 1s charge time is recommended.

6. Calculate the supply current at 0.1s, 0.2s, 0.4s, 0.7s and 1s.

$$\mathbf{I}(\mathbf{t}) = \mathbf{I}_{\mathbf{pk}} \times \mathbf{e}^{\left(\frac{-\mathbf{t}}{\mathbf{R} \times \mathbf{C}}\right)}$$

Where:

I(t): Peak current at time = t seconds.

Note that these calculation times are based on a 1s charge time. If the charge time not 1s, then the time steps can be calculated as follows.

Time interval						
t1 = 0.1 x t _{charge}						
t2 = 0.2 x t _{charge}						
t3 = 0.4 x t _{charge}						
t4 = 0.7 x t _{charge}						
t5 = t _{charge}						

7. Compare the supply currents at time t1 to t5 with the circuit breaker worst-case trip characteristic. Make sure that the current is less than the trip curve for all the time intervals calculated.

8. Check that the MCB prevents the resistor from overheating. An example will best illustrate the process.

Example:

SPMD1204 on a 230Vac +10% line power supply.

Step 1

C = 13200µF

Step 2

W = $1.45 \times 13200 \times 10^{-6} \times 230^{2}$

W = 1013J

Step 3

Select resistor CT part number 1270-2483

Number of resistors required = 1013 / 1700 = 0.6

One resistor is sufficient at 48Ω , but if a shorter start-up time is required, then two resistors can be used in parallel giving 24Ω .

Step 4

Peak supply current is:

$$I_{pk} = \frac{1.56 \times 230}{24} = 14.95 Apk$$

A 1.2A MCB is required.

Step 5

Calculate the start-up time:

$$t_{charge} = 5 \times 24 \times 13200 \times 10^{-6} = 1.58s$$

A start-up time of 1.58s is acceptable.

Step 6

Calculate the supply current throughout the start-up time.

Time s	Supply Current Apk
0.1	10.9
0.2	8.0
0.4	4.2
0.7	1.6
1	0.6

Step 7

Comparing the data from step 6 with the tripping characteristic of the selected MCB, Figure 6-11, shows that the supply current is less than the MCB trip curves for each time interval.

Step 8

To check that the MCB prevents the resistor from overheating assume a system fault which results in a continuous power of 10 x the nominal power being dissipated by the resistor.

Resistor selected earlier was 2 x 1270-2483 which is 24 Ω 296W

10 x nominal power = 2960W

$$I = \sqrt{\frac{P}{R}}$$
 the current needed to give 10 x power is

$$I_{P10} = \sqrt{\frac{2960}{24}} = 11.1A$$

But the MCB current rating from step 4 was 1.2A

11.1A is 9 x the rated current

From Figure 6-11 the MCB will trip in approximately 3s

From the resistor manufacturer's data shown in Figure 6-10, 10 x rated power can be withstood for 5s $\,$

The MCB will protect the resistor. Design complete.

6.5.2 Design data

Capacitance

DC bus capacitance values and peak allowable supply current for Unidrive SPM drives are as follows.

Table 6-10	DC bus capacitance and peak supply current values
------------	---

Model	Total DC bus capacitance μF	Maximum allowable peak supply current A		
SPMA14X1	4400	- 75		
SPMA14X2	5500	15		
SPMA16X1	2200	52		
SPMA16X2	2200	52		
SPMD12X1	8800			
SPMD12X2	11000	75		
SPMD12X3	13200	15		
SPMD12X4	13200			
SPMD14X1	4400	52		
SPMD14X2	5500			
SPMD14X3	6600	70		
SPMD14X4	0000			
SPMD16X1	2200			
SPMD16X2	2200	- 91		
SPMD16X3	2933	31		
SPMD16X4	2935			

Softstart resistor

The following resistors can be configured in series and parallel arrangements to meet the requirements.

	Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Oberted	paramotoro	Running the motor	Optimization		Onboard	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	-----------------------	--------------	------------------------	-------------------------	----------------------------	----------------------------	---------	------------	-------------------	--------------	--	---------	------------------------	-------------------	-------------	---------------------------

Table 6-11 Available resistors

Resistor value Ω	Power rating W	Energy rating J	CT part number	P x R product V ²
150	53	170	1270-3157	7950
48	148	1,700	1270-2483	7104

If it is difficult to find a suitable resistor then a resistor with a higher P x R product may have to be used.

The P x R product of the resistor should be larger than:

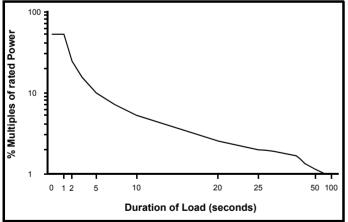

$$\mathbf{P} \times \mathbf{R} = \frac{\mathbf{V_{II}}^2}{10.9}$$

Table 6-12 Allowable Softstart resistor range

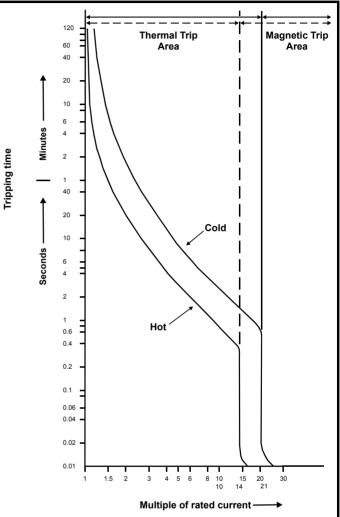
CT part number	Min. Resistance Ω	Max. Resistance Ω
SPMA14X1 SPMD14X1	30	300
SPMD12X1 SPMA14X2 SPMD14X2	24	240
SPMA16X1 SPMA16X2 SPMD16X1 SPMD16X2	105	1051
SPMD12X2 SPMD14X3 SPMD14X4	20	200
SPMD16X3 SPMD16X4	79	789
SPMD12X3 SPMD12X4	17	168

For multiple modules, divide the resistance by the number of modules. For example the minimum resistance for 3 x SPMD1404 is 6.7Ω .

Figure 6-10 Example of resistor overload characteristic

Circuit Breaker

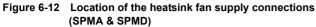
Protection for the softstart circuit must be provided. The recommended protection is to use a miniature circuit breaker (MCB) having a thermal magnetic trip. The thermal part of the tripping mechanism protects against a high impedance short circuit and the magnetic part of the trip protects the resistor against a direct short circuit.

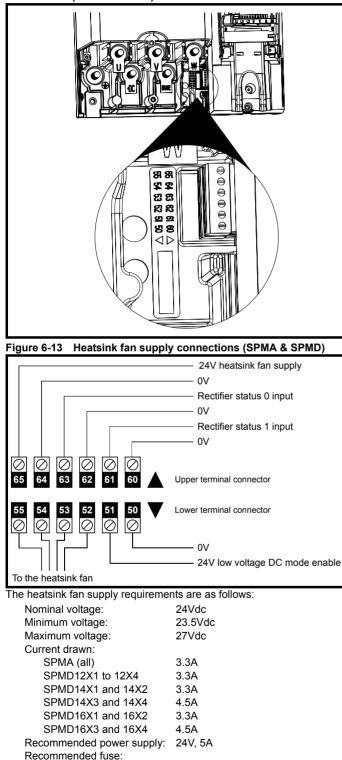

Many different MCBs are possible, e.g.:

- GB2CB range from Telemecanique
- S 281-K range from ABB

Table 6-13 MCBs available from Control Techniques

CT part number	Rated current	Rated voltage	No of poles
4133-0117	0.3	480	1
4133-0217	1	480	1
4133-0277	2	480	1


Figure 6-11 Example of tripping characteristic



Safety	Introduction	Product	System	Mechanical		Getting			Optimization	SMARTCARD	Onboard PLC	Advanced	Technical	Diagnostics	UL Listing
Information		Information	configuration	Installation	Installation	Started	parameters	the motor	•	operation	PLC	parameters	Data	0	Information

6.6 Heatsink fan supply

The heatsink fan on Unidrive SPMA and SPMD requires an external 24Vdc supply. The connections for the heatsink fan supply must be made to the upper terminal connector near to the W phase output on the drive. Figure 6-12 shows the position of the heatsink fan supply connections.

4A fast blow ($l^{2}t < 20A^{2}s$) 4A fast blow ($l^{2}t < 20A^{2}s$) 4A fast blow ($l^{2}t < 20A^{2}s$) 6.3A fast blow ($l^{2}t < 100A^{2}s$) SPMD16X1 and 16X2 SPMD16X3 and 16X4 4A fast blow (I²t <20A²s) 6.3A fast blow (I²t <100A²s)

NOTE

The recommended wire gauge for the fan supply and low voltage mode enable is 1mm^2 wire (16AWG).

For further information on the operation of the heatsink fan, refer to section 5.9 *Heatsink fan operation* on page 54.

6.7 Control 24Vdc supply

The 24Vdc input on the Unidrive SPMA and SPMD has three main functions.

- It can be used to supplement the drive's own internal 24V when multiple SM-Universal Encoder Plus, or SM-I/O Plus modules are being used and the current drawn by these modules is greater than the drive can supply. (If too much current is drawn from the drive, the drive will initiate a 'PS.24V' trip)
- It can be used as a back-up power supply to keep the control circuits of the drive powered up when the line power supply is removed. This allows any fieldbus modules, application modules, encoders or serial communications to continue to operate.
- It can be used to commission the drive when line power voltages are not available, as the display operates correctly. However, the drive will be in the UV trip state unless either line power or low voltage DC operation is enabled, therefore diagnostics may not be possible. (Power down save parameters are not saved when using the 24V back-up power supply input.)

The working voltage range of the 24V power supply is as follows:

30.0 V
19.2 V
24.0 V
21.6 V
60 W
3 A, 50 Vdc

Minimum and maximum voltage values include ripple and noise. Ripple and noise values must not exceed 5%.

6.8 Low voltage DC power supply

The Unidrive SPMA and SPMD can be operated from low voltage DC supplies, nominally 24Vdc (control) and 48Vdc (power). The low voltage DC power operating mode is designed either, to allow for motor operation in an emergency back-up situation following failure of the AC supply, for example in elevators; or to limit the speed of a servo motor during commissioning/start-up of equipment, for example a robot cell.

The working voltage range of the low voltage DC power supply is as follows:

Unidrive SPMD (200V drives)	
Minimum continuous operating voltage:	36V
Nominal continuous operating voltage:	48 to 72V
Maximum braking IGBT turn on voltage:	95.4V
Maximum over voltage trip threshold:	104.4V
Unidrive SPMA and SPMD (400V and 690	V drives)
Unidrive SPMA and SPMD (400V and 690 Minimum continuous operating voltage:	V drives) 36∨
•	,
Minimum continuous operating voltage:	36V
Minimum continuous operating voltage: Nominal continuous operating voltage:	36V 48 to 96V

NOTE

The nominal low voltage supply level is set by the user in Pr **6.46**. The default setting is 48V for all drive sizes. The over voltage trip threshold and braking IGBT turn on voltage are scaled from this value as follows:

Brake IGBT turn on = 1.325 x Pr 6.46 (V)

Over voltage trip = 1.45 x Pr 6.46 (V)

For application data, refer to the Unidrive SP Low Voltage DC Installation Guide.

SPMA (all)

SPMD12X1 to 12X4

SPMD14X1 and 14X2

SPMD14X3 and 14X4

Safety Information Information Configuration Installation Installation Installation Installation Started parameters the motor Optimization Optimization Optimization Optimization Installation Installatin Installation Installation Installati
--

6.9 Ratings

The input current is affected by the supply voltage and impedance.

Typical input current

The values of typical input current are given to aid calculations for power flow and power loss.

The values of typical input current are stated for a balanced supply.

Maximum continuous input current

The values of maximum continuous input current are given to aid the selection of cables and fuses. These values are stated for the worst case condition with the unusual combination of stiff supply with bad balance. The value stated for the maximum continuous input current would only be seen in one of the input phases. The current in the other two phases would be significantly lower.

The values of maximum input current are stated for a supply with a 2% negative phase-sequence imbalance and rated at the supply fault current given in Table 6-14.

Table 6-14 Supply fault current used to calculate maximum input

currents	
Model	Symmetrical fault level (kA)
SPMA	
SPMD	100
SPMC/U	

Fuse protection must be provided at the power input.

Table 6-15 Unidrive SPMA input current, fuse and cable size ratings

	Typical	Maximum		option 1 <u>OR</u> Ferraz HSJ	Fuse o HRC <u>AND</u> Se	. Тур		Typical cable size				
Model	input input		IEC class gR	North America: Ferraz HSJ	HRC IEC class gG UL class J	Semi- conductor IEC class aR	AC input		Motor output		Cable installation	
	Α	Α	Α	Α	Α	Α	mm ²	AWG	mm ²	AWG	method	
SPMA14X1	224	241	315	300	250	315	2 x 70	2 x 2/0	2 x 70	2 x 2/0	B2	
SPMA14X2	247	266	315	300	315	350	2 x 120	2 x 4/0	2 x 120	2 x 4/0	B2	
SPMA16X1	128	138	200	200	200	200	2 x 50	2 x 1	2 x 50	2 x 1	B2	
SPMA16X2	144	156	200	200	200	200	2 x 50	2 x 1	2 x 50	2 x 1	B2	

Table 6-16 Unidrive SPMD input current, fuse and cable size ratings

	Typical DC	Maximum DC	Maximum DC	DC fuse		Ту	pical cable	e size	
Model	input current	input current	input voltage for cable rating	IEC class aR	DC i	nput	Motor	Cable installation	
	Α	Α	v	Α	mm ²	AWG	mm ²	AWG	method
SPMD12X1	202	343	400	400	2 x 70	2 x 2/0	2 x 70	2 x 2/0	B2
SPMD12X2	261	400	400	560	2 x 95	2 x 4/0	2 x 120	2 x 4/0	B2
SPMD12X3	338	457	400	560	2 x 120	2 x 4/0	2 x 120	2 x 4/0	B2
SPMD12X4	372	552	400	560	2 x 120	2 x 4/0	2 x 120	2 x 4/0	B1 or C
SPMD14X1	222	343	800	400	2 x 70	2 x 2/0	2 x 70	2 x 2/0	B2
SPMD14X2	268	400	800	560	2 x 95	2 x 4/0	2 x 120	2 x 4/0	B2
SPMD14X3	314	457	800	560	2 x 120	2 x 4/0	2 x 120	2 x 4/0	B2
SPMD14X4	379	552	800	560	2 x 120	2 x 4/0	2 x 120	2 x 4/0	B1 or C
SPMD16X1	135	191	1150	250	2 x 95	2 x 4/0	2 x 50	2 x 1	B2
SPMD16X2	157	240	1150	315	2 x 120	2 x 4/0	2 x 50	2 x 1	B2
SPMD16X3	184	275	1150	350	2 x 120	2 x 4/0	2 x 50	2 x 1	B2
SPMD16X4	209	323	1150	400	2 x 120	2 x 4/0	2 x 50	2 x 1	B2

NOTE

Fuse ratings are for a DC supply or paralleled DC bus arrangements. When supplied by a single SPMC or SPMU of the correct rating, the AC input fuses provide protection for the drive and no DC fuse is required.

Table 6-17 Unidrive SPMC/U 400V input current, fuse and cable size rating

		Maximum	Typical		uctor fuse in h HRC fuse	Typical cable size				
Model		input current current		HRC IEC Class gG UL class J	Semi- conductor IEC class aR	AC input		DC output cable		Cable installation
		Α	Α	Α	Α	mm ²	AWG	mm ²	AWG	method
0.	SPMC/U1402	344	379	450	400	2 x 120	2 x 4/0	2 x 120	2 x 4/0	B1 or C
SPMC/U2402		2 x 312	2 x 345	450	400	2 x 120	2 x 4/0	2 x 120	2 x 4/0	B1 or C

Safety	Introduction	Product	System	Mechanical	Electrical	Getting			Optimization	SMARTCARD	Onboard		Technical		UL Listing
Information	1	Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	- 5	Information

Table 6-18 Unidrive SPMC/U 690V input current, fuse and cable size ratings

		Maximum Typic			uctor fuse in h HRC fuse	Typical cable size						
Model		input current current		HRC IEC Semi- Class gG UL conductor class J IEC class aR		AC input		DC outp	Cable installation			
		Α	Α	Α	Α	mm ²	AWG	mm ²	AWG	method		
0	SPMC/U1601	195	209	250	250	2 x 70	2 x 2/0	2 x 120	2 x 4/0	B2		
SPMC/U2602		2 x 173	2 x 185	250	250	2 x 70	2 x 2/0	2 x 120	2 x 4/0	B2		

NOTE

The cable sizes noted in Table 6-15, Table 6-16, Table 6-17 and Table 6-18 are typical cable sizes based on UL508C and IEC60364-5-52:2001. Maximum cable sizes are 2×240 mm² or 2×400 kcmil per pole. The

Maximum cable sizes are 2 x 240mm² or 2 x 400kcmil per pole. The user will have to decide what size of cable to use in any given application based on the local wiring regulations. Use of high temperature cables that are thinner than those stated in the typical cable chart maybe possible, contact the supplier of the drive for advice.

Installation method (ref:IEC60364-5-52:2001)

- B1 Separate cables in conduit
- B2 Multicore cable in conduit
- C Multicore cable in free air

NOTE

Cable sizes are from IEC60364-5-52:2001 table A.52.C with correction factor for 40° C ambient of 0.87 (from table A52.14) for cable installation method B2 (multicore cable in conduit).

Cable size may be reduced if a different installation method is used, or if the ambient temperature is lower.

NOTE

Owing to the high level of current on the input of SPMD1404 and the output of SPMC1402 and SPMU1402, the cable installation method must be B1 or C rather than B2 if the ambient is 40°C. Installation method B1 is separate cables in conduit and installation method C is multicore cable in free air.

The recommended cable sizes above are only a guide. The mounting and grouping of cables affects their current-carrying capacity, in some cases smaller cables may be acceptable but in other cases a larger cable is required to avoid excessive temperature or voltage drop. Refer to local wiring regulations for the correct size of cables.

NOTE

The recommended output cable sizes assume that the motor maximum current matches that of the drive. Where a motor of reduced rating is used the cable rating may be chosen to match that of the motor. To ensure that the motor and cable are protected against over-load, the drive must be programmed with the correct motor rated current.

NOTE

UL listing is dependent on the use of the correct type of UL-listed fuse. See Chapter 16 UL Listing Information on page 294 for sizing information

The AC supply to the drive must be installed with suitable protection against overload and short-circuits. Table 6-15, Table 6-16, Table 6-17 and Table 6-18 show recommended fuse ratings. Failure to observe this requirement will cause risk of fire.

A fuse or other protection must be included in all live connections to the AC supply.

Fuse types

The fuse voltage rating must be suitable for the drive supply voltage.

IEC Fuse types

- IEC class gG Full range breaking capability in general application. Slow acting.
- IEC class gR Dual rated: semiconductor protection (ultra-fast acting) and cable protection.
- IEC class aR Semiconductor Protection, fast acting. Provides no protection from slow, small overloads, so cable must be protected by using a gG fuse or circuit breaker.
- HRC- High Rupturing Capacity Denotes the ability of the fuse link to interrupt extremely high fault currents.

North American Fuse Types

- UL class J Full range breaking capability in general application. Slow acting. Up to 600V only.
- Ferraz HSJ -High speed class J fuses. Dual rated: semiconductor protection (ultra-fast acting) and cable protection. Up to 600V only and only from Ferraz.

Ground connections

The drive must be connected to the system ground of the AC supply. The ground wiring must conform to local regulations and codes of practice.

6.9.1 Main AC supply contactor

The recommended AC supply contactor type is AC1.

6.10 Output circuit and motor protection

The output circuit has fast-acting electronic short-circuit protection which limits the fault current to typically no more than five times the rated output current, and interrupts the current in approximately 20µs. No additional short-circuit protection devices are required.

The drive provides overload protection for the motor and its cable. For this to be effective, Pr **0.46** *Motor rated current* must be set to suit the motor.

Pr **0.46** *Motor rated current* must be set correctly to avoid a risk of fire in the event of motor overload.

There is also provision for the use of a motor thermistor to prevent overheating of the motor, e.g. due to loss of cooling.

6.10.1 Cable types and lengths

Since capacitance in the motor cable causes loading on the output of the drive, ensure the cable length does not exceed the values given in Table 6-19 and Table 6-20.

Use $105^{\circ}C$ (221°F) (UL 60/75°C temp rise) PVC-insulated cable with copper conductors having a suitable voltage rating, for the following power connections:

- AC supply to external EMC filter (when used)
- AC supply (or external EMC filter) to drive
- Drive to motor
- · Drive to braking resistor

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started		Running the motor	Optimization	SMARTCARD operation		Advanced parameters	Technical Data	Diagnostics	UL Listing Information
			j				P				. = .	P			

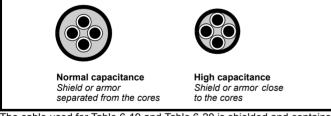
Table 6-19 Maximum motor cable lengths (Unidrive SPMA)

Model	Maximum permissible motor cable length for each of the following frequencies							
	3kHz	4kHz	6kHz					
SPMA14X1								
SPMA14X2	250m (820ft)	185m (607ft)	125m (410ft)					
SPMA16X1	23011 (02011)	100111 (00711)	12311 (41010)					
SPMA16X2								

Table 6-20 Maximum motor cable lengths (Unidrive SPMD)

Model		nissible motor c he following fre	0
	3kHz	4kHz	6kHz
SPMD12X1			
SPMD12X2			
SPMD12X3			
SPMD12X4			
SPMD14X1			
SPMD14X2	250m (820ft)	185m (607ft)	125m (410ft)
SPMD14X3	23011 (82011)	18511 (80711)	12511 (41011)
SPMD14X4			
SPMD16X1			
SPMD16X2			
SPMD16X3			
SPMD16X4			

Cable lengths in excess of the specified values may be used only when special techniques are adopted; refer to the supplier of the drive.


 The default switching frequency is 3kHz for open-loop and closedloop vector and 6kHz for servo.

High-capacitance cables

The maximum cable length is reduced from that shown in Table 6-19 and Table 6-20 if high capacitance motor cables are used.

Most cables have an insulating jacket between the cores and the armor or shield; these cables have a low capacitance and are recommended. Cables that do not have an insulating jacket tend to have high capacitance; if a cable of this type is used, the maximum cable length is half that quoted in the tables. (Figure 6-14 shows how to identify the two types.)

Figure 6-14 Cable construction influencing the capacitance

The cable used for Table 6-19 and Table 6-20 is shielded and contains four cores. Typical capacitance for this type of cable is 130pF/m (i.e. from one core to all others and the shield connected together).

6.10.2 Motor winding voltage

The PWM output voltage can adversely affect the inter-turn insulation in the motor. This is because of the high rate of change of voltage, in conjunction with the impedance of the motor cable and the distributed nature of the motor winding.

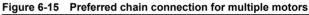
For normal operation with AC supplies up to 500Vac and a standard motor with a good quality insulation system, there is no need for any special precautions. In case of doubt the motor supplier should be consulted.

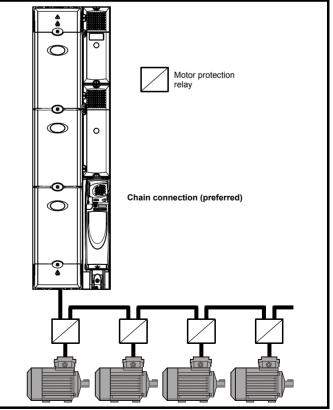
Special precautions are recommended under the following conditions, but only if the motor cable length exceeds 10m:

- AC supply voltage exceeds 500V
- DC supply voltage exceeds 670V
- Operation of 400V drive with continuous or very frequent sustained braking
- Multiple motors connected to a single drive

For multiple motors, the precautions given in section 6.10.3 *Multiple motors* should be followed.

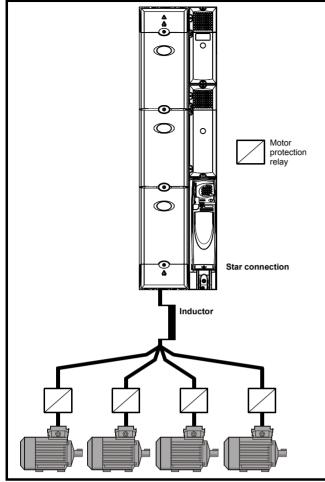
For the other cases listed, it is recommended that an inverter-rated motor be used. This has a reinforced insulation system intended by the manufacturer for repetitive fast-rising pulsed voltage operation.


Users of 575V NEMA rated motors should note that the specification for inverter-rated motors given in NEMA MG1 section 31 is sufficient for motoring operation but not where the motor spends significant periods braking. In that case an insulation peak voltage rating of 2.2kV is recommended.


If it is not practical to use an inverter-rated motor, an output choke (inductor) should be used. The recommended type is a simple iron-cored component with a reactance of about 2%. The exact value is not critical. This operates in conjunction with the capacitance of the motor cable to increase the rise-time of the motor terminal voltage and prevent excessive electrical stress.

6.10.3 Multiple motors Open-loop only

If the drive is to control more than one motor, one of the fixed V/F modes should be selected (Pr 5.14 = Fd or SrE). Make the motor connections as shown in Figure 6-15 and Figure 6-16. The maximum cable lengths in Table 6-19 and Table 6-20 apply to the sum of the total cable lengths from the drive to each motor.


It is recommended that each motor is connected through a protection relay since the drive cannot protect each motor individually. For λ connection, a sinusoidal filter or an output inductor must be connected as shown in Figure 6-16, even when the cable lengths are less than the maximum permissible. For details of inductor sizes refer to the supplier of the drive.

Safety	Introduction	Product	System	Mechanical		Getting		Running	Optimization	SMARTCARD	Onboard	naramotoro	Technical	Diagnostics	UL Listing
Information		Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	- 5	Information

Figure 6-16 Alternative connection for multiple motors

6.10.4 \checkmark / Δ motor operation

The voltage rating for λ and Δ connections of the motor should always be checked before attempting to run the motor.

The default setting of the motor rated voltage parameter is the same as the drive rated voltage, i.e.

400V drive 400V rated voltage

A typical 3 phase motor would be connected in A for 400V operation or

 Δ for 200V operation, however, variations on this are common e.g.

 \star 690V Λ 400V

Incorrect connection of the windings will cause severe under or over fluxing of the motor, leading to a very poor output torque or motor saturation and overheating respectively.

6.10.5 **Output contactor**

If the cable between the drive and the motor is to be interrupted by a contactor or circuit breaker, ensure that the drive is disabled before the contactor or circuit breaker is opened or closed. Severe arcing may occur if this circuit is interrupted WARNING with the motor running at high current and low speed.

A contactor is sometimes required to be installed between the drive and motor for safety purposes.

The recommended motor contactor is the AC3 type.

Switching of an output contactor should only occur when the output of the drive is disabled.

Opening or closing of the contactor with the drive enabled will lead to:

- 1. OI.AC trips (which cannot be reset for 10 seconds)
- 2. High levels of radio frequency noise emission
- 3. Increased contactor wear and tear

The Drive Enable terminal (T31) when opened provides a SAFE TORQUE OFF (SECURE DISABLE) function. This can in many cases replace output contactors.

For further information see section 6.19 SAFE TORQUE OFF (SECURE DISABLE) on page 99.

6.11 Braking

Braking occurs when the drive is decelerating the motor, or is preventing the motor from gaining speed due to mechanical influences. During braking, energy is returned to the drive from the motor.

When the motor is being braked by the drive, the maximum regenerated power that the drive can absorb is equal to the power dissipation (losses) of the drive.

When the regenerated power is likely to exceed these losses, the DC bus voltage of the drive increases. Under default conditions, the drive brakes the motor under PI control, which extends the deceleration time as necessary in order to prevent the DC bus voltage from rising above a user defined set-point.

If the drive is expected to rapidly decelerate a load, or to hold back an overhauling load, a braking resistor must be installed.

Table 6-21 shows the DC voltage level at which the drive turns on the braking transistor.

Table 6-21 Braking transistor turn on voltage

Drive voltage rating	DC bus voltage level
200V	390V
400V	780V
690V	1120V

NOTE

When a braking resistor is used, Pr 0.15 should be set to FASt ramp mode.

High temperatures

Braking resistors can reach high temperatures. Locate braking resistors so that damage cannot result. Use cable having insulation capable of withstanding high temperatures.

6.11.1 External braking resistor

Overload protection When an external braking resistor is used, it is essential that an overload protection device is incorporated in the braking resistor circuit; this is described in Figure 6-17 on page 78.

When a braking resistor is to be mounted outside the enclosure, ensure that it is mounted in a ventilated metal housing that will perform the following functions:

- Prevent inadvertent contact with the resistor
- Allow adequate ventilation for the resistor

When compliance with EMC emission standards is required, external connection requires the cable to be armored or shielded, since it is not fully contained in a metal enclosure. See section 6.13.5 Compliance with generic emission standards on page 84 for further details.

Internal connection does not require the cable to be armored or shielded

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

Minimum resistances and power ratings

Table 6-22 Minimum resistance values and peak power rating for the braking resistor at 40°C (104°F)

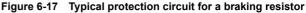
Model	Minimum resistance* Ω	Instantaneous power rating** kW	Average power for 60s kW
SPMA1401	5	122	122
SPMA1402	5	122	122
SPMA1601	10	125	113
SPMA1602	10	125	125
SPMD1201	2.5	61	61
SPMD1202	2.5	61	61
SPMD1203	1.9	80	80
SPMD1204	1.9	80	80
SPMD1401	5	122	122
SPMD1402	5	122	122
SPMD1403	3.8	160	160
SPMD1404	3.8	160	160
SPMD1601	10	125	113
SPMD1602	10	125	125
SPMD1603	6.2	202	165
SPMD1604	6.2	202	198

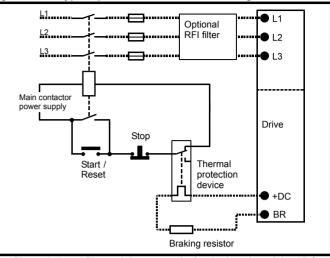
* Resistor tolerance: ±10%

** Continuous rating if drive is part of a common DC bus system. In parallel systems without the DC bus connected, the resistors must be matched to within ±5%.

For high-inertia loads or under continuous braking, the *continuous power* dissipated in the braking resistor may be as high as the power rating of the drive. The total *energy* dissipated in the braking resistor is dependent on the amount of energy to be extracted from the load.

The instantaneous power rating refers to the short-term maximum power dissipated during the *on* intervals of the pulse width modulated braking control cycle. The braking resistor must be able to withstand this dissipation for short intervals (milliseconds). Higher resistance values require proportionately lower instantaneous power ratings.


In most applications, braking occurs only occasionally. This allows the continuous power rating of the braking resistor to be much lower than the power rating of the drive. It is essential, though, that the instantaneous power rating and energy rating of the braking resistor are sufficient for the most extreme braking duty that is likely to be encountered.


Optimization of the braking resistor requires a careful consideration of the braking duty.

Select a value of resistance for the braking resistor that is not less than the specified minimum resistance. Larger resistance values may give a cost saving, as well as a safety benefit in the event of a fault in the braking system. Braking capability will then be reduced, which could cause the drive to trip during braking if the value chosen is too large.

Thermal protection circuit for the braking resistor

The thermal protection circuit must disconnect the AC supply from the drive if the resistor becomes overloaded due to a fault. Figure 6-17 shows a typical circuit arrangement.

See Figure 6-1 and Figure 6-2 on page 65 for the location of the +DC and braking resistor connections.

6.11.2 Braking resistor software overload protection

The Unidrive SPM software contains an overload protection function for a braking resistor. In order to enable and set-up this function, it is necessary to enter two values into the drive:

- Resistor short-time overload time (Pr 10.30)
- Resistor minimum time between repeated short-time overloads (Pr 10.31)

This data should be obtained from the manufacturer of the braking resistors.

Pr **10.39** gives an indication of braking resistor temperature based on a simple thermal model. Zero indicates the resistor is close to ambient and 100% is the maximum temperature the resistor can withstand. An OVLd alarm is given if this parameter is above 75% and the braking IGBT is active. An It.br trip will occur if Pr **10.39** reaches 100%, when Pr **10.37** is set to 0 (default value) or 1.

If Pr **10.37** is equal to 2 or 3 an It.br trip will not occur when Pr **10.39** reaches 100%, but instead the braking IGBT will be disabled until Pr **10.39** falls below 95%. This option is intended for applications with parallel connected DC buses where there are several braking resistors, each of which cannot withstand full DC bus voltage continuously. With this type of application it is unlikely the braking energy will be shared equally between the resistors because of voltage measurement tolerances within the individual drives. Therefore with Pr **10.37** set to 2 or 3, then as soon as a resistor has reached its maximum temperature the drive will disable the braking IGBT, and another resistor on another drive will take up the braking energy. Once Pr **10.39** has fallen below 95% the drive will allow the braking IGBT to operate again.

See the *Unidrive SP Advanced User Guide* for more information on Pr **10.30**, Pr **10.31**, Pr **10.37** and Pr **10.39**.

This software overload protection should be used in addition to an external overload protection device.

Braking Resistor Connections

This section details the rules that govern the connection of braking resistors to a parallel application. The braking resistor should be connected across the brake and +DC terminals.

- 1. The brake terminals must not be connected together. Each module must have its own resistor if required.
- 2. The resistor connected to each module must not have a value less than the recommended minimum value for that module size.

S Infr		Introduction	Product Information	System configuration	Mechanical	Electrical	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	recinical	Diagnostics	UL Listing
IIIIC	ormation		mormation	configuration	Installation	Installation	Starteu	parameters	the motor		operation	PLC	parameters	Data	-	iniomation

- 3. The total power rating must not be less than the maximum expected regenerative power.
- 4. If the DC buses are separate and the modules are all the same rating, the brake resistors must match to better than 5% at all power flows. (If the temperature coefficient and/or temperature rise of the resistor is significant then the cooling must also match to ensure the resistors are at similar temperatures and hence similar resistance values.)
- 5. If the DC buses are common the brake resistors do not need to match. However to use the drive's brake resistor protection algorithm it must be set up to protect the most vulnerable resistor.

6.12 Ground leakage

The ground leakage current depends upon whether the internal EMC filter is installed. The drive is supplied with the filter installed. Instructions for removing the internal filter are given in Figure 6-19 on page 80.

With internal filter installed:

56mA AC at 400V 50Hz (proportional to supply voltage and frequency)

30µA DC (10MΩ)

With internal filter removed:

<1mA

Note that in both cases there is an internal voltage surge protection device connected to ground. Under normal circumstances this carries negligible current.

When the internal filter is installed the leakage current is high. In this case a permanent fixed ground connection must be provided, or other suitable measures taken to prevent a safety hazard occurring if the connection is lost.

6.12.1 Use of residual current device (RCD)

- There are three common types of ELCB / RCD:
- 1. AC detects AC fault currents
- 2. A detects AC and pulsating DC fault currents (provided the DC current reaches zero at least once every half cycle)
- 3. B detects AC, pulsating DC and smooth DC fault currents
 - Type AC should never be used with drives.
 - Type A can only be used with single phase drives
 - Type B must be used with three phase drives

Only type B ELCB / RCD are suitable for use with 3 phase inverter drives.

If an external EMC filter is used, a delay of at least 50ms should be incorporated to ensure spurious trips are not seen. The leakage current is likely to exceed the trip level if all of the phases are not energized simultaneously.

6.13 EMC (Electromagnetic compatibility)

The requirements for EMC are divided into three levels in the following three sections:

Section 6.13.3, General requirements for all applications, to ensure reliable operation of the drive and minimise the risk of disturbing nearby equipment. The immunity standards specified in section 11 will be met, but no specific emission standards. Note also the special requirements given in Surge immunity of control circuits - long cables and connections outside a building on page 86 for increased surge immunity of control circuits where control wiring is extended.

Section 6.13.4, Requirements for meeting the EMC standard for power drive systems, IEC61800-3 (EN61800-3).

Section 6.13.5, Requirements for meeting the generic emission standards for the industrial environment. IEC61000-6-4. EN61000-6-4. EN50081-2.

The recommendations of section 6.13.3 will usually be sufficient to avoid causing disturbance to adjacent equipment of industrial quality. If particularly sensitive equipment is to be used nearby, or in a nonindustrial environment, then the recommendations of section 6.13.4 or section 6.13.5 should be followed to give reduced radio-frequency emission.

In order to ensure the installation meets the various emission standards described in:

- The EMC data sheet available from the supplier of the drive
- The Declaration of Conformity at the front of this manual
- Chapter 14 Technical Data on page 263

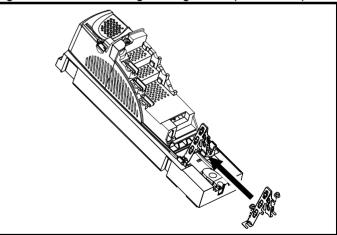
...the correct external EMC filter must be used and all of the guidelines in section 6.13.3 General requirements for EMC and section 6.13.5 Compliance with generic emission standards must be followed.

High ground leakage current

When an EMC filter is used, a permanent fixed ground connection must be provided which does not pass through a connector or flexible power cord. This includes the internal WARNING EMC filter.

NOTE

The installer of the drive is responsible for ensuring compliance with the EMC regulations that apply where the drive is to be used.


6.13.1 Grounding hardware

The master/slave interface is supplied with a grounding clamp and a grounding bracket to facilitate EMC compliance. They provide a convenient method for direct grounding of cable shields without the use of "piq-tails". Cable shields can be bared and clamped to the grounding bracket using metal clips or clamps¹ (not supplied) or cable ties. Note that the shield must in all cases be continued through the clamp to the intended terminal on the drive, in accordance with the connection details for the specific signal.

¹ A suitable clamp is the Phoenix DIN rail mounted SK14 cable clamp (for cables with a maximum outer diameter of 14mm).

See Figure 6-18 for details on installing the grounding bracket.

Figure 6-18 Installation of grounding bracket (master/slave)

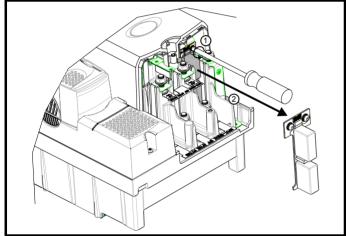
Loosen the ground connection nuts and slide the grounding bracket in the direction shown. Once in place, re-tighten the ground connection nuts

A faston tab is located on the grounding bracket for the purpose of connecting the drive 0V to ground should the user require to do so.

1	ifety mation	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation			Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
mion	nation		mornation	oornigaration	motaliation	motanation	otartea	parametero			operation	1 20	parametero	Dulu		mormation

6.13.2 Internal EMC filter

It is recommended that the internal EMC filter be kept in place unless there is a specific reason for removing it.


When the drive is used with ungrounded (IT) supplies the internal EMC filter must be removed unless additional motor ground fault protection is installed. For instructions on removal, refer to Figure 6-19 *Removal of internal EMC filter* on page 80.

For details of ground fault protection contact the supplier of the drive.

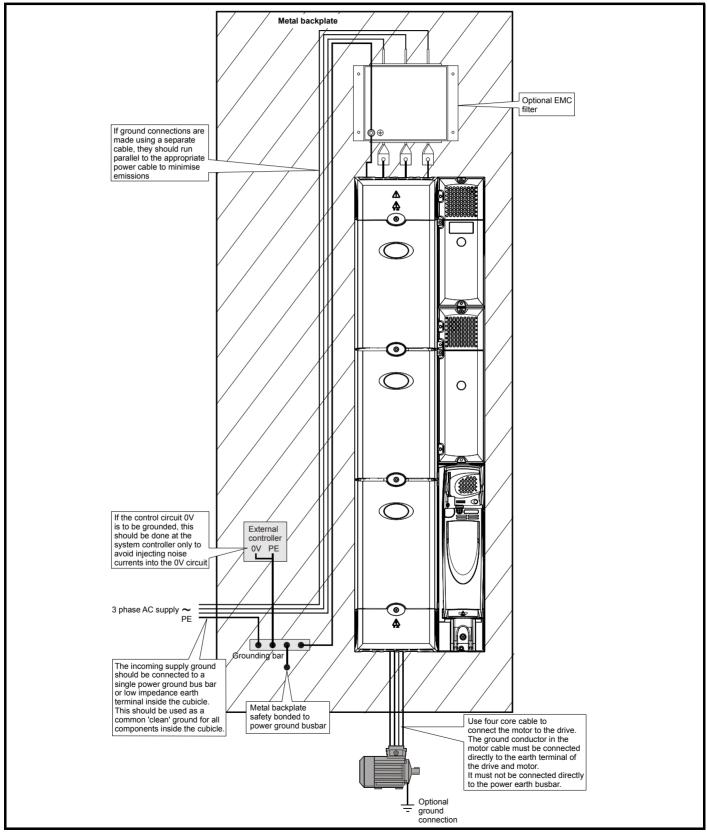
If the drive is used as part of a regen system, then the internal EMC filter must be removed.

The internal EMC filter reduces radio-frequency emission into the line power supply. Where the motor cable is short, it permits the requirements of EN61800-3 to be met for the second environment - see section 6.13.4 *Compliance with EN 61800-3 (standard for Power Drive Systems)* on page 83 and section 14.1.26 *Electromagnetic compatibility (EMC)* on page 272. For longer motor cables the filter continues to provide a useful reduction in emission level, and when used with any length of shielded motor cable up to the limit for the drive, it is unlikely that nearby industrial equipment will be disturbed. It is recommended that the filter be used in all applications unless the ground leakage current of 56mA is unacceptable or the above conditions are true. See Figure 6-19 for details of removing and installing the internal EMC filter.

Figure 6-19 Removal of internal EMC filter

Loosen screws (1). Remove EMC filter in the direction shown (2).

	Introduction	Product	System	Mechanical		Getting	Basic		Optimization	SMARTCARD	Onboard	Auvanceu	Technical	Diagnostics	UL Listing
Information	interocución.	Information	configuration	Installation	Installation	Started	parameters	the motor	optimization	operation	PLC	parameters	Data	Diagnootice	Information

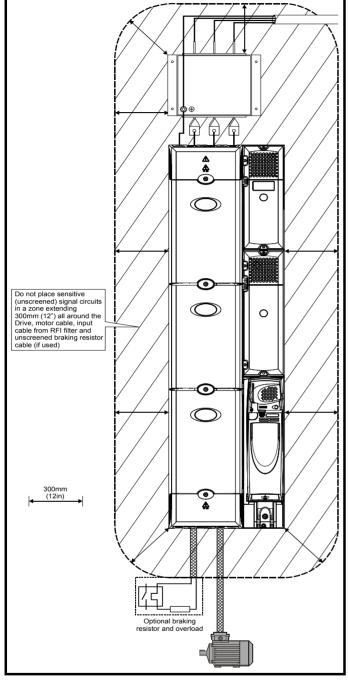

6.13.3 General requirements for EMC

Ground (earth) connections

The grounding arrangements should be in accordance with Figure 6-20, which shows a single drive on a back-plate with or without an additional enclosure.

Figure 6-20 shows how to manage EMC when using an unshielded motor cable. However a shielded cable is preferable, in which case it should be installed as shown in section 6.13.5 *Compliance with generic emission standards* on page 84.

Figure 6-20 General EMC enclosure layout showing ground connections



Safety Information	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	ISMARICARD		Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	-------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	------------	--	---------------------	-------------------	-------------	---------------------------

Cable layout

Figure 6-21 indicates the clearances which should be observed around the drive and related 'noisy' power cables by all sensitive control signals / equipment.

Figure 6-21 Drive cable clearances

NOTE

Any signal cables which are carried inside the motor cable (i.e. motor thermistor, motor brake) will pick up large pulse currents via the cable capacitance. The shield of these signal cables must be connected to ground close to the motor cable, to avoid this noise current spreading through the control system.

Feedback device cable shielding

Shielding considerations are important for PWM drive installations due to the high voltages and currents present in the output (motor) circuit with a very wide frequency spectrum, typically from 0 to 20 MHz.

The following guidance is divided into two parts:

- 1. Ensuring correct transfer of data without disturbance from electrical noise originating either within the drive or from outside.
- Additional measures to prevent unwanted emission of radio frequency noise. These are optional and only required where the installation is subject to specific requirements for radio frequency emission control.

To ensure correct transfer of data, observe the following: Resolver connections:

- Use a cable with an overall shield and twisted pairs for the resolver signals
- Connect the cable shield to the drive 0V connection by the shortest possible link ("pigtail")
- It is generally preferable not to connect the cable shield to the resolver. However in cases where there is an exceptional level of common-mode noise voltage present on the resolver body, it may be helpful to connect the shield there. If this is done then it becomes essential to ensure the absolute minimum length of "pigtails" at both shield connections, and possibly to clamp the cable shield directly to the resolver body and to the drive grounding bracket.
- The cable should preferably not be interrupted. If interruptions are unavoidable, ensure the absolute minimum length of "pigtail" in the shield connections at each interruption.

Encoder connections:

- Use a cable with the correct impedance
- Use a cable with individually shielded twisted pairs
- Connect the cable shields to 0V at both the drive and the encoder, using the shortest possible links ("pigtails")
- The cable should preferably not be interrupted. If interruptions are unavoidable, ensure the absolute minimum length of "pigtail" in the shield connections at each interruption. Preferably, use a connection method which provides substantial metallic clamps for the cable shield terminations.

The above applies where the encoder body is isolated from the motor and where the encoder circuit is isolated from the encoder body. Where there is no isolation between the encoder circuits and the motor body, and in case of doubt, the following additional requirement must be observed. This gives the best possible noise immunity.

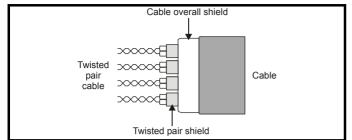
 The shields must be directly clamped to the encoder body (no pigtail) and to the drive grounding bracket. This may be achieved by clamping of the individual shields or by providing an additional overall shield which is clamped.

NOTE

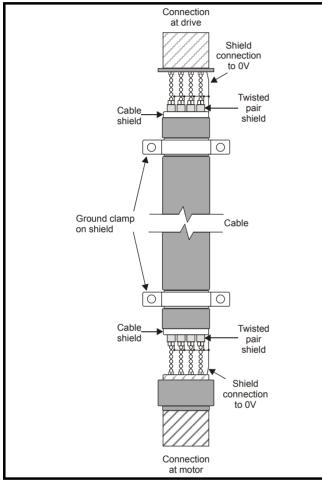
The recommendations of the encoder manufacturer must also be adhered to for the encoder connections.

NOTE

In order to guarantee maximum noise immunity for any application double shielded cable as shown should be used.


In some cases single shielding of each pair of differential signals cables, or a single overall shield with individual shield on the thermistor connections is sufficient. In these cases all the shields should be connected to ground and 0V at both ends.

If the 0V is required to be left floating a cable with individual shields and an overall shield must be used.


Figure 6-22 and Figure 6-23 illustrate the preferred construction of cable and the method of clamping. The outer sheath of the cable should be stripped back enough to allow the clamp to be installed. The shield must not be broken or opened at this point. The clamps should be installed close to the drive or feedback device, with the ground connections made to a ground plate or similar metallic ground surface.

Safety	Introduction	Product	configuration	Mechanical	Electrical	Getting		Running	Optimization	operation	Onboard		Technical	Diagnostics	UL Listing
Information		Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters			Information

Figure 6-22 Feedback cable, twisted pair

Figure 6-23 Feedback cable connections

To ensure suppression of radio frequency emission, observe the following:

- · Use a cable with an overall shield
- Clamp the overall shield to grounded metallic surfaces at both the encoder and the drive, as illustrated in Figure 6-23

6.13.4 Compliance with EN 61800-3 (standard for Power Drive Systems)

Meeting the requirements of this standard depends on the environment that the drive is intended to operate in, as follows:

Operation in the first environment

Observe the guidelines given in section 6.13.5 *Compliance with generic emission standards* on page 84. An external EMC filter will always be required.

This is a product of the restricted distribution class according to IEC 61800-3

In a residential environment this product may cause radio interference in which case the user may be required to take adequate measures.

Operation in the second environment

In all cases a shielded motor cable must be used, and an EMC filter is required for all Unidrive SPs with a rated input current of less than 100A.

The drive contains an in-built filter for basic emission control. In some cases feeding the motor cables (U, V and W) once through a ferrite ring can maintain compliance for longer cable lengths. The requirements of operating in the second environment are met, depending on the motor cable length for 3kHz switching frequency as stated in Table 6-23.

The table summarizes the performance of in-built filters when used with SPMA drives and single pairs of SPMD drives and SPMC/U rectifiers, assembled in the standard recommended configuration.

Table 6-23 Second environment emission compliance

Drive size	Filter	Voltage	Motor cable length 0 - 100 (m)
SPMA	In-built	Any	Unrestricted
SPMD	In-built	Any	Unrestricted

Key:

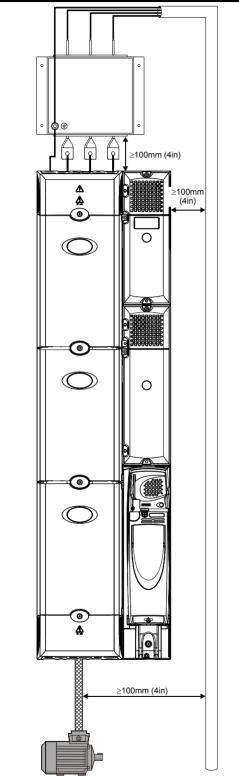
Unrestricted: EN 61800-3 second environment, unrestricted distribution

For longer motor cables, an external filter is required. Where a filter is required, follow the guidelines in section 6.13.5 *Compliance with generic emission standards*.

Where a filter is not required, follow the guidelines given in section 6.13.3 *General requirements for EMC* on page 81.

The second environment typically includes an industrial lowvoltage power supply network which does not supply buildings used for residential purposes. Operating the drive in this environment without an external EMC filter may cause interference to nearby electronic equipment whose sensitivity has not been appreciated. The user must take remedial measures if this situation arises. If the consequences of unexpected disturbances are severe, it is recommended that the guidelines in section 6.13.5 *Compliance with generic emission standards* be adhered to.

Refer to section 14.1.26 *Electromagnetic compatibility (EMC)* on page 272 for further information on compliance with EMC standards and definitions of environments.


Detailed instructions and EMC information are given in the *Unidrive SP EMC Data Sheet* which is available from the supplier of the drive.

Safety formation	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
			-												

6.13.5 Compliance with generic emission standards

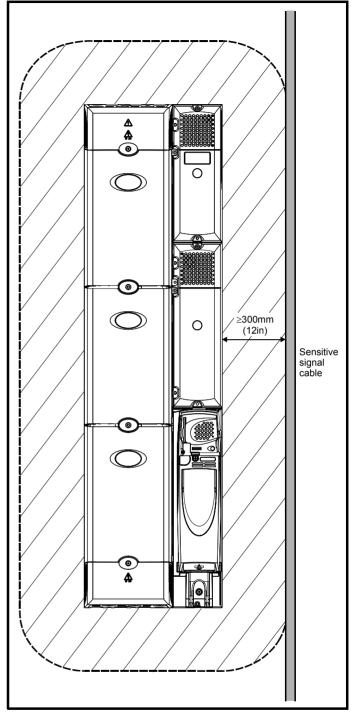
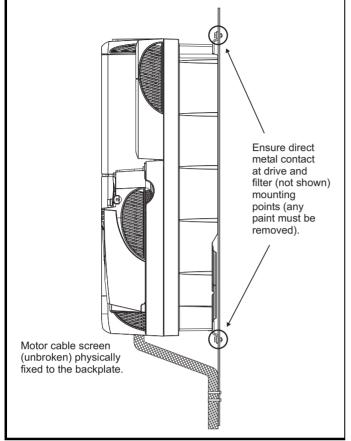
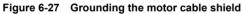

Use the recommended filter and shielded motor cable. Observe the layout rules given in Figure 6-24. Ensure the AC supply and ground cables are at least 100mm from the power module and motor cable.

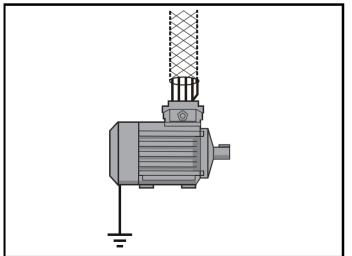
Figure 6-24 Supply and ground cable clearance

Avoid placing sensitive signal circuits in a zone 300mm (12in) all around the power module.

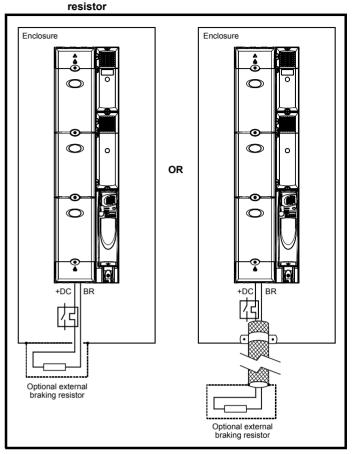

Figure 6-25 Sensitive signal circuit clearance

Safety		Product	System	Mechanical	Flectrical	Gettina	Basic	Runnina		SMARTCARD	Onboard	Advanced	Technical		UL Listina
Ourcey	Introduction	TTOQUOL	Oystern	Meenanica	LICCITCUT	Octung	Dasic	rturning	Optimization	OWARD	Onboard	Auvanceu	reconnical	Diagnostics	OL LISUNG
Information	introduction	Information	configuration	Installation	Installation	Startad	parameters	the motor	Optimization	operation	DIC	parameters	Data	Diagnostics	Information
iniomation		mormation	connyuration	Installation	instanation	Starteu	parameters	the motor		operation	FLC	parameters	Dala		mormation


Ensure good EMC grounding.


Figure 6-26 Grounding the drive, motor cable shield and filter

Connect the shield of the motor cable to the ground terminal of the motor frame using a link that is as short as possible and not exceeding 50mm (2in) long. A full 360° termination of the shield to the terminal housing of the motor is beneficial.


It is unimportant for EMC purposes whether the motor cable contains an internal (safety) ground core, or there is a separate external ground conductor, or grounding is through the shield alone. An internal ground core will carry a high noise current and therefore it must be terminated as close as possible to the shield termination.

Unshielded wiring to the optional braking resistor(s) may be used, provided the wiring does not run external to the enclosure. Ensure a minimum spacing of 300mm (12in) from signal wiring and the AC supply wiring to the external EMC filter. Otherwise this wiring must be shielded.

Figure 6-28 Shielding requirements of optional external braking

Safety Information	Introduction	Product Information	System	Mechanical Installation	Electrical Installation	Getting Started		Running the motor	Optimization	SMARTCARD operation	 Advanced parameters	Technical Data	Diagnostics	UL Listing Information
			-				-			-	-			

If the control wiring is to leave the enclosure, it must be shielded and the shield(s) clamped to the drive using the grounding bracket as shown in Figure 6-29. Remove the outer insulating cover of the cable to ensure the shield(s) make contact with the bracket, but keep the shield(s) intact until as close as possible to the terminals

Alternatively, wiring may be passed through a ferrite ring, part no. 3225-1004.

Figure 6-29 Grounding of signal cable shields using the grounding bracket

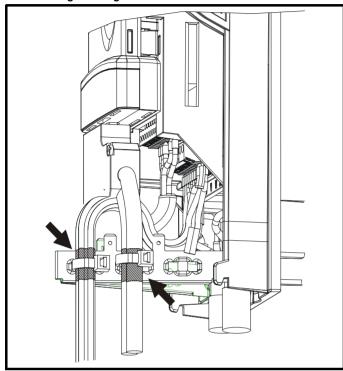
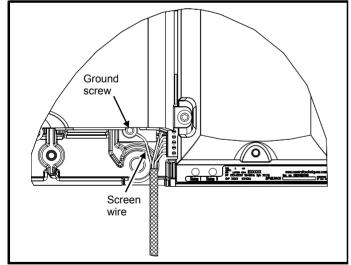
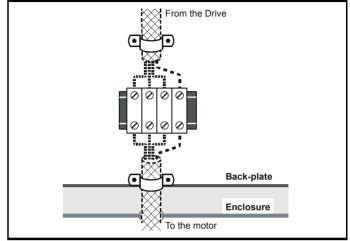



Figure 6-30 Grounding of SPMC/U signal cables

6.13.6 Variations in the EMC wiring Interruptions to the motor cable

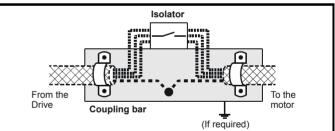
The motor cable should ideally be a single length of shielded or armored cable having no interruptions. In some situations it may be necessary to interrupt the cable, as in the following examples:


- · Connecting the motor cable to a terminal block in the drive enclosure
- Installing a motor isolator/disconnect switch for safety when work is done on the motor

In these cases the following guidelines should be followed.

Terminal block in the enclosure

The motor cable shields should be bonded to the back-plate using uninsulated metal cable-clamps which should be positioned as close as possible to the terminal block. Keep the length of power conductors to a minimum and ensure that all sensitive equipment and circuits are at least 0.3m (12 in) away from the terminal block.


Using a motor isolator/disconnect-switch

The motor cable shields should be connected by a very short conductor having a low inductance. The use of a flat metal coupling-bar is recommended; conventional wire is not suitable.

The shields should be bonded directly to the coupling-bar using uninsulated metal cable-clamps. Keep the length of the exposed power conductors to a minimum and ensure that all sensitive equipment and circuits are at least 0.3m (12 in) away.

The coupling-bar may be grounded to a known low-impedance ground nearby, for example a large metallic structure which is connected closely to the drive ground.

Figure 6-32 Connecting the motor cable to an isolator/disconnect switch

Surge immunity of control circuits - long cables and connections outside a building

The input/output ports for the control circuits are designed for general use within machines and small systems without any special precautions.

These circuits meet the requirements of EN61000-6-2 (1kV surge) provided the 0V connection is not grounded.

In applications where they may be exposed to high-energy voltage surges, some special measures may be required to prevent malfunction or damage. Surges may be caused by lightning or severe power faults in association with grounding arrangements which permit high transient voltages between nominally grounded points. This is a particular risk where the circuits extend outside the protection of a building.

As a general rule, if the circuits are to pass outside the building where the drive is located, or if cable runs within a building exceed 30m, some additional precautions are advisable. One of the following techniques should be used:

afoty		Product	System	Mechanical	Electrical	Gettina	Basic	Runnina		SMARTCARD	Onboard	Advanced	Technical		UL Listina
 mation	Introduction		configuration						Optimization	operation		parameters	Data	Diagnostics	Information
			0				•					•			

- Galvanic isolation, i.e. do not connect the control 0V terminal to ground. Avoid loops in the control wiring, i.e. ensure every control wire is accompanied by its return (0V) wire.
- 2. Shielded cable with additional power ground bonding. The cable shield may be connected to ground at both ends, but in addition the ground conductors at both ends of the cable must be bonded together by a power ground cable (equipotential bonding cable) with cross-sectional area of at least 10mm², or 10 times the area of the signal cable shield, or to suit the electrical safety requirements of the plant. This ensures that fault or surge current passes mainly through the ground cable and not in the signal cable shield. If the building or plant has a well-designed common bonded network this precaution is not necessary.
- Additional over-voltage suppression for the analog and digital inputs and outputs, a zener diode network or a commercially available surge suppressor may be connected in parallel with the input circuit as shown in Figure 6-33 and Figure 6-34.

If a digital port experiences a severe surge its protective trip may operate (O.Ld1 trip code 26). For continued operation after such an event, the trip can be reset automatically by setting Pr **10.34** to 5.

Figure 6-33 Surge suppression for digital and unipolar inputs and outputs

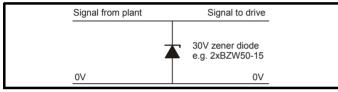
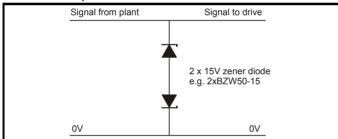
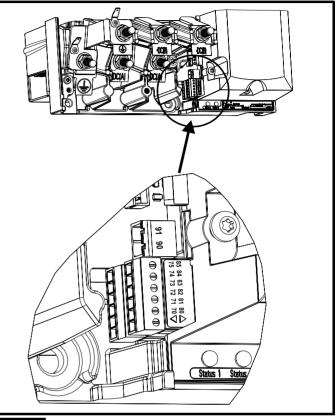



Figure 6-34 Surge suppression for analog and bipolar inputs and outputs

Surge suppression devices are available as rail-mounting modules, e.g. from Phoenix Contact:


Unipolar TT-UKK5-D/24 DC Bipolar TT-UKK5-D/24 AC

These devices are not suitable for encoder signals or fast digital data networks because the capacitance of the diodes adversely affects the signal. Most encoders have galvanic isolation of the signal circuit from the motor frame, in which case no precautions are required. For data networks, follow the specific recommendations for the particular network.

6.14 SPMC/U control connections

The rectifier must be supplied from an external 24V 3A supply to feed the fans and control circuits. When supplied with 24V and the three phase line power input are in tolerance, the rectifier is able to provide the user with x1 rectifier OK contact, x2 status outputs to the SPMD inverter (indicating the status of the rectifier), and x2 status inputs for applications using more than one rectifier in parallel (see Figure 6-36)

Figure 6-35 Location of SPMC (rectifier) control terminals

NOTE

The external 24V supply must be connected to enable the Unidrive SPMC/U.

NOTE

When the Unidrive SPMC/U is connected to a Unidrive SPMD, the status output connections must be connected as shown in Figure 6-36.

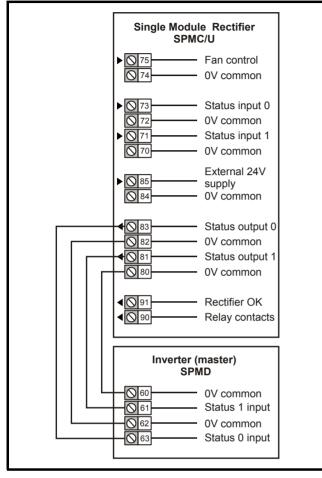
Unidrive SPMC/U external 24V supply requirements

	a oupping requiremente
Nominal voltage:	24V
Minimum voltage:	23V
Maximum voltage:	28V
Current drawn:	3A
Minimum start-up voltage:	18V
Recommended power supply:	24V, 100W, 4.5A
Recommended fuse:	4A fast blow (I ² t <20A ² s)

NOTE

If the Unidrive SPM power supply (CT part number 8510-0000) is used to supply the Unidrive SPMA/D or SPMC/U, a fuse on the 24V supply to the SPMC/U is not required.

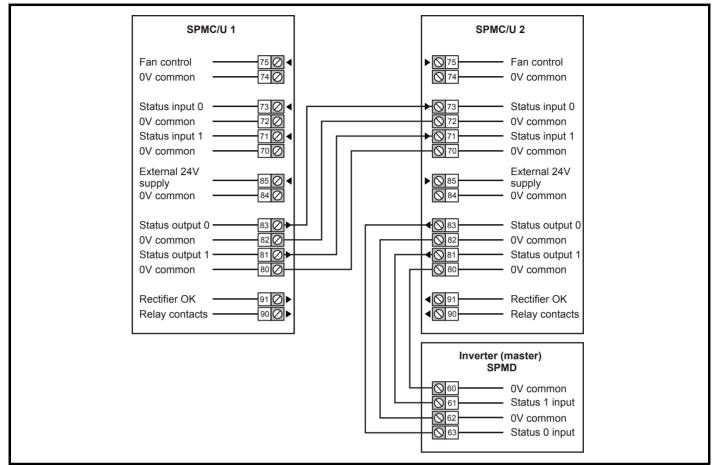
Unidrive SPM power supply


CT part number:	8510-0000
Current rating:	10A
Input voltage:	85 to 123 / 176 to 264Vac auto switching
Cable size:	0.5mm ² (20AWG)
Fuse:	5A slow-blow from supply

Safety Information Introduction Product System Mechanical Electrical Getting Basic Information Configuration Installation Installation Started parameter	the motor Optimization		Diagnostics	UL Listing nformation
--	------------------------	--	-------------	--------------------------

6.14.1 SPMC Hardware configuration - Single module

When a Unidrive SPMC is used to supply the DC Bus of SPMD, the status output lines can be taken from the SPMC and feed directly into the status inputs of the SPMD. The inverter will monitor the status lines and on detection of a trip disable the system.


Figure 6-36 Single module control terminals and descriptions

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	recinical		UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

6.14.2 SPMC/U Hardware configuration - Multiple Rectifier modules

Figure 6-37 Parallel rectifier control terminals and descriptions

6.14.3 Unidrive SPMC/U control connections Status input connections

70	0V common	
71	Status input 1	
72	0V common	
73	Status input 0	
Functi	on	To allow status monitoring for applications using more than one rectifier
Logic 0	voltage level	<8.4V
Logic 1	voltage level	>8.4V
Open ci	rcuit voltage level	-4.8V source resistance 8.7k
Input re	sistance	15kΩ

Fan control connections

74	0V common	
75	Fan control	
Functi	on	The internal fan in the rectifier is controlled by a temperature control loop. The fan can be forced to run at full speed by connecting this terminal to +24V
Voltage	range	0V to 24V supply voltage +2V
Input the	reshold	10V
Input re	sistance	6.8kΩ

Status output connections

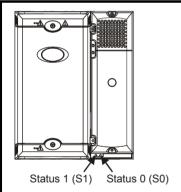
80	0V common	
81	Status output 1	
82	0V common	
83	Status output 0	
Functio	on	Provides status monitoring from the rectifier to the connecting drive / monitoring equipment to trip the rectifier unit
Logic 0	voltage level	0V
Logic 1	voltage level	24V supply voltage
Source I	resistance	1k1

NOTE

When a system contains paralleled Unidrive SPMC/Us, the rectifier's status outputs must be daisy chained to the status inputs of the next. Providing the system is fused correctly, the method used to monitor the rectifier status must have the ability to disable the system within 500ms. A PLC can be used to monitor the status output of the rectifier. PLC input impedance must be no greater than $10k\Omega$. Status signals are not latched.

84	0V common	
Functio	on	Common connection for all external devices

															-	
Safet	/		Product	Svstem	Mechanical	Electrical	Getting	Basic	Runnina		SMARTCARD	Onboard	Advanced	Technical	D : ()	UL Listina
Informat	. Introc	duction	Information	configuration	Installation	Installation		parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	
morma			mormation	configuration	motaliation	motanation	Otaricu	parameters			орстаціон	1 LO	parameters	Data		mormation


85 External +24V supp	bly
Function	The rectifier must be supplied with +24V to power the fans and control PCB
Nominal voltage	+24Vdc
Minimum continuous operating voltage	+23V
Maximum continuous operating voltage	+28V
Current consumption	3.0A
Minimum start-up voltage	+18V
Recommended power supply	24V, 100W, 4.5A
Recommended fuse	4A fast blow (I ² t <20A ² s)

90 91 Relay contacts	
Function	Rectifier OK indicator
Contact rating	0.4A AC 240V 4A DC 40V resistive load 0.5A DC 30V inductive load (L/R = 40ms)
Contact minimum recommended rating	12Vdc 100mA
Relay state when rectifier is operating normally	Closed
Update period	Relay is not latched, relay could change state at a rate up to 30ms

6.14.4 SPMC/U (rectifier) LEDs

The control circuitry of the Unidrive SPMC/U monitors the drive status and generates codes via the status output LEDs (S1 and S0).

Figure 6-38 Status LED location

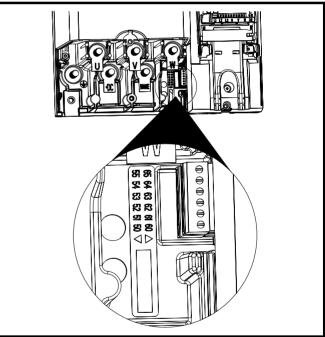
The STATUS LEDs S0 and S1 mirror the status outputs and are encoded as follows:

Table 6-24 Key to SPMC (rectifier) LEDs

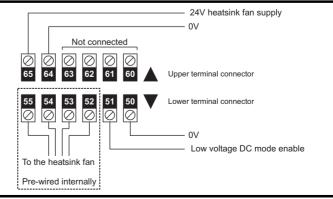
Status Output 1: Left LED 0: Right LED		Meaning			
		Meaning			
OFF	OFF	Line power supply, or 24V supply to the rectifier has been lost			
OFF	ON	Phase loss			
ON	OFF	 Any of the following: Snubber overheating due to excessive cable charging current or supply notching Rectifier heatsink over temperature Rectifier PCB over temperature Status input wire break 			
ON	ON	System OK			

The SPMD drive will monitor the status lines and on detection of a fault disables the system via a PhP or (when used in conjunction with a SPMC) OHT4.P trip.

Table 6-25 Key to SPMU (rectifier) LEDs


Status	Output	Meaning
1: Left LED	0: Right LED	Meaning
OFF	OFF	Line power supply loss, or 24V supply to the rectifier has been lost
OFF	ON	 Internal fault Check that rectifier is an SPMU. This could indicate that unit is an SPMC
ON	OFF	 Any of the following: Rectifier heatsink over temperature Rectifier PCB over temperature Status input wire break
ON	ON	System OK

6.15 Low voltage DC mode enable, heatsink fan supply connections (SPMA/D) and status input connections (SPMD)


Unidrive SPMA and SPMD require a low voltage DC mode enable signal to terminal 50 and 51 of the lower terminal connector near the W phase output, to allow the drive to be used from a low voltage DC supply.

For more information regarding low voltage DC operation, see the *Low Voltage DC Mode Application Note*.

Figure 6-39 Location of the SPMA/D low voltage DC mode enable connections

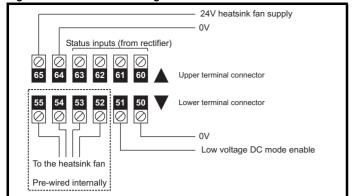


Figure 6-40 SPMA low voltage DC mode enable connections

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	 	Running the motor	Optimization	SMARTCARD operation	onooura	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
			0											

Figure 6-41 SPMD low voltage DC mode enable connections

6.15.1 Low voltage DC mode enable connections (SPMA/D)

50 OV							
51 Low voltage DC mode enable							
Function	To allow the drive to be used from a low voltage DC supply						
Nominal voltage	24.0Vdc						
Minimum continuous operating voltage	19.2Vdc						
Maximum continuous operating voltage	30.0Vdc						
Nominal current consumption	500mA						
Recommended fuse	8A 600V AC fast acting class CC type fuse						

6.15.2 Heatsink fan supply connections (SPMA/D)

52 53 54 55	Heatsink fan connections
No us	er connections

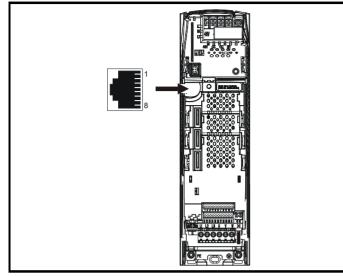
6.15.3 SPMA status input connections

60 61	No connection	
62		
63		
No us	er connections	

6.15.4 SPMD status input connections

60 0V common	0V common							
61 Status 1 input	Status 1 input							
62 0V common	0V common							
63 Status 0 input	Status 0 input							
Function	To allow status monitoring from the SPMC/U rectifier module							
Logic 0 voltage level	<7.5V							
Logic 1 voltage level	>7.5V							
I/P resistance	6.8kΩ							
Open circuit voltage level	-15V (connected to -15V by $47k\Omega$)							

6.15.5 External 24V heatsink fan supply (SPMA/D)


64 OV	
65 24V heatsink fan supply	
Function	To provide the power supply to the heatsink mounted fan
Nominal voltage	24Vdc
Minimum continuous operating voltage	23.5V
Maximum continuous operating voltage	27V
Current consumption	SPMA (all): 3.3A SPMD12X1/12X4: 3.3A SPMD14X1/14X2: 3.3A SPMD14X3/14X4: 4.5A SPMD16X1/16X2: 3.3A SPMD16X3/16X4: 4.5A
Recommended power supply	24V, 5A
Recommended fuse	$\begin{array}{l} {\rm SPMA \ (all):} \\ {\rm 4A \ fast \ blow \ (l^2t > 20A^2s)} \\ {\rm SPMD12X1/12X4:} \\ {\rm 4A \ fast \ blow \ (l^2t > 20A^2s)} \\ {\rm SPMD14X1/14X2:} \\ {\rm 4A \ fast \ blow \ (l^2t > 20A^2s)} \\ {\rm SPMD14X3/14X4:} \\ {\rm 6.3A \ fast \ blow \ (l^2t > 100A^2s)} \\ {\rm SPMD16X1/16X2:} \\ {\rm 4A \ fast \ blow \ (l^2t > 20A^2s)} \\ {\rm SPMD16X3/16X4:} \\ {\rm 6.3A \ fast \ blow \ (l^2t > 100A^2s)} \\ {\rm SPMD16X3/16X4:} \\ {\rm 6.3A \ fast \ blow \ (l^2t > 100A^2s)} \\ \end{array}$

	Safety ormation	Introduction	Product Information	System	Mechanical		Getting			Optimization		PLC	narameters	Technical	Diagnostics	UL Listing
Info	ormation		Information	configuration	Installation	Installation	Started	parameters	the motor	•	operation	PLC	parameters	Data	0	Information

6.16 Serial communications connections

The drive has a serial communications port (serial port) as standard supporting 2 wire EIA485 communications. See Table 6-26 for the connection details for the RJ45 connector.

Figure 6-42 Location of the RJ45 serial comms connector

Table 6-26 Connection details for RJ45 connector

Pin	Function
1	120Ω Termination resistor
2	RX TX
3	Isolated 0V
4	+24V (100mA)
5	Isolated 0V
6	TX enable
7	RX\ TX\
8	RX\ TX\ (if termination resistors are required, link to pin 1)
Shell	Isolated 0V

The communications port applies a 2 unit load to the communications network

Minimum number of connections are 2, 3, 7 and shield. Shielded cable must be used at all times.

Isolation of the serial communications port 6.16.1

The serial communications port is double insulated and meets the requirements for SELV in EN50178.

In order to meet the requirements for SELV in IEC60950 (IT equipment) it is necessary for the control computer to be grounded. Alternatively, when a lap-top or similar device is used which has no provision for grounding, an isolation WARNING device must be incorporated in the communications lead.

An isolated serial communications lead has been designed to connect the drive to IT equipment (such as lap-top computers), and is available from the supplier of the drive. See below for details:

Table 6-27 Isolated serial comms lead details

Part number	Description
4500-0087	CT EIA232 Comms cable
4500-0096	CT USB Comms cable

The "isolated serial communications" lead has reinforced insulation as defined in IEC60950 for altitudes up to 3,000m.

NOTE

When using the CT EIA232 Comms cable the available baud rate is limited to 19.2k baud.

6.16.2 Multi-drop network

The drive can be used on a 2 wire EIA485 multi-drop network using the drive's serial communications port when the following guidelines are adhered to

Connections

The network should be a daisy chain arrangement and not a star, although short stubs to the drive are allowed.

The minimum connections are pins 2 (RX TX), 3 (isolated 0V), 7 (RX) TX\) and the shield.

Pin 4 (+24V) on each drive can be connected together but there is no power sharing mechanism between drives and therefore the maximum power available is the same as a single drive. (If pin 4 is not linked to the other drives on the network and has an individual load then the maximum power can be taken from pin 4 of each drive.)

Termination resistors

If a drive is on the end of the network chain then pins 1 and 8 should be linked together. This will connect an internal 120Ω termination resistor between RXTX and RX\TX\. (If the end unit is not a drive or the user wishes to use their own termination resistor, a 120Ω termination resistor should be connected between RXTX and RX\TX\ at the end unit.)

If the host is connected to a single drive then termination resistors should not be used unless the baud rate is high.

CT Comms Cable

The CT Comms Cable can be used on a multi-drop network but should only be used occasionally for diagnostic and set up purposes. The network must also be made up entirely of Unidrive SPs.

If the CT Comms Cable is to be used, then pin 6 (TX enable) should be connected on all drives and pin 4 (+24V) should be linked to at least 1 drive to supply power to the converter in the cable.

Only one CT Comms Cable can be used on a network.

Control connections - master interface 6.17

6.17.1 General

Table 6-28 The Unidrive SPM control connections consist of:

Function	Qty	Control parameters available	Terminal number
Differential analog input	1	Destination, offset, offset trim, invert, scaling	5,6
Single ended analog input	2	Mode, offset, scaling, invert, destination	7,8
Analog output	2	Source, mode, scaling,	9,10
Digital input	3	Destination, invert, logic select	27,28,29
Digital input / output	3	Input / output mode select, destination / source, invert, logic select	24,25,26
Relay	1	Source, invert	41,42
Drive enable (SAFE TORQUE OFF (SECURE DISABLE))	1		31
+10V User output	1		4
+24V User output	1	Source, invert	22
0V common	6		1, 3, 11, 21, 23, 30
+24V External input	1		2

Key:

Destination parameter:	indicates the parameter which is being controlled by the terminal / function
Source parameter:	indicates the parameter being output by the terminal
Mode parameter:	analog - indicates the mode of operation of the terminal, i.e. voltage 0-10V, current 4-20mA etc.
	digital - indicates the mode of operation of the terminal, i.e. positive / negative logic (the Drive Enable terminal is fixed in positive logic), open collector.

All analog terminal functions can be programmed in menu 7.

ĺ	Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
	internation		inionnation	oornigaration	inotaliation	motanation	otartea	parametero			operation	T EO	parametero	Duta		internation

All digital terminal functions (including the relay) can be programmed in menu 8

The setting of Pr 1.14 and Pr 6.04 can cause the function of digital inputs T25 to T29 to change. For more information, please refer to section 13.21.1 Reference modes on page 254 and section 13.21.7 Start / stop logic modes on page 259.

The control circuits are isolated from the power circuits in the drive by basic insulation (single insulation) only. The installer must ensure that the external control circuits are insulated from human contact by at least one layer of insulation (supplementary insulation) rated for use at the AC supply voltage.

If the control circuits are to be connected to other circuits classified as Safety Extra Low Voltage (SELV) (e.g. to a personal computer), an additional isolating barrier must be included in order to maintain the SELV classification.

If any of the digital inputs or outputs (including the drive enable input) are connected in parallel with an inductive load (i.e. contactor or motor brake) then suitable suppression (i.e. diode or varistor) should be used on the coil of the load. If no suppression is used then over voltage spikes can cause damage to the digital inputs and outputs on the drive.

Ensure the logic sense is correct for the control circuit to be used. Incorrect logic sense could cause the motor to be started unexpectedly. Positive logic is the default state for.

NOTE

Any signal cables which are carried inside the motor cable (i.e. motor thermistor, motor brake) will pick up large pulse currents via the cable capacitance. The shield of these signal cables must be connected to ground close to the point of exit of the motor cable, to avoid this noise current spreading through the control system.

NOTE

The SAFE TORQUE OFF (SECURE DISABLE) / drive enable terminal is a positive logic input only. It is not affected by the setting of Pr 8.29 Positive logic select.

NOTE

The common 0V from analog signals should, wherever possible, not be connected to the same 0V terminal as the common 0V from digital signals. Terminals 3 and 11 should be used for connecting the 0V common of analog signals and terminals 21, 23 and 30 for digital signals. This is to prevent small voltage drops in the terminal connections causing inaccuracies in the analog signals.

Figure 6-43 Default terminal functions Polarized signal connectors 11 00000000000 41 42 00000000000 00 21 31 0V common External 24V supply Analog frequency/speed reference 1 0V comm Connections for single-ended input signa 0V Connections for differential input signal Analog frequency/speed reference 2 80 Analog input 3 Motor thermistor

> Speed / frequency Torque (active

current)

At zero speed Reset Run forward Run reverse Analog input 1/ input 2 select Jog forward select

Analog input 1 Analog input 2

(◯ 30) SAFE TORQUE OFF (SECURE DISABLE) / () 31 ▶ Drive enable* Status relay √ 41 ◀ Drive OK ♦ 42

0V common

0V common

0V common

0V common

+24V

N 21

Q 23

⊘24 ◀

25

26 0 27 ▶

29

* With software V01.07.00 and later, Analog input 3 is configured as a motor thermistor input. With software V01.06.02 and earlier, Analog input 3 has no default function. Refer to Analog input 3 on page 94.

**The SAFE TORQUE OFF (SECURE DISABLE) / Drive enable terminal is a positive logic input only.

Safety ormation	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information

6.17.2 SPMA and SPMD control terminal specification

1	0V common	
Function		Common connection for all external devices

2	+24V external input					
Functi	on	To supply the control circuit without providing a supply to the power stage				
Nomina	l voltage	+24.0Vdc				
Minimur voltage	n continuous operating	+19.2Vdc				
Maximu voltage	m continuous operating	+30.0Vdc				
Minimur	m start-up voltage	21.6Vdc				
Recomm	nended power supply	60W 24Vdc nominal				
Recomm	mended fuse	3A, 50Vdc				

3	0V common	
Function	on	Common connection for all external devices

4 +10V user output	
Function	Supply for external analog devices
Voltage tolerance	±1%
Nominal output current	10mA
Protection	Current limit and trip @ 30mA

	Precision reference Analog input 1					
5	Non-inverting input					
6	Inverting input					
Defaul	t function	Frequency/speed reference				
Type of	input	Bipolar differential analog (For single-ended use, connect terminal 6 to terminal 3)				
Full sca	le voltage range	±9.8V ±1%				
Absolute voltage	e maximum range	±36V relative to 0V				
Working range	common mode voltage	±13V relative to 0V				
Input re	sistance	100k Ω ±1%				
Resolut	ion	16-bit plus sign (as speed reference)				
Monotor	nic	Yes (including 0V)				
Dead ba	and	None (including 0V)				
Jumps		None (including 0V)				
Maximu	m offset	700μV				
Maximu	m non linearity	0.3% of input				
Maximu	m gain asymmetry	0.5%				
Input filt	er bandwidth single pole	~1kHz				
Samplin	ig period	250µs with destinations as Pr 1.36 , Pr 1.37 or Pr 3.22 in closed loop vector or servo mode. 4ms for open loop mode and all other destinations in closed loop vector or servo mode.				

7 Analog input 2				
U .				
Default function	Frequency/speed reference			
Type of input	Bipolar single-ended analog voltage or unipolar current			
Mode controlled by	Pr 7.11			
Operating in Voltage mode				
Full scale voltage range	±9.8V ±3%			
Maximum offset	±30mV			
Absolute maximum voltage range	±36V relative to 0V			
Input resistance	>100kΩ			
Operating in current mode				
Current ranges	0 to 20mA ±5%, 20 to 0mA ±5%, 4 to 20mA ±5%, 20 to 4mA ±5%			
Maximum offset	250μΑ			
Absolute maximum voltage (reverse bias)	-36V max			
Absolute maximum current	+70mA			
Equivalent input resistance	≤200Ω at 20mA			
Common to all modes				
Resolution	10 bit + sign			
Sample period	250µs when configured as voltage input with destinations as Pr 1.36 , Pr 1.37 , Pr 3.22 or Pr 4.08 in closed loop vector or servo mode. 4ms for open loop mode, all other destinations in closed loop vector or servo mode, or any destination when configured as a current input.			

8 Analog input 3	Analog input 3					
Default function	V01.07.00 and later: Motor thermistor input (PTC) V01.06.02 and earlier: Not configured					
Type of input	Bipolar single-ended analog voltage, unipolar current or motor thermistor input					
Mode controlled by	Pr 7.15					
Operating in Voltage mode (defau	lt)					
Voltage range	±9.8V ±3%					
Maximum offset	±30mV					
Absolute maximum voltage range	±36V relative to 0V					
Input resistance	>100kΩ					
Operating in current mode						
Current ranges	0 to 20mA ±5%, 20 to 0mA ±5%, 4 to 20mA ±5%, 20 to 4mA ±5%					
Maximum offset	250μΑ					
Absolute maximum voltage (reverse bias)	-36V max					
Absolute maximum current	+70mA					
Equivalent input resistance	≤200Ω at 20mA					
Operating in thermistor input mod	de					
Internal pull-up voltage	<5V					
Trip threshold resistance	$3.3k\Omega \pm 10\%$					
Reset resistance	1.8kΩ ±10%					
Short-circuit detection resistance	50Ω ±40%					
Common to all modes						
Resolution	10 bit + sign					
Sample period	250μs when configured as voltage input with destinations as Pr 1.36 , Pr 1.37 , Pr 3.22 or Pr 4.08 in closed loop vector or servo mode. 4ms for open loop mode, all other destinations in closed loop vector or servo mode, or any destination when configured as a current input.					

T8 analog input 3 has a parallel connection to terminal 15 of the drive encoder connector.

Orfett		Decident	0	March and a st		0	Desis	Durania			O altra and	A dura a sa al	Tereleviterel		1.11. 1. Settine of
Safety	ntroduction	Product	System	iviecnanical	Electrical	Getting			Optimization	SMARTCARD	Onboard		lechnical		UL Listing
Information "			configuration	Installation	Installation	Started	parameters	the motor	optimization	operation	PLC	parameters	Data	Diagnootice	Information

9	Analog output 1						
10	Analog output 2						
Termina	I 9 default function	OL> Motor FREQUENCY output signal CL> SPEED output signal					
Termina	I 10 default function	Motor active current					
Type of	output	Bipolar single-ended analog voltage or unipolar single ended current					
Mode co	ntrolled by	Pr 7.21 and Pr 7.24					
Operati	ng in Voltage mode (defau	ilt)					
Voltage	range	±9.6V ±5%					
Maximur	n offset	100mV					
Maximu	m output current	±10mA					
Load res	sistance	1k Ω min					
Protectio	n	35mA max. Short circuit protection					
Operati	ng in current mode						
Current ranges		0 to 20mA ±10% 4 to 20mA ±10%					
Maximu	n offset	600µA					
Maximur	n open circuit voltage	+15V					
Maximur	n load resistance	500Ω					
Common to all modes							
Resoluti	on	10-bit (plus sign in voltage mode)					
Update j	period	250µs when configured as a high speed output with sources as Pr 4.02 , Pr 4.17 in all modes or Pr 3.02 , Pr 5.03 in closed loop vector or servo mode. 4ms when configured as any other type of output or with all other sources.					

11	0V common	
Function		Common connection for all external devices

21	0V common	
Function	on	Common connection for all external devices

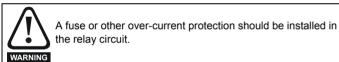
+24V user output (selectable)						
Terminal 22 default function	+24V user output					
Programmability	Can be switched on or off to act as a fourth digital output (positive logic only) by setting the source Pr 8.28 and source invert Pr 8.18					
Nominal output current	200mA (including all digital I/O)					
Maximum output current	240mA (including all digital I/O)					
Protection	Current limit and trip					

23	0V common	
Functi	on	Common connection for all external devices

_							
24	Digital I/O 1						
25	Digital I/O 2						
26	Digital I/O 3						
Termina	al 24 default function	AT ZERO SPEED output					
Termina	al 25 default function	DRIVE RESET input					
Termina	al 26 default function	RUN FORWARD input					
Туре		Positive or negative logic digital inputs, positive or negative logic push-pull outputs or open collector outputs					
Input / o	utput mode controlled by	Pr 8.31, Pr 8.32 and Pr 8.33					
Operati	ng as an input						
Logic m	ode controlled by	Pr 8.29					
Absolute range	e maximum applied voltage	±30V					
Impedar	nce	6kΩ					
Input thr	resholds	10.0V ±0.8V					
Operati	ng as an output						
Open co	ellector outputs selected	Pr 8.30					
Nominal	maximum output current	200mA (total including terminal 22)					
Maximu	m output current	240mA (total including terminal 22)					
Commo	n to all modes						
Voltage	range	0V to +24V					
Sample	/ Update period	250μs when configured as an input with destinations as Pr 6.35 or Pr 6.36 . 600μs when configured as an input with destinations as Pr 6.29 . 4ms in all other cases.					

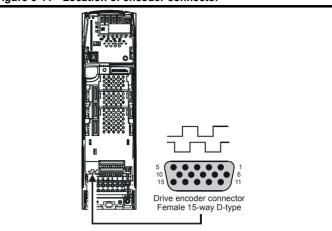
27	Digital Input 4						
28	Digital Input 5						
29	Digital Input 6						
Termina	I 27 default function	RUN REVERSE input					
Termina	I 28 default function	Analog INPUT 1 / INPUT 2 select					
Termina	I 29 default function	JOG SELECT input					
Туре		Negative or positive logic digital inputs					
Logic me	ode controlled by	Pr 8.29					
Voltage	range	0V to +24V					
Absolute maximum applied voltage range		±30V					
Impedance		6kΩ					
Input thresholds		10.0V ±0.8V					
Sample	/ Update period	250μs with destinations as Pr 6.35 or Pr 6.36 . 600μs with destinations as Pr 6.29 . 4ms in all other cases.					

30	0V common	
Function	on	Common connection for all external devices


Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	- ·· ·	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

31	Drive enable (SAFE TORQUE OFF (SECURE DISABLE)	
51	function)	

,					
Туре	Positive logic only digital input				
Voltage range	0V to +24V				
Absolute maximum applied voltage	±30V				
Thresholds	15.5V ±2.5V				
Response time	Nominal: 8ms Maximum: 20ms				
The drive enable terminal (T31) provides a SAFE TORQUE OFF (SECURE DISABLE) function. The SAFE TORQUE OFF (SECURE DISABLE) function meets the requirements of EN954-1 category 3 for the prevention of unexpected starting of the drive. It may be used in a safety-related application in preventing the drive from generating torque in the motor to a high level of integrity.					


Refer to section 6.19 SAFE TORQUE OFF (SECURE DISABLE) on page 99 for further information.

41 42 Relay contacts					
Default function	Drive OK indicator				
Contact voltage rating	240Vac, Installation over-voltage category II				
Contact maximum current rating	2A AC 240V 4A DC 30V resistive load 0.5A DC 30V inductive load (L/R = 40ms)				
Contact minimum recommended rating	12V 100mA				
Contact type	Normally open				
Default contact condition	Closed when power applied and drive OK				
Update period	4ms				

6.18 Encoder connections

Figure 6-44 Location of encoder connector

Table 6-29 Encoder types

Setting of Pr 3.38	Description
Ab (0)	Quadrature incremental encoder with or without marker pulse
Fd (1)	Incremental encoder with frequency pulses and direction, with or without marker pulse
Fr (2)	Incremental encoder with forward pulses and reverse pulses, with or without marker pulse
Ab.SErVO (3)	Quadrature incremental encoder with UVW commutation signals, with or without marker pulse Encoder with UVW commutation signals only (Pr 3.34 set to zero)*
Fd.SErVO (4)	Incremental encoder with frequency pulses and direction with commutation signals**, with or without marker pulse
Fr.SErVO (5)	Incremental encoder with forward pulses and reverse pulses with commutation signals**, with or without marker pulse
SC (6)	SinCos encoder without serial communications
SC.HiPEr (7)	Absolute SinCos encoder with HiperFace serial communications protocol (Stegmann)
EndAt (8)	Absolute EndAt serial communications encoder (Heidenhain)
SC.EndAt (9)	Absolute SinCos encoder with EnDat serial communications protocol (Heidenhain)
SSI (10)	Absolute SSI only encoder
SC.SSI (11)	Absolute SinCos encoder with SSI

* This feedback device provides very low resolution feedback and should not be used for applications requiring a high level of performance

** The U, V & W commutation signals are required with an incremental type encoder when used with a servo motor. The UVW commutation signals are used to define the motor position during the first 120° electrical rotation after the drive is powered-up or the encoder is initialized.

Safety		Product	System	Mechanical	Electrical	Gettina	Basic	Runnina	o	SMARTCARD	Onboard	Advanced	Technical	D ' ('	UL Listina
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information
inionnation		mormation	conniguration	Installation	motanation	Starteu	parameters			operation	I LO	parameters	Data		mormation

Table 6-30 Drive encoder connector details

						Setting of	Pr 3.38						
Terminal	Ab (0)	Fd (1)	Fr (2)	Ab.SErVO (3)	Fd.SErVO (4)	Fr.SErVO (5)	SC (6)	SC.HiPEr (7)	EndAt (8)	SC.EndAt (9)	SSI (10)	SC.SSI (11)	
1	А	F	F	A	F	F	(Cos		Cos		Cos	
2	A\	F\	F\	A\	F\	F\	С	osref		Cosref		Cosref	
3	В	D	R	В	D	R		Sin		Sin		Sin	
4	B\	D\	R\	B\	D\	R\	S	linref		Sinref		Sinref	
5				Z*	•			E	incoder inp	ut - Data (inpu	ut/output)		
6				Z*				Encoder input - Data\ (input/output)					
7		ulated enc Aout, Fout*			U			Simulated encoder Aout, Fout**					
8	Sim	ulated enc out Fout\	oder		U\		Simulated encoder Aout Fout**						
9		Simulated encoder Bout, Dout** V Simulated encoder Bout, Dout**											
10		Simulated encoder Bout Dout** V\ Bout Dout**											
11					W				Enc	oder input - C	lock (out	out)	
12		W\ Encoder input - Clock\ (output)						put)					
13						+V*;	**						
14						0V com	imon						
15						th**'	**						

* Marker pulse is optional

** Simulated encoder output only available in open-loop

*** The encoder supply is selectable through parameter configuration to 5Vdc, 8Vdc and 15Vdc

**** Terminal 15 is a parallel connection to T8 analog input 3. If this is to be used as a thermistor input, ensure that Pr **7.15** is set to 'th.sc' (7), 'th' (8) or 'th.diSP' (9).

NOTE

SSI encoders typically have maximum baud rate of 500kBaud. When a SSI only encoder is used for speed feedback with a closed loop vector or servo motor, a large speed feedback filter (Pr **3.42**) is required due to the time taken for the position information to be transferred from the encoder into the drive. The addition of this filter means that SSI only encoders are not suitable for speed feedback in dynamic or high-speed applications.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

6.18.1 Specifications

Feedback device connections

Ab, Fd, Fr, Ab.SErVO, Fd.SErVO and Fr.SErVO encoders

1 Channel A, Frequency or I	1 Channel A, Frequency or Forward inputs							
2 Channel A Frequency\ or	2 Channel A Frequency\ or Forward\ inputs							
3 Channel B, Direction or Re	Channel B, Direction or Reverse inputs							
4 Channel B Direction\ or Reverse\ inputs								
Туре	EIA 485 differential receivers							
Maximum input frequency	V01.06.01 and later: 500kHz V01.06.00 and earlier: 410kHz							
Line loading	<2 unit loads							
Line termination components	120 Ω (switchable)							
Working common mode range	+12V to -7V							
Absolute maximum applied voltage relative to 0V	±25V							
Absolute maximum applied differential voltage	±25V							

5	Marker pulse channel Z						
6	Marker pulse channel Z\						
7	Phase channel U						
8	Phase channel U\						
9	Phase channel V						
10	Phase channel V\						
11	11 Phase channel W						
12	Phase channel W\						
Туре		EIA 485 differential receivers					
Maxim	um input frequency	512kHz					
Line lo	ading	32 unit loads (for terminals 5 and 6) 1 unit load (for terminals 7 to 12)					
Line te	ermination components	120Ω (switchable for terminals 5 and 6, always in circuit for terminals 7 to 12)					
Workir	ng common mode range	+12V to -7V					
	ite maximum applied voltage e to 0V	+14V to -9V					
Absolu voltage	ite maximum applied differential e	+14V to -9V					

SC, SC.HiPEr, EndAt, SC.EndAt, SSI and SC.SSI encoders

1	Channel Cos*							
2	Channel Cosref*							
3	3 Channel Sin*							
4	Channel Sinref*							
Туре		Differential voltage						
Maxim	um Signal level	1.25V peak to peak (sin with regard to sinref and cos with regard to cosref)						
Maxim	ium input frequency	See Table 6-31						
	um applied differential voltage ommon mode voltage range	±4V						

For the SinCos encoder to be compatible with Unidrive SPM, the output signals from the encoder must be a 1V peak to peak differential voltage (across Sin to Sinref and Cos to Cosref).

The majority of encoders have a DC offset on all signals. Stegmann encoders typically have a 2.5Vdc offset. The Sinref and Cosref are a flat DC level at 2.5Vdc and the Cos and Sin signals have a 1V peak to peak waveform biased at 2.5Vdc.

Encoders are available which have a 1V peak to peak voltage on Sin, Sinref, Cos and Cosref. This results in a 2V peak to peak voltage seen at the drive's encoder terminals. It is not recommended that encoders of this type are used with Unidrive SPM, and that the encoder feedback signals should meet the above parameters (1V peak to peak).

Resolution: The sinewave frequency can be up to 500kHz but the resolution is reduced at high frequency. Table 6-31 shows the number of bits of interpolated information at different frequencies and with different voltage levels at the drive encoder port. The total resolution in bits per revolution is the ELPR plus the number of bits of interpolated information. Although it is possible to obtain 11 bits of interpolation information, the nominal design value is 10 bits.

Not used with EndAt and SSI communications only encoders.

Table 6-31	Feedba	Feedback resolution based on frequency and voltage leve							
Volt/Freq	1kHz	5kHz	50kHz	100kHz	200kHz	500kHz			
1.2	11	11	10	10	9	8			
1.0	11	11	10	9	9	7			
0.8	10	10	10	9	8	7			
0.6	10	10	9	9	8	7			
0.4	9	9	9	8	7	6			

5	Data**						
6	Data**						
11	Clock***						
12	Clock***						
Туре		EIA 485 differential transceivers					
Maxim	um frequency	2MHz					
Line lo	ading	32 unit loads (for terminals 5 and 6) 1 unit load (for terminals 11 and 12)					
Workir	ng common mode range	+12V to -7V					
	ite maximum applied voltage e to 0V	±14V					
Absolu voltage	ite maximum applied differential e	±14V					

** Not used with SC encoders.

*** Not used with SC and SC.HiPEr encoders.

Safety	Introduction	Product		Mechanical Electri		Basic		Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	indeddollon	Information	configuration	Installation Installa	tion Started	parameters	the motor	optimization	operation	PLC	parameters	Data	Diagnootice	Information

Frequency slaving outputs (open loop only)

Ab, Fd, Fr, SC, SC.HiPEr, EndAt, SC.EndAt, SSI and SC.SSI encoders

7 Frequency slaving out c	Frequency slaving out channel A							
8 Frequency slaving out c	Frequency slaving out channel A\							
9 Frequency slaving out c	Frequency slaving out channel B							
10 Frequency slaving out c	Frequency slaving out channel B\							
Туре	EIA 485 differential transceivers							
Maximum output frequency	512kHz							
Absolute maximum applied voltage relative to 0V	±14V							
Absolute maximum applied differentia voltage	al ±14V							

Common to all Encoder types

13 Encoder supply voltage	
Supply voltage	5.15V $\pm 2\%,8V$ $\pm 5\%$ or 15V $\pm 5\%$
	300mA for 5V and 8V* 200mA for 15V*

The voltage on terminal 13 is controlled by Pr 3.36. The default for this parameter is 5V (0) but this can be set to 8V (1) or 15V (2). Setting the encoder voltage supply too high for the encoder could result in damage to the feedback device.

The termination resistors must be disabled if the outputs from the encoder are higher than 5V.

14 0V common

15 Motor thermistor input

This terminal is connected internally to terminal 8 of the signal connector. Connect only one of these terminals to a motor thermistor. Analog input 3 must be in thermistor mode, Pr **7.15** = th.SC (7), th (8) or th.diSP (9).

6.19 SAFE TORQUE OFF (SECURE DISABLE)

The SAFE TORQUE OFF (SECURE DISABLE) (STO) function provides a means for preventing the drive from generating torque in the motor, with a very high level of integrity. It is suitable for incorporation into a safety system for a machine. It is also suitable for use as a conventional drive enable input. The STO function makes use of the special property of an inverter drive with an induction motor, which is that torque cannot be generated without the continuous correct active behaviour of the inverter circuit. All credible faults in the inverter power circuit cause a loss of torque generation.

The STO function is fail-safe, so when the STO input is disconnected the drive will not operate the motor, even if a combination of components within the drive has failed. Most component failures are revealed by the drive failing to operate. STO is also independent of the drive firmware. This meets the requirements of EN954-1 category 3 for the prevention of

operation of the motor.¹ On drives with date code P04 and later the STO input also meets the requirements of EN 81-1 clause 12.7.3 b) as part of a system for preventing unwanted operation of the motor in a lift (elevator).²

¹ Independent approval has been given by BGIA.

 2 Independent approval of concept has been given by TÜV. Please consult the separate guide for lift applications for further information.

STO can be used to eliminate electro-mechanical contactors, including special safety contactors, which would otherwise be required for safety applications.

Note on response time of SAFE TORQUE OFF (SECURE DISABLE), and use with safety controllers with self-testing outputs (drives with date code P04 and later).

SAFE TORQUE OFF (SECURE DISABLE) has been designed to have a response time of greater than 1ms, so that it is compatible with safety controllers whose outputs are subject to a dynamic test with a pulse width not exceeding 1ms. For applications where a fast-acting disable function is required, please see section section 13.21.10 *Fast Disable* on page 262.

Note on the use of servo motors, other permanent-magnet motors, reluctance motors and salient-pole induction motors.

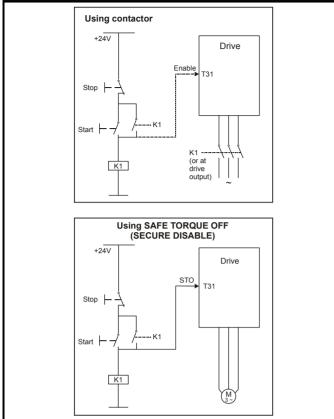
When the drive is disabled through SAFE TORQUE OFF (SECURE DISABLE), a possible (although highly unlikely) failure mode is for two power devices in the inverter circuit to conduct incorrectly.

This fault cannot produce a steady rotating torque in any AC motor. It produces no torque in a conventional induction motor with a cage rotor. If the rotor has permanent magnets and/or saliency, then a transient alignment torque may occur. The motor may briefly try to rotate by up to 180° electrical, for a permanent magnet motor, or 90° electrical, for a salient pole induction motor or reluctance motor. This possible failure mode must be allowed for in the machine design.

The design of safety-related control systems must only be done by personnel with the required training and experience. The STO function will only ensure the safety of a machine if it is correctly incorporated into a complete safety system. The system must be subject to a risk assessment to confirm that the residual risk of an unsafe event is at an acceptable level for the application.

To maintain category 3 according to EN954-1 environment limits given in section 14.1 *Drive* on page 263 must be observed.

STO inhibits the operation of the drive, this includes inhibiting braking. If the drive is required to provide both braking and SAFE TORQUE OFF (SECURE DISABLE) in the same operation (e.g. for emergency stop) then a safety timer relay or similar device must be used to ensure that the drive is disabled a suitable time after braking. The braking function in the drive is provided by an electronic circuit which is not fail-safe. If braking is a safety requirement, it must be supplemented by an independent fail-safe braking mechanism


STO does not provide electrical isolation. The supply to the drive must be disconnected by an approved isolation device before gaining access to power connections.

The following diagrams illustrate how the STO input can be used to eliminate contactors and safety contactors from control systems. Please note these are provided for illustration only, every specific arrangement must be verified for suitability in the proposed application.

In the first example, illustrated in Figure 6-45, the STO function is used to replace a simple power contactor in applications where the risk of injury from unexpected starting is small, but it is not acceptable to rely on the complex hardware and firmware/software used by the stop/start function within the drive.

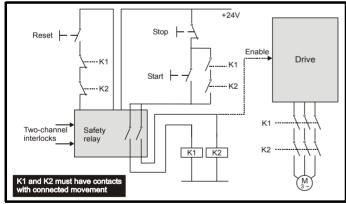
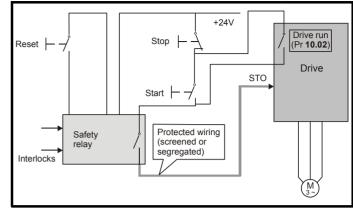

Safety Information	ntroduction	Product Information	System configuration	Mechanical Installation	Electrical Installation		Basic parameters	Running the motor	Optimization	SMARTCARD operation		Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	-------------	------------------------	-------------------------	----------------------------	----------------------------	--	---------------------	----------------------	--------------	------------------------	--	---------------------	-------------------	-------------	---------------------------

Figure 6-45 Start / stop control EN954-1 category B - replacement of contactor

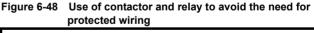


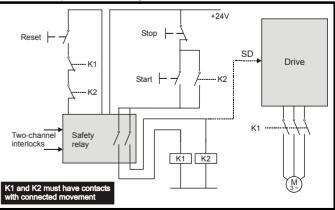
In the second example, illustrated in Figure 6-46 and Figure 6-47, a conventional high-integrity system which uses two safety contactors with auxiliary contacts with connected movement is replaced by a single SAFE TORQUE OFF (SECURE DISABLE) system. This arrangement meets EN954-1 category 3.

Figure 6-46 Category 3 interlock using electromechanical safety contactors

The safety function of the example circuit is to ensure that the motor does not operate when the interlocks are not signalling a safe state. The safety relay is used to check the two interlock channels and detect faults in those channels. The stop/start buttons are shown for completeness as part of a typical arrangement, they do not carry out a safety function and are not necessary for the safe operation of the circuit Figure 6-47 Category 3 interlock using SAFE TORQUE OFF (SECURE DISABLE) with protected wiring

In the conventional system, a contactor failure in the unsafe direction is detected the next time the safety relay is reset. Since the drive is not part of the safety system it has to be assumed that AC power is always available to drive the motor, so two contactors in series are required in order to prevent the first failure from causing an unsafe event (i.e. the motor driven).


With SAFE TORQUE OFF (SECURE DISABLE) there are no single faults in the drive which can permit the motor to be driven. Therefore it is not necessary to have a second channel to interrupt the power connection, nor a fault detection circuit.


It is important to note that a single short-circuit from the Enable input (STO) to a DC supply of approximately +24V would cause the drive to be enabled. For this reason, Figure 6-47 shows the wire from the Enable input to the safety relay as "protected wiring" so that the possibility of a short circuit from this wire to the DC supply can be excluded, as specified in ISO 13849-2. The wiring can be protected by placing it in a segregated cable duct or other enclosure, or by providing it with a grounded shield. The shield is provided to avoid a hazard from an electrical fault. It may be grounded by any convenient method, no special EMC precautions are required.

If the use of protected wiring is not acceptable, so that the possibility of this short circuit must be allowed for, then a relay must be used to monitor the state of the Enable input, together with a single safety contactor to prevent operation of the motor after a fault. This is illustrated in Figure 6-48.

NOTE

The auxiliary relay K2 must be located in the same enclosure and close to the drive, with its coil connected as closely as possible to the drive enable (STO) input.

For further applications guidance, refer to the *Unidrive SP Advanced User Guide*.

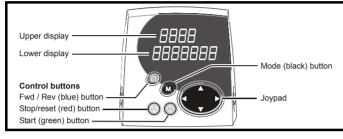
Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostica	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started		the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

7 Getting Started

This chapter introduces the user interfaces, menu structure and security level of the drive.

7.1 Understanding the display

There are two keypads available for the Unidrive SP. The SM-Keypad has an LED display and the SM-Keypad Plus has an LCD display. Both keypads can be installed on the drive but the SM-Keypad Plus can also be remotely mounted on an enclosure door.

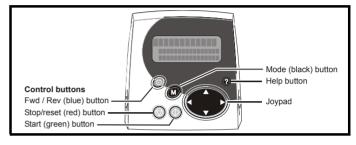

7.1.1 SM-Keypad (LED)

The display consists of two horizontal rows of 7 segment LED displays.

The upper display shows the drive status or the current menu and parameter number being viewed.

The lower display shows the parameter value or the specific trip type.

Figure 7-1 SM-Keypad


7.1.2 SM-Keypad Plus (LCD)

The display consists of three lines of text.

The top line shows the drive status or the current menu and parameter number being viewed on the left, and the parameter value or the specific trip type on the right.

The lower two lines show the parameter name or the help text.

Figure 7-2 SM-Keypad Plus

NOTE

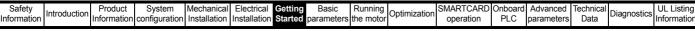
The red stop 💿 button is also used to reset the drive.

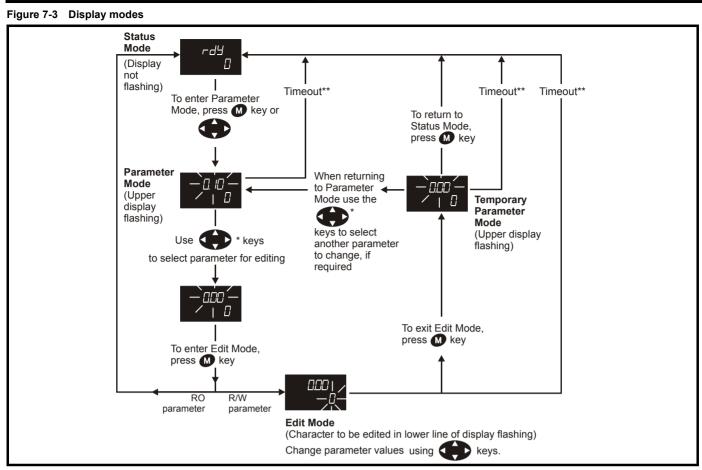
Both the SM-Keypad and the SM-Keypad Plus can indicate when a SMARTCARD access is taking place or when the second motor map is active (menu 21). These are indicated on the displays as follows.

	SM-Keypad	SM-Keypad Plus
SMARTCARD access taking place	The decimal point after the fourth digit in the upper display will flash.	The symbol 'CC' will appear in the lower left hand corner of the display
Second motor map active		The symbol 'Mot2' will appear in the lower left hand corner of the display

7.2 Keypad operation

7.2.1 Control buttons


The keypad consists of:


1. Joypad - used to navigate the parameter structure and change parameter values.

- 2. Mode button used to change between the display modes parameter view, parameter edit, status.
- 3. Three control buttons used to control the drive if keypad mode is selected.
- 4. Help button (SM-Keypad Plus only) displays text briefly describing the selected parameter.

The Help button toggles between other display modes and parameter help mode. The up and down functions on the joypad scroll the help text to allow the whole string to be viewed. The right and left functions on the joypad have no function when help text is being viewed.

The display examples in this section show the SM-Keypad 7 segment LED display. The examples are the same for the SM-Keypad Plus except that the information displayed on the lower row on the SM-Keypad is displayed on the right hand side of the top row on the SM-Keypad Plus.

* can only be used to move between menus if L2 access has been enabled (Pr **0.49**). Refer to section 7.9 on page 106. **Timeout defined by Pr **11.41** (default value = 240s).

Figure 7-4 Mode examples

es without careful The driv

WARNING

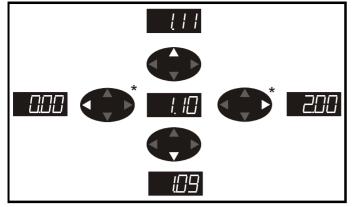
Do not change parameter values without careful consideration; incorrect values may cause damage or a safety hazard.

NOTE

When changing the values of parameters, make a note of the new values in case they need to be entered again.

NOTE

For new parameter-values to apply after the AC supply to the drive is interrupted, new values must be saved. Refer to section 7.7 *Saving parameters* on page 105.

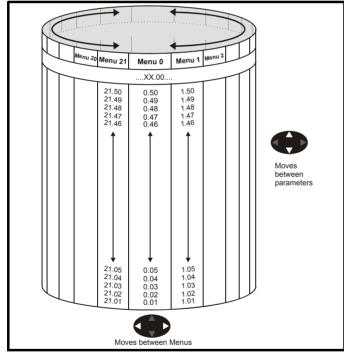

7.3 Menu structure

The drive parameter structure consists of menus and parameters.

The drive initially powers up so that only menu 0 can be viewed. The up and down arrow buttons are used to navigate between parameters and once level 2 access (L2) has been enabled (see Pr **0.49**) the left and right buttons are used to navigate between menus. For further information, refer to section 7.9 *Parameter access level and security* on page 106.

Safety Information	Introduction	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information

Figure 7-5 Parameter navigation


* can only be used to move between menus if L2 access has been enabled (Pr **0.49**). Refer to section 7.9 *Parameter access level and security* on page 106.

The menus and parameters roll over in both directions.

i.e. if the last parameter is displayed, a further press will cause the display to rollover and show the first parameter.

When changing between menus the drive remembers which parameter was last viewed in a particular menu and thus displays that parameter.

Figure 7-6 Menu structure

7.4 Menu 0

Menu 0 is used to bring together various commonly used parameters for basic easy set up of the drive.

Appropriate parameters are copied from the advanced menus into menu 0 and thus exist in both locations.

For further information, refer to Chapter 8 *Basic parameters* on page 109.

Figure 7-7 Menu 0 copying Menu 2 ÷ 2.21 5 Menu 0 Menu 1 0.04 5 0.05 0 0.06 150 0 1.14 Menu 4 4.07 150

S	Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running		SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Info	ormation	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

7.5 Advanced menus

The advanced menus consist of groups or parameters appropriate to a specific function or feature of the drive. Menus 0 to 22 can be viewed on all keypads. Menus 40 and 41 are specific to the SM-Keypad Plus (LCD). Menus 70 to 91 can be viewed with an SM-Keypad Plus (LCD) only when an SM-Applications is installed.

Table 7-1 Advanced menu descriptions

Menu	Description	LED	LCD
0	Commonly used basic set up parameters for quick / easy programming	~	~
1	Frequency / speed reference	✓	✓
2	Ramps	✓	✓
3	Slave frequency, speed feedback and speed control	~	~
4	Torque and current control	√	~
5	Motor control	✓	✓
6	Sequencer and clock	✓	✓
7	Analog I/O	✓	✓
8	Digital I/O	✓	✓
9	Programmable logic, motorized pot and binary sum	~	~
10	Status and trips	✓	✓
11	General drive set-up	✓	✓
12	Threshold detectors and variable selectors	✓	✓
13	Position control	✓	✓
14	User PID controller	✓	✓
15, 16, 17	Solutions Module set-up	~	~
18	Application menu 1	√	~
19	Application menu 2	✓	✓
20	Application menu 3	√	✓
21	Second motor parameters	✓	✓
22	Additional Menu 0 set-up	✓	✓
40	Keypad configuration menu	Х	✓
41	User filter menu	Х	✓
70	PLC registers	Х	✓
71	PLC registers	Х	✓
72	PLC registers	Х	✓
73	PLC registers	Х	✓
74	PLC registers	Х	~
75	PLC registers	Х	~
85	Timer function parameters	Х	~
86	Digital I/O parameters	Х	✓
88	Status parameters	Х	✓
90	General parameters	Х	✓
91	Fast access parameters	Х	✓

7.5.1 SM-Keypad set-up menus

Table 7-2 Menu 40 parameter descriptions

	Parameter	Range(兌)
40.00	Parameter 0	0 to 32767
40.01	Language selection	English (0), Custom (1), French (2), German (3), Spanish (4), Italian (5)
40.02	Software version	999999
40.03	Save to flash	Idle (0), Save (1), Restore (2), Default (3)
40.04	LCD contrast	0 to 31
40.05	Drive and attribute database upload was bypassed	Updated (0), Bypass (1)
40.06	Browsing favourites control	Normal (0), Filter (1)
40.07	Keypad security code	0 to 999
40.08	Communication channel selection	Disable (0), Slot1 (1), Slot2 (2), Slot3 (3), Slave (4), Direct (5)
40.09	Hardware key code	0 to 999
40.10	Drive node ID (Address)	0 to 255
40.11	Flash ROM memory size	4Mbit (0), 8Mbit (1)
40.18	Assistance on action threshold parameter	0 to 499.99
40.19	String database version number	0 to 999999
40.20	Screen saver strings and enable	None (0), Default (1), User (2)
40.21	Screen saver interval	0 to 600
40.22	Turbo browse time interval	0 to 200ms

Table 7-3 Menu 41 parameter descriptions

	Parameter	Range(‡)
41.00	Parameter 0	0 to 32767
41.01 to 41.50	Browsing filter source F01 to F50	Pr 0.00 to Pr 391.51
41.51	Browsing favourites control	Normal (0), Filter (1)

Safety	Induced and the second	Product	System	Mechanical	Electrical	Getting	Basic	Running	0	SMARTCARD	Onboard	Advanced	Technical	Discussion	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

7.5.2 Display messages

The following tables indicate the various possible mnemonics which can be displayed by the drive and their meaning.

Trip types are not listed here but can be found in Chapter 8 *Basic parameters* on page 109 if required.

Table 7-4 Alarm indications

Lower	Description
display	
br.rS	Braking resistor overload
	$^{\rm T}$ I²t accumulator (Pr $10.37)$ in the drive has reached lue at which the drive will trip and the braking IGBT is
Hot	Heatsink or control board or inverter IGBT over temperature alarms are active
	eatsink temperature has reached a threshold and the p 'Oh2' if the temperature continues to rise (see the
or	
	t temperature around the control PCB is approaching nperature threshold (see the 'O.CtL' trip).
OVLd	Motor overload
	ccumulator in the drive has reached 75% of the value at will be tripped and the load on the drive is >100%
Auto tune	Autotune in progress
The autotune patternatively on	rocedure has been initialised. 'Auto' and 'tunE' will flash the display.
Lt	Limit switch is active
	limit switch is active and that it is causing the motor to forward limit switch with forward reference etc.)
PLC	Onboard PLC program is running
	C program is installed and running. The lower display once every 10s.

Table 7-5 Solutions Module and SMARTCARD status indications on power-up

Lower display	Description
boot	
drive during por	t is being transferred from the SMARTCARD to the wer-up. For further information, please refer to section up from the SMARTCARD on every power up (Pr 11.42 age 151.
cArd	
The drive is wri	ting a parameter set to the SMARTCARD during power-
up.	
For further infor	mation, please refer to section 11.2.3 Auto saving

parameter changes (Pr 11.42 = Auto (3)) on page 151.

loAding

The drive is writing information to a Solutions Module.

7.6 Changing the operating mode

Changing the operating mode returns all parameters to their default value, including the motor parameters. (Pr **0.49** *Security status* and Pr **0.34** *User security code* are not affected by this procedure.)

Procedure

Use the following procedure only if a different operating mode is required:

- 1. Ensure the drive is not enabled, i.e. terminal 31 is open or Pr 6.15 is Off (0)
- Enter either of the following values in Pr xx.00, as appropriate: 1253 (EUR, 50Hz AC supply frequency) 1254 (USA, 60Hz AC supply frequency)
- 3. Change the setting of Pr **0.48** as follows:

Pr 0.48 setting		Operating mode
0248 026n L2	1	Open-loop
С. UEEE	2	Closed-loop vector
0,48 56700	3	Closed-loop Servo
048 FESEn	4	Regen (See the <i>Unidrive SP Regen</i> <i>Installation Guide</i> for more information about operating in this mode)

The figures in the second column apply when serial communications are used.

- 4. Either:
- Press the red 💿 reset button
- Toggle the reset digital input
- Carry out a drive reset through serial communications by setting Pr 10.38 to 100 (ensure that Pr. xx.00 returns to 0).

NOTE

Entering 1253 or 1254 in Pr **xx.00** will only load defaults if the setting of Pr **0.48** has been changed.

7.7 Saving parameters

When changing a parameter in Menu 0, the new value is saved when pressing the
Mode button to return to parameter view mode from parameter edit mode.

If parameters have been changed in the advanced menus, then the change will not be saved automatically. A save function must be carried out.

Procedure

Enter 1000* in Pr. xx.00

Either:

•

- Press the red 💿 reset button
- Toggle the reset digital input
- Carry out a drive reset through serial communications by setting Pr **10.38** to 100 (ensure that Pr. **xx.00** returns to 0).

*If the drive is in the under voltage trip state or is being supplied from a low voltage DC supply, a value of 1001 must be entered into Pr **xx.00** to perform a save function.

7.8 Restoring parameter defaults

Restoring parameter defaults by this method saves the default values in the drive's memory. (Pr **0.49** and Pr **0.34** are not affected by this procedure.)

Procedure

- Ensure the drive is not enabled, i.e. terminal 31 is open or Pr 6.15 is Off (0)
- 2. Enter 1233 (EUR 50Hz settings) or 1244 (USA 60Hz settings) in Pr **xx.00**.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data		Information

- 3. Either:
- Toggle the reset digital input
- Carry out a drive reset through serial communications by setting Pr **10.38** to 100 (ensure that Pr. **xx.00** returns to 0).

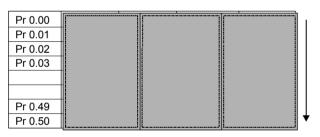
7.9 Parameter access level and security

The parameter access level determines whether the user has access to menu 0 only or to all the advanced menus (menus 1 to 22) in addition to menu 0.

The User Security determines whether the access to the user is read only or read write.

Both the User Security and Parameter Access Level can operate independently of each other as shown in the table below:

Parameter Access Level	User Security	Menu 0 status	Advanced menus status
L1	Open	RW	Not visible
L1	Closed	RO	Not visible
L2	Open	RW	RW
L2	Closed	RO	RO


RW = Read / write access RO = Read only access

The default settings of the drive are Parameter Access Level L1 and user Security Open, i.e. read / write access to Menu 0 with the advanced menus not visible.

7.9.1 Access Level

The access level is set in \mbox{Pr} **0.49** and allows or prevents access to the advanced menu parameters.

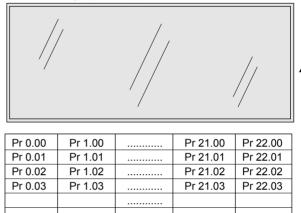
L1 access selected - Menu 0 only visible

L2 access selected - All parameters visible

Pr 0.00	Pr 1.00		Pr 21.00	Pr 22.00
Pr 0.01	Pr 1.01		Pr 21.01	Pr 22.01
Pr 0.02	Pr 1.02		Pr 21.02	Pr 22.02
Pr 0.03	Pr 1.03		Pr 21.03	Pr 22.03
Pr 0.49	Pr 1.49		Pr 21.30	Pr 22.28
Pr 0.50	Pr 1.50		Pr 21.31	Pr 22.29
	1	1		

7.9.2 Changing the Access Level

The Access Level is determined by the setting of Pr 0.49 as follows:


String	Value	Effect
L1	0	Access to menu 0 only
L2	1	Access to all menus (menu 0 to menu 22)

The Access Level can be changed through the keypad even if the User Security has been set.

7.9.3 User Security

The User Security, when set, prevents write access to any of the parameters (other than Pr. **0.49** and Pr **11.44** *Access Level*) in any menu.

User security open - All parameters: Read / Write access

Pr 0.50	Pr 1.50		Pr 21.31	Pr 22.29
User sec	urity closed	- All parame	eters: Read O	nly access

(except Pr **0.49** and Pr **11.44**)

Pr 21.30

Pr 22.28

		、 i		,	_
Pr 0.00	Pr 1.00		Pr 21.00	Pr 22.00	
Pr 0.01 /	/ Pr 1.01	/.	Pr 21.01	Pr 22.01	
Pr 0.02	Pr 1.02	//	Pr 21.02	Pr 22.02	
Pr 0.0⁄3/	Pr 1.03		Pr 21.03	Pr 22.03	
/		//			1
				$\overline{//}$	
Pr 0.49	Pr 1.49	/	Pr 21.30	/Pr 22.28	
Pr 0.50	Pr 1.50		Pr 21.31	Pr 22.29	•

Setting User Security

Pr 0.49

Pr 1.49

Enter a value between 1 and 999 in Pr **0.34** and press the **W** button; the security code has now been set to this value. In order to activate the security, the Access level must be set to Loc in Pr **0.49**. When the drive is reset, the security code will have been activated and the drive returns to Access Level L1. The value of Pr **0.34** will return to 0 in order to hide the security code. At this point, the only parameter that can be changed by the user is the Access Level Pr **0.49**.

Unlocking User Security

Select a read write parameter to be edited and press the *M* button, the upper display will now show CodE. Use the arrow buttons to set the

security code and press the M button.

With the correct security code entered, the display will revert to the parameter selected in edit mode.

If an incorrect security code is entered the display will revert to parameter view mode.

To lock the User Security again, set Pr **0.49** to Loc and press the loc reset button.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting		Running	Optimization		Onboard	Advanced		Diagnostics	UL Listing
Information		Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	Diagnostics	Information

Disabling User Security

Unlock the previously set security code as detailed above. Set Pr 0.34 to

0 and press the M button. The User Security has now been disabled, and will not have to be unlocked each time the drive is powered up to allow read / write access to the parameters.

7.10 Displaying parameters with nondefault values only

By entering 12000 in Pr **xx.00**, the only parameters that will be visible to the user will be those containing a non-default value. This function does not require a drive reset to become active. In order to deactivate this function, return to Pr **xx.00** and enter a value of 0.

Please note that this function can be affected by the access level enabled, refer to section 7.9 *Parameter access level and security* for further information regarding access level.

7.11 Displaying destination parameters only

By entering 12001 in Pr **xx.00**, the only parameters that will be visible to the user will be destination parameters. This function does not require a drive reset to become active. In order to deactivate this function, return to Pr **xx.00** and enter a value of 0.

Please note that this function can be affected by the access level enabled, refer to section 7.9 *Parameter access level and security* for further information regarding access level.

7.12 Serial communications

7.12.1 Introduction

The Unidrive SP has a standard 2-wire EIA485 interface (serial communications interface) which enables all drive set-up, operation and monitoring to be carried out with a PC or controller if required. Therefore, it is possible to control the drive entirely by serial communications without the need for a SM-keypad or other control cabling. The drive supports two protocols selected by parameter configuration:

- Modbus RTU
- CT ANSI

Modbus RTU has been set as the default protocol, as it is used with the PC-tools commissioning/start-up software as provided on the CD ROM.

The serial communications port of the drive is a RJ45 socket, which is isolated from the power stage and the other control terminals (see section 6.16 *Serial communications connections* for connection and isolation details).

The communications port applies a 2 unit load to the communications network.

USB/EIA232 to EIA485 Communications

An external USB/EIA232 hardware interface such as a PC cannot be used directly with the 2-wire EIA485 interface of the drive. Therefore a suitable converter is required.

Suitable USB to EIA485 and EIA232 to EIA485 isolated converters are available from Control Techniques as follows:

- CT USB Comms cable (CT Part No. 4500-0096)
- CT EIA232 Comms cable (CT Part No. 4500-0087)

When using one of the above converters or any other suitable converter with the Unidrive SP, it is recommended that no terminating resistors be connected on the network. It may be necessary to 'link out' the terminating resistor within the converter depending on which type is used. The information on how to link out the terminating resistor will normally be contained in the user information supplied with the converter.

7.12.2 Serial communications set-up parameters

The following parameters need to be set according to the system requirements.

0.3	0.35 {11.24} Serial mode											
R۱	N	Txt								US		
ţ			AnSI (rtU (1			₽			rtU (′	1)		

This parameter defines the communications protocol used by the 485 comms port on the drive. This parameter can be changed via the drive keypad, via a Solutions Module or via the comms interface itself. If it is changed via the comms interface, the response to the command uses the original protocol. The master should wait at least 20ms before send a new message using the new protocol. (Note: ANSI uses 7 data bits, 1 stop bit and even parity; Modbus RTU uses 8 data bits, 2 stops bits and no parity.)

Comms value	String	Communications mode
0	AnSI	ANSI
1	rtU	Modbus RTU protocol
2	Lcd	Modbus RTU protocol, but with an SM- Keypad only

ANSIx3.28 protocol

Full details of the CT ANSI communications protocol are the *Advanced User Guide*.

Modbus RTU protocol

Full details of the CT implementation of Modbus RTU are given in the *Advanced User Guide*.

Modbus RTU protocol, but with an SM-Keypad only

This setting is used for disabling communications access when the SM-SM-Keypad is used as a hardware key. See the *Advanced User Guide* for more details.

0	.36 {	11.25}	Serial	comm	unicat	ions baud rate						
	RW	Txt								US		
Û				4), 960 8400 (7)0 (5), 7),	分			19200	(6)		

* only applicable to Modbus RTU mode

This parameter can be changed via the drive keypad, via a Solutions Module or via the comms interface itself. If it is changed via the comms interface, the response to the command uses the original baud rate. The master should wait at least 20ms before sending a new message using the new baud rate.

NOTE

When using the CT EIA232 Comms cable the available baud rate is limited to 19.2k baud.

0.3	0.37 {11.23} Serial communications address												
R۱	W Txt US												
ţ	① to 247								1				

Used to define the unique address for the drive for the serial interface. The drive is always a slave.

Modbus RTU

When the Modbus RTU protocol is used addresses between 0 and 247 are permitted. Address 0 is used to globally address all slaves, and so this address should not be set in this parameter

ANSI

When the ANSI protocol is used the first digit is the group and the second digit is the address within a group. The maximum permitted group number is 9 and the maximum permitted address within a group is

ſ	Safety Information	Introduction	Product Information	System configuration	Mechanical Installation		Startad		Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing
Ľ	mormation		Information	configuration	Installation	Installation	Starteu	parameters			operation	I LO	parameters	Data		inionnation

9. Therefore, Pr 0.37 is limited to 99 in this mode. The value 00 is used to globally address all slaves on the system, and x0 is used to address all slaves of group x, therefore these addresses should not be set in this parameter.

Safety Information	Introduction	Product Information	Oystoni	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
			U				-								

8

8 Basic parameters Menu 0 is used to bring together various commonly used parameters for basic easy set up of the drive. All the parameters in menu 0 appear in other menus in the drive (denoted by {...}).

Menus 11 and 22 can be used to change most of the parameters in menu 0. Menu 0 can also contain up to 59 parameters by setting up menu 22.

Single line descriptions 8.1

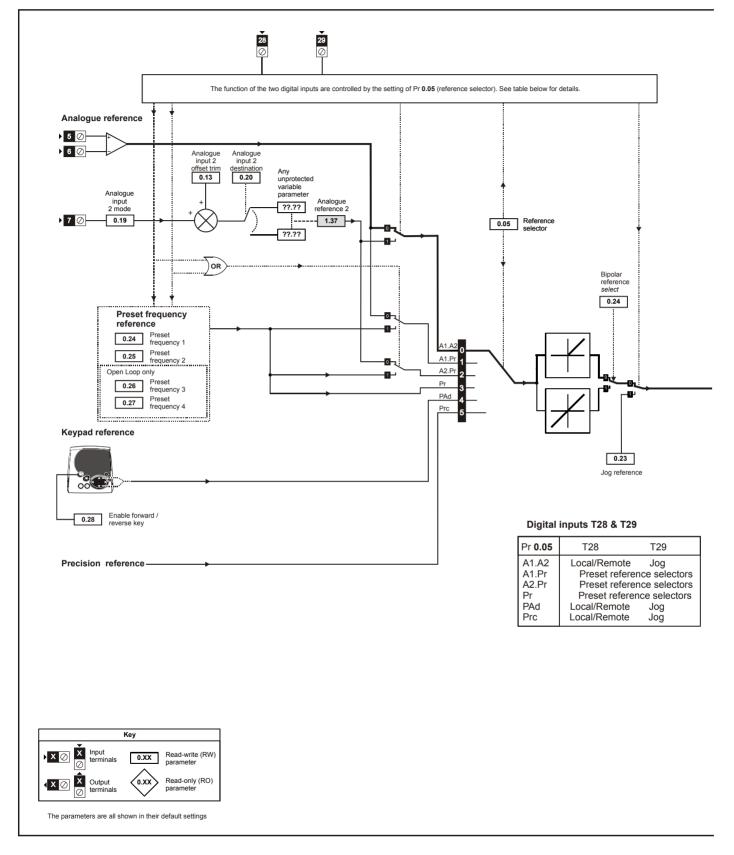
1	- <i>i</i>			Range(\$)			Default(⇔)		I		-			
	Parameter		OL	VT	SV	OL	VT	SV			Iy	ре		
0.00	xx.00	{ x.00 }		0 to 32,767			0		RW	Uni				
0.01	Minimum reference clamp	{1.07}	±3,000.0Hz	±SPEED_LIM	IT_MAX Hz/rpm		0.0		RW	Bi			PT	
0.02	Maximum reference clamp	{1.06 }	0 to 3,000.0Hz	_	T_MAX Hz/rpm	EUR> 50.0 USA> 60.0	EUR> 1,500.0 USA> 1,800.0	3,000.0	RW	Uni				US
0.03	Acceleration rate	{2.11}	0.0 to 3,200.0 s/100Hz	s/1,0	3,200.000 00rpm	5.0	2.000	0.200	RW	Uni				US
0.04	Deceleration rate	{2.21}	0.0 to 3,200.0 s/100Hz	s/1,0	3,200.000 00rpm	10.0	2.000	0.200	RW	Uni				US
0.05	Reference select	{1.14}	()/	Prc (5)	, Pr (3), PAd (4),		A1.A2 (0)		RW	Txt		NC		US
0.06	Current limit	{4.07 }		Current_limit_m	nax %	138.1	165.7	150.0	RW	Uni		RA		US
0.07	OL> Voltage mode select	{5.14 }	Ur_S (0), Ur (1), Fd (2), Ur_Auto (3), Ur_I (4), SrE (5)			Ur_I (4)			RW	Txt				US
	CL> Speed controller P gain	{3.10}		0.0000 to 6.	5535 1/rad s ⁻¹		0.0300	0.0100	RW	Uni				US
0.08	OL> Voltage boost	{5.15}	0.0 to 25.0% of motor rated voltage			1.0			RW	Uni				US
	CL> Speed controller I gain	{3.11}		0.00 to 6	55.35 1/rad		0.10	1.00	RW	Uni				US
0.09	OL> Dynamic V/F	{5.13}	OFF (0) or On (1)			0			RW					US
0.10	CL> Speed controller D gain OL> Estimated motor speed	{3.12} {5.04}	±180,000 rpm	0.00000 to	0.65535 (s)		0.000	000	RW RO	Uni Bi	FI	NC	PT	US
0.10	CL> Motor speed	{3.02}		±Speed_	_max rpm				RO	Bi	FI	NC	PT	
	OL & VT> Drive output frequency	{5.01}	±Speed_freq_ max Hz	±1250 Hz					RO	Bi	FI	NC	PT	
0.11	SV> Drive encoder position	{3.29}			0 to 65,535 1/2 ¹⁶ ths of a revolution				RO	Uni	FI	NC	PT	
0.12	Total motor current	{4.01 }	0 to	Drive_current_r	nax A				RO	Uni	FI	NC	PT	
0.13	OL & VT> Motor active current	{4.02 }	±Drive_curi	rent_max A					RO	Bi	FI	NC	PT	
-		{7.07}			±10.000 %		1	0.000	RW	Bi				US
0.14 0.15	Torque mode selector Ramp mode select	{4.11} {2.04}	0 to 1 FASt (0) Std (1) Std.hV (2)	FAS	to 4 St (0) d (1)	Spee	ed control mode Std (1)	(0)	RW RW	Uni Txt				US US
0.16	OL> T28 and T29 auto- selection disable	{8.39 }	OFF (0) or On (1)			OFF (0)			RW	Bit				US
	CL> Ramp enable	{2.02 }		OFF (0)	or On (1)		On	(1)	RW	Bit				US
0.17	OL> T29 digital input destination	{8.26 }	Pr 0.00 to Pr 21.51			Pr 6.31			RW	Uni	DE		PT	US
	CL> Current demand filter time constant	{4.12 }			25.0 ms		0.0	0	RW					US
0.18	Positive logic select	{8.29 }		OFF (0) or On (On (1)		RW	Bit			PT	US
0.19	Analog input 2 mode	{7.11}		0-0 (1), 4-20tr (2 (4), 20-4 (5), V0			VOLt (6)		RW	Txt				US
0.20	Analog input 2 destination	{7.14 }		Pr 0.00 to Pr 21.			Pr 1.37		RW	Uni	DE		PT	US
0.21	Analog input 3 mode	{7.15}		0-0 (1), 4-20tr (2 20-4 (5), VOLt (6 th (8), th.diSp (9	i), th.SC (7),		th (8)		RW	Txt			PT	US
0.22	Bipolar reference select	{1.10 }		OFF (0) or On (,		OFF (0)			Bit				US
0.23	Jog reference	{1.05}	0 to 400.0 Hz		00.0 rpm		0.0			Uni		\vdash		US
0.24	Pre-set reference 1	{ 1.21 }		peed_limit_max			0.0		RW			\vdash		US
0.25	Pre-set reference 2 OL> Pre-set reference 3	{1.22} {1.23}	±Speed_freq_ max Hz/rpm	peed_limit_max	трпп 	0.0	0.0		RW RW			┢──┤		US US
0.26	CL> Overspeed threshold	{3.08}		0 to 40	,000 rpm		0		RW	Uni		\vdash	┝──┘	US
	OL> Pre-set reference 4	{1.24}	±Speed_freq_ max Hz/rpm			0.0			RW					US
0.27	CL> Drive encoder lines per revolution	{3.34}		0 to 5	50,000		1024	4096	RW	Uni				US
	Keypad fwd/rev key enable	{6.13 }		OFF (0) or On (1)		OFF (0)	1	D\A/	Bit		├ ──	<u> </u>	US

Safety Informat			Mechanical Elect Installation Install		Basic Running rameters the motor		RTCARD Onboar eration PLC	d Advanced T parameters	echnic Data	^{al} Dia	agnos			isting nation
	Parameter			Range(‡)			Default(⇔)	I			Ту	ре		
0.29	SMARTCARD parameter	{11.36}	OL	VT 0 to 999	SV	OL	VT 0	SV	RO	Uni		NC	PT	US
0.30	data Parameter copying	{11.42}	nonE (0) rEAc		AutO (3), boot (4)		nonE (0)		RW	Txt	<u> </u>	NC	• •	*
0.30	Drive rated voltage	{11.42} {11.33}		400 (1), 575 (2)	(). ()				RO	Txt	 		PT	
0.32	Maximum Heavy Duty current rating	{11.32}	()/	0.00 to 9999.99	., .,				RO	Uni		NC	PT	
0.22	OL> Catch a spinning motor	{6.09 }	0 to 3			0			RW	Uni			-	US
0.33	VT> Rated rpm autotune	{5.16}		0 to 2			0		RW	Uni				US
0.34	User security code	{11.30}		0 to 999			0		RW	Uni		NC	PT	PS
0.35	Serial comms mode	{11.24}		SI (0), rtu (1), Lo	()		rtU (1)		RW	Txt				US
0.36	Serial comms baud rate	{11.25}	9600 (57600	1), 1200 (2), 24 5), 19200 (6), 3 0 (8) Modbus R 0 (9) Modbus R	TU only,		19200 (6)		RW	Txt				US
0.37	Serial comms address	{11.23}		0 to 247			1		RW	Uni				US
0.38	Current loop P gain	{4.13 }		0 to 30,000		All voltage ratings: 20	200V dr 400V dr 575V dr 690V dr	ive: 150 ive: 180	RW	Uni				US
0.39	Current loop I gain	{4.14 }		0 to 30,000		All voltage ratings 40	200V driv 400V driv 575V driv 690V driv	ve: 2000 ve: 2400	RW	Uni				us
0.40	Autotune	{5.12}	0 to 2	0 to 4	0 to 6		0		RW	Uni				
0.41	Maximum switching frequency	{5.18 }		3 (0), 4 (1), 6 (2	·	3 (0)	6 (2)	RW	Txt		RA		US
0.42	No. of motor poles	{5.11}	0 to	60 (Auto to 120) pole)	0 (A	uto)	6 POLE (3)	RW	Txt				US
0.43	OL & VT> Motor rated power factor	{5.10 }	0.000 t	o 1.000		0.8	50		RW	Uni				US
	SV> Encoder phase angle	{3.25}			0.0 to 359.9°			0.0	RW	Uni				US
0.44	Motor rated voltage	{5.09 }	0 to A	AC_voltage_set	_max V	400V drive 5	00V drive: 230 :: EUR> 400, U 75V drive: 575 90V drive: 690	SA> 460	RW	Uni		RA		US
0.45	OL & VT> Motor rated full load speed (rpm)	{5.08 }	0 to 180,000 rpm	0.00 to 40,000.00 rpm		EUR> 1,500 USA> 1,800	EUR> 1,450.00 USA> 1,770.00		RW	Uni				US
	SV> Motor thermal time constant	{4.15}			0.0 to 3000.0			20.0	RW	Uni				US
0.46	Motor rated current	{5.07 }	0 to	Rated_current_	max A	Drive r	ated current [1'	1.32]	RW	Uni		RA		US
0.47	Rated frequency	{5.06 }	0 to 3,000.0 Hz	0 to 1,250.0 Hz		EUR> USA>			RW	Uni				US
0.48	Operating mode selector	{11.31}	S	n LP (1), CL VE ErVO (3), rEgEr	n (4)	OPEn LP (1)	CL VECt (2)	SErVO (3)	RW	Txt		NC	PT	
0.49	Security status	{11.44}	Ľ	1 (0), L2 (1), Lo	()					Txt			PT	US
0.50	Software version	{11.29}		1.00 to 99.99					RO	Uni		NC	PT	
0.51	Action on trip detection	{10.37}		0 to 15			0		RW	Uni				US

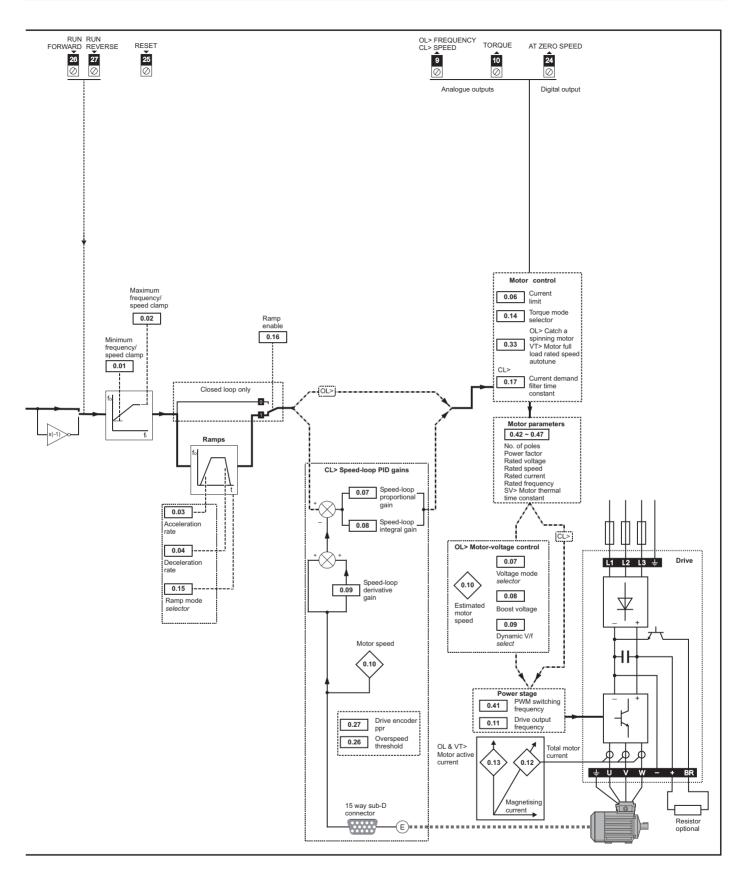
 0.51
 Action on trip detection
 {10.37}
 0 to 15

 * Modes 1 and 2 are not user saved, Modes 0, 3 and 4 are user saved

 Key:


Coding	Attribute
OL	Open loop
	Closed loop vector and Servo
VT	Closed loop vector
SV	Servo
{X.XX}	Copied advanced parameter
RW	Read/write: can be written by the user
RO	Read only: can only be read by the user
Bit	1 bit parameter: 'On' or 'OFF' on the display
Bi	Bipolar parameter
Uni	Unipolar parameter
Txt	Text: the parameter uses text strings instead of numbers.
FI	Filtered: some parameters which can have rapidly changing values are filtered when displayed on the drive keypad for easy viewing.
DE	Destination: This parameter selects the destination of an input or logic function.

Coding	Attribute
RA	Rating dependent: this parameter is likely to have different values and ranges with drives of different voltage and current ratings. Parameters with this attribute will not be transferred to the destination drive by SMARTCARDs when the rating of the destination drive is different from the source drive and the file is a parameter file. However, with software V01.09.00 and later the value will be transferred if only the current rating is different and the file is a differences from default type file.
NC	Not copied: not transferred to or from SMARTCARDs during copying.
PT	Protected: cannot be used as a destination.
US	User save: parameter saved in drive EEPROM when the user initiates a parameter save.
PS	Power-down save: parameter automatically saved in drive EEPROM when the under volts (UV) trip occurs. With software version V01.08.00 and later, power-down save parameters are also saved in the drive when the user initiates a parameter save.


Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	 Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
monnation		mormation	configuration	motanation	motanation	otaricu	parameters		operation	1 20	parameters	Data		mormation

Safety Information Introduction Product System Mechanical Electrical Getting Basic Running Information Information configuration Installation Installation Started parameters the motor	mization SMARTCARD Onboard Advanced Technical Diagnostics UL Listin Information
--	---

Safety		Product	Svstem	Mechanical	Electrical	Getting	Basic	Runnina		SMARTCARD	Onhoard	Advanced	Technical		UL Listina
Information	Introduction			Installation		Started			Optimization	operation		parameters	Data	Diagnostics	Information
			J								-				

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	011000.0	Advanced	Technical	Diagnostics	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

8.2 Full descriptions

8.2.1 Parameter x.00

0.0	0.00 {x.00} Parameter zero													
R١	Ν	Uni												
ţ			0 to 32,	767		₽			0					

Pr x.00 is available in all menus and has the following functions.

Value	Action
1000	Save parameters when under voltage is not active (Pr 10.16
	= 0) and low voltage DC supply is not active (Pr 6.44 = 0).
1001	Save parameters under all conditions
1070	Reset all option modules
1233	Load standard defaults
1244	Load US defaults
1253	Change drive mode with standard defaults
1254	Change drive mode with US defaults
1255	Change drive mode with standard defaults (excluding menus 15 to 20)
1256	Change drive mode with US defaults (excluding menus 15 to 20)
2001*	Transfer drive parameters as difference from default to a bootable SMARTCARD block in data block number 001
Зууу*	Transfer drive EEPROM data to a SMART Card block number yyy
4ууу*	Transfer drive data as difference from defaults to SMART Card block number yyy
5ууу*	Transfer drive ladder program to SMART Card block number yyy
бууу*	Transfer SMART Card data block number yyy to the drive
7ууу*	Erase SMART Card data block number yyy
8ууу*	Compare drive parameters with SMART Card data block number yyy
9555*	Clear SMARTCARD warning suppression flag
9666*	Set SMARTCARD warning suppression card
9777*	Clear SMARTCARD read-only flag
9888*	Set SMARTCARD read-only flag
9999*	Erase SMARTCARD data block 1 to 499
110zy	Transfer electronic nameplate parameters to/from drive from/ to encoder. See the <i>Advanced User Guide</i> for more information on this function.
12000**	Display non-default values only
12001**	Display destination parameters only

* See Chapter 11 *SMARTCARD operation* on page 149 for more information of these functions.

** These functions do not require a drive reset to become active. All other functions require a drive reset to initiate the function.

8.2.2 Speed limits

0.0	01 {	1.07}	Minim	um ref	erence	cla	mp)			
R١	Ν	Bi							PT	US	
OL	€		±3,00	0.0Hz		₽			0.0		
CL	$\hat{\mathbb{V}}$	±SPEE	D_LIMI	T_MAX	Hz/rpm	⇒			0.0		

(When the drive is jogging, [0.01] has no effect.)

Open-loop

Set Pr 0.01 at the required minimum output frequency of the drive for both directions of rotation. The drive speed reference is scaled between Pr 0.01 and Pr 0.02. [0.01] is a nominal value; slip compensation may cause the actual frequency to be higher.

Closed-loop

Set Pr **0.01** at the required minimum motor speed for both directions of rotation. The drive speed reference is scaled between Pr **0.01** and Pr **0.02**.

0.0)2 {	1.06}	Maxin	num re	ferenc	e c	lamp)			
R١	N	Uni								US	
OL	€	(0 to 3,0	00.0Hz	<u>z</u>	⇔			EUR> 5 JSA> 6		
CL	Û	SPEEI	D_LIMIT	_MAX I	-Iz/rpm	⇔	VT		EUR> USA>	'	
	•						sv		3,00	0.00	

(The drive has additional over-speed protection.)

Open-loop

Set Pr **0.02** at the required maximum output frequency for both directions of rotation. The drive speed reference is scaled between Pr **0.01** and Pr **0.02**. **[0.02]** is a nominal value; slip compensation may cause the actual frequency to be higher.

Closed-loop

Set Pr **0.02** at the required maximum motor speed for both directions of rotation. The drive speed reference is scaled between Pr **0.01** and Pr **0.02**. For operating at high speeds see section 10.6 *High speed operation* on page 147.

8.2.3 Ramps, speed reference selection, current limit

0.0)3 {	2.11}	Accel	eratior	n rate					
R۱	N	Uni							US	
OL	ţ	0.0 t	o 3,200).0 s/10	00Hz	₽		5.0		
CL	介	0.0	000 to 3	'	00	⇔	VT	2.0	00	
	V		s/1,00	0rpm)			sv	0.2	200	

Set Pr 0.03 at the required rate of acceleration.

Note that larger values produce lower acceleration. The rate applies in both directions of rotation.

0.0)4 {2	2.21}	Decel	eratior	n rate					
R١	N	Uni							US	
OL	ţ	0.0 t	o 3,200).0 s/10	00Hz	₽		10.0		
CL	☆	0.0	000 to 3	'	00	⇔	VT	2.0	00	
02	v		s/1,00	00rpm			sv	0.2	00	

Set Pr **0.04** at the required rate of deceleration.

Note that larger values produce lower deceleration. The rate applies in both directions of rotation.

Introduction Optimization	MARTCARD Onboard operation PLC	Advanced Technical parameters Data	Diagnostics UL Listing Information
---------------------------	-----------------------------------	------------------------------------	---------------------------------------

0.0	.05 {1.14} Reference selector										
R١	N	Txt						NC		US	
Û			0 to	5		Û			A1.A2	(0)	

Use Pr 0.05 to select the required frequency/speed reference as follows:

Settir	ng	
A1.A2	0	Analog input 1 OR analog input 2 selectable by digital input, terminal 28
A1.Pr	1	Analog input 1 OR preset frequency/speed selectable by digital input, terminal 28 and 29
A2.Pr	2	Analog input 2 OR preset frequency/speed selectable by digital input, terminal 28 and 29
Pr	3	Pre-set frequency/speed
PAd	4	Keypad reference
Prc 5		Precision reference

Setting Pr **0.05** to 1, 2 or 3 will re-configure T28 and T29. Refer to Pr **8.39** (Pr **0.16** in OL) to disable this function.

0.	06 { /	4.07}	Curre	nt Lim	it					
R	W	Uni				F	RA		US	
							OL	138	8.1	
$\hat{\mathbb{V}}$	C	to Cu	rent_li	mit_ma	ax %	⇔	VT	16	5.7	
							sv	150	0.0	

Pr **0.06** limits the maximum output current of the drive (and hence maximum motor torque) to protect the drive and motor from overload.

Set Pr ${\bf 0.06}$ at the required maximum torque as a percentage of the rated torque of the motor, as follows:

$$[0.06] = \frac{T_R}{T_{RATED}} \times 100 \,(\%)$$

Where:

T_R Required maximum torque

TRATED Motor rated torque

Alternatively, set 0.06 at the required maximum active (torqueproducing) current as a percentage of the rated active current of the motor, as follows:

$$[0.06] = \frac{I_R}{I_{RATED}} \times 100 \,(\%)$$

Where:

I_R Required maximum active currentI_{RATED} Motor rated active current

8.2.4 Voltage boost, (open-loop), Speed-loop PID gains (closed-loop)

0.0	07 {	5.14}	Voltag	je mod	le sele	ctor				
R١	N	Txt							US	
OL	ţ	Ur_S Ur_	(0), Ui Auto (3 SrE		d (2), (4),	₽		Ur_I (4	4)	

Open-loop

There are six voltage modes available, which fall into two categories, vector control and fixed boost. For further details, refer to section *Pr* 0.07 {5.14} Voltage mode on page 137.

0.0)7 {	3.10}	0.07 {3.10} Speed controller proportional gain												
R١	Ν	Uni								US					
сі	☆	0.	0000 to		35	Û	VT		0.0	300					
02	Ŷ		1/rac	d s ⁻¹			sv		0.0	100					

Software V01.10.00 and later, the defaults are as above.

Software V01.09.01 and earlier, the default is 0.0100 in Closed-loop vector and servo mode.

Closed-loop

Pr **0.07** (**3.10**) operates in the feed-forward path of the speed-control loop in the drive. See Figure 13-4 on page 174 for a schematic of the speed controller. For information on setting up the speed controller gains, refer to Chapter 10 *Optimization* on page 136.

0.0)8 {	5.15}	Low f	requer	ncy vol	tag	0.08 {5.15} Low frequency voltage boost										
R١	N	Uni								US							
OL	ţ	0.0	to 25.0 rated v			⇒			1.0								

Open-loop

When **0.07** *Voltage mode selector* is set at **Fd** or **SrE**, set Pr **0.08** (**5.15**) at the required value for the motor to run reliably at low speeds.

Excessive values of Pr 0.08 can cause the motor to be overheated.

0.0)8 {	3.11}											
R١	N	Uni								US			
CL	☆	(0.00 to	655.35	5	Û	VT		0.1	10			
	V		1/r	ad			sv		1.0	00			

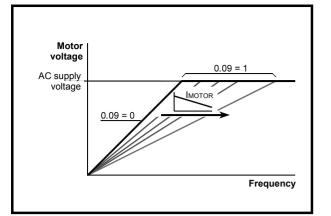
Software V01.10.00 and later, the defaults are as above.

Software V01.09.01 and earlier, the default is 1.00 in Closed-loop vector and servo modes.

Closed-loop

Pr **0.08** (3.11) operates in the feed-forward path of the speed-control loop in the drive. See Figure 13-4 on page 174 for a schematic of the speed controller. For information on setting up the speed controller gains, refer to Chapter 10 *Optimization* on page 136.

0.09 (5.13) Dynamic V/F / flux optimize select											
R١	N	Bit								US	
OL	\hat{v}	0	FF (0)	or On (1)	₽			OFF (0)	


Open-loop

Set Pr 0.09 (5.13) at 0 when the V/f characteristic applied to the motor is to be fixed. It is then based on the rated voltage and frequency of the motor.

Set Pr **0.09** at 1 when reduced power dissipation is required in the motor when it is lightly loaded. The V/f characteristic is then variable resulting in the motor voltage being proportionally reduced for lower motor currents. Figure 8-2 shows the change in V/f slope when the motor current is reduced.

Safety	Introduction	Product	-)	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard			Diagnostics	UL Listing
Informatio	1	Information	configuration	Installation	Installation	Started	parameters	the motor	opanization	operation	PLC	parameters	Data	Blaghootice	Information

Figure 8-2 Fixed and variable V/f characteristics

0.0)9 {	3.12}	Speed	l contr	oller d	iffe	renti	ial feed	back g	ain	
R١	N	Uni								US	
CL	\hat{v}	0.00	00000 to 0.65535(s)		₽			0.0000	00		

Closed-loop

Pr **0.09** (**3.12**) operates in the feedback path of the speed-control loop in the drive. See Figure 13-4 on page 174 for a schematic of the speed controller. For information on setting up the speed controller gains, refer to Chapter 10 *Optimization* on page 136.

8.2.5 Monitoring

0.1	10 {	5.04}	Estim	ated m	otor s	pee	d			
R	0	Bit	FI					NC	PT	
OL	ŷ	:		₽						

Open-loop

Pr **0.10** (5.04) indicates the value of motor speed that is estimated from the following:

0.12 *Post-ramp frequency reference*

0.42 Motor - no. of poles

0.1	10 {	3.02}	Motor	speed	1				
R	0	Bi	FI				NC	PT	
VT	€	±S	Speed_	m	₽				

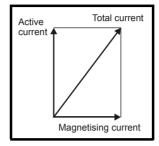
Closed-loop

Pr 0.10 (3.02) indicates the value of motor speed that is obtained from the speed feedback.

0.1	11 {	5.01}	Drive	output	freque	ency	/			
R	0	Bi	FI					NC	PT	
OL	\hat{v}	±SPE	ED_FR	REQ_M	AX Hz	₽				
VT	↕		±1250).0 Hz		Ŷ				

Open-loop & closed loop vector

Pr 0.11 displays the frequency at the drive output.


0.	11 {	3.29}	Drive	encode	er posi	tion	۱			
R	0	Uni	FI					NC	PT	
sv	ţ	1/2 ¹⁰	0 to 6 ⁶ ths of	5,535 a revoli	ution	⇔				

Servo

Pr **0.11** displays the position of the encoder in mechanical values of 0 to 65,535. There are 65,536 units to one mechanical revolution.

0.′	0.12 {4.01} Total motor curren									
R	RO Uni FI							NC	PT	
¢	0 to Drive_current_max A					⊳				

Pr **0.12** displays the rms value of the output current of the drive in each of the three phases. The phase currents consist of an active component and a reactive component, which can form a resultant current vector as shown in the following diagram.

The active current is the torque producing current and the reactive current is the magnetising or flux-producing current.

0.13	{4.02 }	Motor	active	currer	It			
RO	Bi	FI				NC	PT	
OL VT	±Dri	ve_cur	rent_m	ax A	Ϋ́			

Open-loop & closed loop vector

When the motor is being driven below its rated speed, the torque is proportional to [0.13].

0.′	13 {	7.07}	Analo	g inpu	t 1 offs	et t	rim				
R\	N	Bi		US							
sv	\hat{v}	±10.000 %				₽			0.00	0	

Servo

Pr **0.13** can be used to trim out any offset in the user signal to analog input 1.

8.2.6 Jog reference, Ramp mode selector, Stop and torgue mode selectors

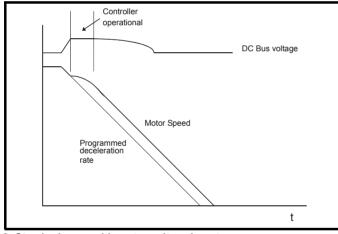
Pr 0.14 is used to select the required control mode of the drive as follows:

0.1	14 {	4.11}	Torqu	e mode	e selec	tor						
R١	Ν	Uni							US			
OL	ţ		0 te	o 1		₽	Sne	Speed control (0)				
CL	\hat{v}		0 te	o 4		₽	Speed control (0)					

Setting	Open-Loop	Closed-Loop
0	Frequency control	Speed control
1	Torque control	Torque control
2		Torque control with speed override
3		Coiler/uncoiler mode
4		Speed control with torque feed- forward

				_											
Safety		Product	System	Mechanical	Electrical	Getting	Basic	Runnina	.	SMARTCARD	Onboard	Advanced	Technical		UL Listing
	Introduction			Installation	Installation				Optimization	an anation	DIC		Dete	Diagnostics	Information
Information		information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	•	Information

0.1	15 {	2.04}	Ramp	mode	select					
R١	N	Txt							US	
OL	ţ		FAS Std Std.h	(1)		⇔		Std (1)	
CL	\hat{v}		FAS Std			⇒				


Pr 0.15 sets the ramp mode of the drive as shown below:

0: Fast ramp

Fast ramp is used where the deceleration follows the programmed deceleration rate subject to current limits. This mode must be used if a braking resistor is connected to the drive.

1: Standard ramp

Standard ramp is used. During deceleration, if the voltage rises to the standard ramp level (Pr **2.08**) it causes a controller to operate, the output of which changes the demanded load current in the motor. As the controller regulates the link voltage, the motor deceleration increases as the speed approaches zero speed. When the motor deceleration rate reaches the programmed deceleration rate the controller ceases to operate and the drive continues to decelerate at the programmed rate. If the standard ramp voltage (Pr **2.08**) is set lower than the nominal DC bus level the drive will not decelerate the motor, but it will coast to rest. The output of the ramp controller (when active) is a current demand that is fed to the frequency changing current controller (Open-loop modes) or the torque producing current controller (Closed-loop vector or Servo modes). The gain of these controllers can be modified with Pr **4.13** and Pr **4.14**.

2: Standard ramp with motor voltage boost

This mode is the same as normal standard ramp mode except that the motor voltage is boosted by 20%. This increases the losses in the motor, dissipating some of the mechanical energy as heat giving faster deceleration.

0.1	16 {	8.39}	T28 ai	T28 and T29 auto-selection disable									
R\	Ν	Bit	US										
OL	\hat{v}	0	OFF (0) or On (1)			₽			OFF ())			

Open-loop

When Pr **0.16** is set to 0, digital inputs T28 and T29 are set up automatically with destinations according to the setting of the reference select Pr **0.05**.

Ref	erence select 0.05	Terminal 28 function	Terminal 29 function
A1.A2 (0)	Reference selection by terminal input	Local / remote selector	Jog select
A1.Pr (1)	Analogue reference 1 or presets selected by terminal input	Preset select bit 0	Preset select bit 1
A2.Pr (2)	Analogue reference 2 or presets selected by terminal input	Preset select bit 0	Preset select bit 1
Pr (3)	Preset reference selected by terminal input	Preset select bit 0	Preset select bit 1
PAd (4)	Keypad reference selected	Local / remote selector	Jog select
Prc (5)	Precision reference selected	Local / remote selector	Jog select

Setting Pr **0.16** to 1 disables this automatic set-up, allowing the user to define the function of digital inputs T28 and T29.

0.16 {2.02} Ramp enable										
R	RW Bit								US	
CL	$\hat{\mathbb{T}}$	OFF (0) or On (1)			1)	₽		On (1)	

Setting Pr **0.16** to 0 allows the user to disable the ramps. This is generally used when the drive is required to closely follow a speed reference which already contains acceleration and deceleration ramps.

0.1	0.17 {8.26} T29 digital input destination											
R١	RW Uni DE								PT	US		
OL	\hat{v}	Pr 0.00 to Pr 21.51				₽			Pr 6 .3	31		

Open-loop

Pr 0.17 sets the destination of digital input T29. This parameter is normally set-up automatically according to the reference selected by Pr 0.05. In order to manually set-up this parameter, the T28 and T29 auto-selection disable (Pr 0.16) must be set.

0.1	0.17 {4.12} Current demand filter time constant										
R\	Ν	Uni	Uni US								
CL	\hat{v}	0.0 to 25.0 ms				₽			0.0		

Closed-loop

A first order filter, with a time constant defined by Pr **0.17**, is provided on the current demand to reduce acoustic noise and vibration produced as a result of position feedback quantisation noise. The filter introduces a lag in the speed loop, and so the speed loop gains may need to be reduced to maintain stability as the filter time constant is increased.

0.1	18 {	8.29}	Positi	Positive logic select								
R١	Ν	Bit PT US										
ţ	OFF (0) or On (1)					⇒			On (1	1)		

Pr **0.18** sets the logic polarity for digital inputs and digital outputs. This does not affect the drive enable input or the relay output.

0.1	0.19 {7.11} Analog input 2 mode										
R١	N	V Txt US									
ţ	0 to 6					⇒		VOLt (6)		

In modes 2 & 3 a current loop loss trip is generated if the current falls below 3mA.

In modes 2 & 4 the analog input level goes to 0.0% if the input current falls below 4mA.

Safety Information Introduction Product Information System configuration Mechanical Installation Electrical Installation Getting Started Basic parameters Running the motor	ion SMARTCARD Onboard Advanced Technical Diagnostics UL Listing PLC parameters Data Diagnostics
---	---

Pr value	Pr string	Mode	Comments
0	0-20	0 - 20mA	
1	20-0	20 - 0mA	
2	4-20.tr	4 - 20mA with trip on loss	Trip if I < 3mA
3	20-4.tr	20 - 4mA with trip on loss	Trip if I < 3mA
4	4-20	4 - 20mA with no trip on loss	0.0% if I ≤ 4mA
5	20-4	20 – 4mA with no trip on loss	100% if I ≤ 4mA
6	VOLt	Voltage mode	

0.2	0.20 {7.14} Analog input 2 destination												
R١	RW Uni DE PT US												
Û	C Pr 0.00 to Pr 21.51					₽			Pr 1.3	37			

Pr 0.20 sets the destination of analog input 2.

0.2	0.21 {7.15} Analog input 3 mode											
R١	N	V Txt PT US										
$\hat{\mathbb{Q}}$	0 to 9					⇒			th (8))		

Software V01.07.00 and later, the default is th (8)

Software V01.06.02 and earlier, the default is VOLt (6)

In modes 2 & 3 a current loop loss trip is generated if the current falls below 3mA.

In modes 2 & 4 the analog input level goes to 0.0% if the input current falls below 4mA.

Pr value	Pr string	Mode	Comments
0	0-20	0 - 20mA	
1	20-0	20 - 0mA	
2	4-20.tr	4 - 20mA with trip on loss	Trip if I < 3mA
3	20-4.tr	20 - 4mA with trip on loss	Trip if I < 3mA
4	4-20	4 - 20mA with no trip on loss	0.0% if I \leq 4mA
5	20-4	20 - 4mA with no trip on loss	100% if I \leq 4mA
6	VOLt	Voltage mode	
7	th.SC	Thermistor mode with short- circuit detection	Th trip if R > 3K3 Th reset if R < 1K8 ThS trip if R < 50R
8	th	Thermistor mode with no short-circuit detection	Th trip if R > 3K3 Th reset if R < 1K8
9	th.diSp	Thermistor mode with display only and no trip	

0.2	22 {	1.10}	Bipola	ar refe	rence s	sele	ct			
R١	Ν	Bit							US	
$\hat{\mathbb{G}}$	OFF (0) or On (1)					⇒		OFF (0)	

 $\ensuremath{\mathsf{Pr}}\xspace$ 0.22 determines whether the reference is uni-polar or bi-polar as follows:

Pr 0.22	Function	
0	Unipolar speed/frequency reference	
1	Bipolar speed/frequency reference	

0.2	23 {	1.05}	Jog re	ferenc	e					
R١	N	Uni							US	
OL	$\hat{\mathbb{T}}$		0 to 40	0.0 Hz		合		0.0		
CL	ţ	C) to 4,00	0.0 rpr	n	₽		0.0		

Enter the required value of jog frequency/speed.

The frequency/speed limits affect the drive when jogging as follows:

Frequency-limit parameter	Limit applies
Pr 0.01 Minimum reference clamp	No
Pr 0.02 Maximum reference clamp	Yes

0.2	24 {	1.21}	Prese	t refere	ence 1					
R١	N	Bi							US	
Û	±Speed_limit_max rpm					⇔		0.0)	

0.2	0.25 {1.22} Preset reference 2												
R\	N	Bi								US			
€	±Speed_limit_max rpm					₽			0.0				

0.2	0.26 {1.23} Preset reference 3											
R١	Ν	Bi								US		
OL	$\hat{\mathbb{T}}$	±Spee	±Speed_freq_max Hz/rpm						0.0			

Open-loop

If the preset reference has been selected (see Pr **0.05**), the speed at which the motor runs is determined by these parameters.

0.2	26 {	3.08}	.08} Overspeed thresho							
R١	Ν	Uni							US	
CL	ţ	(0 to 40,000 rpm					0		

Closed-loop

If the speed feedback (Pr **3.02**) exceeds this level in either direction, an overspeed trip is produced. If this parameter is set to zero, the overspeed threshold is automatically set to 120% x SPEED_FREQ_MAX.

0.2	0.27 {1.24} Preset reference 4													
R۱	N	Bi		US										
OL	\hat{v}	±Speed_freq_max Hz/rpm							0.0					

Open-loop

Refer to Pr 0.24 to Pr 0.26.

0.2	27 {	3.34}	Drive	encod	er lines	per re	volutio	n				
R١	N	Uni							US			
νт	ţ		0 to 5	0 000		⇔		1024	ł			
sv	\hat{v}		0 10 5	0,000		⇒	4096					

Closed-loop

Enter in Pr 0.27 the number of lines per revolution of the drive encoder.

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	UL Listing Information
			•									•		

0.2	0.28 (6.13) Keypad fwd/rev key enable											
R۱	N	Bit								US		
$\hat{\mathbf{r}}$		OFI	F (0) or	On (1)		Û			OFF (0)		

When a keypad is installed, this parameter enables the forward/reverse key.

0.2	.29 {11.36} SMARTCARD parameter data										
R	0	Uni						NC	PT	US	
\hat{v}			0 to 9	99		₽			0		

This parameter shows the number of the data block last transferred from a SMARTCARD to the drive.

0.3	0.30 {11.42} Parameter copying										
R١	N	Txt						NC		*	
\hat{v}			0 to ·	4		⇒			nonE	(0)	

* Modes 1 and 2 are not user saved, Modes 0, 3 and 4 are user saved.

NOTE

If Pr **0.30** is equal to 1 or 2 this value is not transferred to the EEPROM or the drive. If Pr **0.30** is set to a 3 or 4 the value is transferred.

Pr String	Pr value	Comment
nonE	0	Inactive
rEAd	1	Read parameter set from the SMARTCARD
Prog	2	Programming a parameter set to the SMARTCARD
Auto	3	Auto save
boot	4	Boot mode

For further information, please refer to Chapter 11 SMARTCARD operation on page 149.

0.3	1 {1	1.33}	Drive	rated v	oltage				
R	0	Txt					NC	PT	
ţ	20	00V (0),	400V (690V (5V (2),	⇒			

Pr 0.31 indicates the voltage rating of the drive.

0.3	32 {11.32} Maximum Heavy Duty current rating											
R	0	Uni						NC	PT			
€		0.00) to 9,99	99.99 A	١	₽						

Pr 0.32 indicates the maximum continuous Heavy Duty current rating.

0.3	0.33 (6.09) Catch a spinning motor											
R١	N	Uni								US		
OL	\hat{v}		0 to	o 3		₽			0			

Open-loop

When the drive is enabled with Pr **0.33** = 0, the output frequency starts at zero and ramps to the required reference. When the drive is enabled when Pr **0.33** has a non-zero value, the drive performs a start-up test to determine the motor speed and then sets the initial output frequency to the synchronous frequency of the motor. Restrictions may be placed on the frequencies detected by the drive as follows:

Pr 0.33	Function
0	Disabled
1	Detect all frequencies
2	Detect positive frequencies only
3	Detect negative frequencies only

0.33 {5.16} Rated rpm autotune

		••••							
R۱	N	Uni						US	
VТ	\hat{v}		0 te	o 2	₽		0		

Closed-loop vector

The motor rated full load rpm parameter (Pr 0.45) in conjunction with the motor rated frequency parameter (Pr 0.46) defines the full load slip of the motor. The slip is used in the motor model for closed-loop vector control. The full load slip of the motor varies with rotor resistance which can vary significantly with motor temperature. When Pr 0.33 is set to 1 or 2, the drive can automatically sense if the value of slip defined by Pr 0.45 and Pr 0.46 has been set incorrectly or has varied with motor temperature. If the value is incorrect parameter Pr 0.45 is automatically adjusted. The adjusted value in Pr 0.45 is not saved at power-down. If the new value is required at the next power-up it must be saved by the user.

Automatic optimisation is only enabled when the speed is above 12.5% of rated speed, and when the load on the motor load rises above 62.5% rated load. Optimisation is disabled again if the load falls below 50% of rated load.

For best optimisation results the correct values of stator resistance (Pr **5.17**), transient inductance (Pr **5.24**), stator inductance (Pr **5.25**) and saturation breakpoints (Pr **5.29**, Pr **5.30**) should be stored in the relevant parameters. These values can be obtained by the drive during an autotune (see Pr **0.40** for further details).

Rated rpm auto-tune is not available if the drive is not using external position/speed feedback.

The gain of the optimiser, and hence the speed with which it converges, can be set at a normal low level when $\Pr 0.33$ is set to 1. If this parameter is set to 2 the gain is increased by a factor of 16 to give faster convergence.

0.3	4 {1	11.30}	0) User security code									
R١	Ν	Uni						NC	PT		PS	
ţ			0 to 9	99		合			0			

If any number other than 0 is programmed into this parameter, user security is applied so that no parameters except parameter **0.49** can be adjusted with the keypad. When this parameter is read via a keypad it appears as zero.

For further details refer to section 7.9.3 User Security on page 106.

0.3	0.35 {11.24} Serial comms mode										
R١	N	Txt US									
ţ		AnSI (()), rtu (1), Lcd	(2)	Û			rtU (′)	

This parameter defines the communications protocol used by the EIA485 comms port on the drive. This parameter can be changed via the drive keypad, via a Solutions Module or via the comms interface itself. If it is changed via the comms interface, the response to the command uses the original protocol. The master should wait at least 20ms before send a new message using the new protocol. (Note: ANSI uses 7 data bits, 1 stop bit and even parity; Modbus RTU uses 8 data bits, 2 stops bits and no parity.)

Safety		Product	Svstem	Mechanical	Electrical	Gettina	Basic	Running		SMARTCARD	Onboard	Advanced	Technical		UL Listina
Informatio	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information
mormatio	1	mormation	configuration	matanation	matanation	Starteu	parameters			operation	I LO	parameters	Data		mornation

Comms value	String	Communications mode
0	AnSI	ANSI
1	rtU	Modbus RTU protocol
2	Lcd	Modbus RTU protocol, but with an SM- Keypad only

ANSIx3.28 protocol

Full details of the CT ANSI communications protocol are the *Advanced User Guide*.

Modbus RTU protocol

Full details of the CT implementation of Modbus RTU are given in the *Advanced User Guide*.

Modbus RTU protocol, but with an SM-Keypad only

This setting is used for disabling communications access when the SM-Keypad is used as a hardware key.

0.3	36 {1	1.25}	Serial	comm	is baud	l rat	e			
R	W	Txt							US	
ţ		300 (0), 400 (3), 1920(57600	4800 (0 (6), 3	4), 960 8400 (1	00 (5), 7),	Ŷ		19200	(6)	

* only applicable to Modbus RTU mode

This parameter can be changed via the drive keypad, via a Solutions Module or via the comms interface itself. If it is changed via the comms interface, the response to the command uses the original baud rate. The master should wait at least 20ms before send a new message using the new baud rate.

0.3	7 {1	1.23}	Serial	comm	s addr	ess				
R١	Ν	Uni							US	
ţ	0 to 247					⇔		1		

Used to define the unique address for the drive for the serial interface. The drive is always a slave.

Modbus RTU

When the Modbus RTU protocol is used addresses between 0 and 247 are permitted. Address 0 is used to globally address all slaves, and so this address should not be set in this parameter

ANSI

When the ANSI protocol is used the first digit is the group and the second digit is the address within a group. The maximum permitted group number is 9 and the maximum permitted address within a group is 9. Therefore, Pr **0.37** is limited to 99 in this mode. The value 00 is used to globally address all slaves on the system, and x0 is used to address all slaves of group x, therefore these addresses should not be set in this parameter.

0.3	38 {	4.13}	Curre	nt loop	P gair	١				
R١	N	Uni							US	
OL	\hat{v}					₽	All vo	oltage ra	atings: 2	20
CL	ţ		0 to 3	0,000		仓	40 57	00V driv 00V driv 75V driv 00V driv	e: 150 e: 180	

0.3	39 {	4.14}	Curre	nt loop	l gain					
R١	Ν	Uni							US	
OL	\hat{v}					₽	All vo	ltage ra	atings: 4	10
CL	ţ		0 to 3	0,000		仓	400 575)V drive)V drive 5V drive)V drive	: 2,000 : 2,400	

These parameters control the proportional and integral gains of the current controller used in the open loop drive. The current controller either provides current limits or closed loop torque control by modifying the drive output frequency. The control loop is also used in its torque mode during line power supply loss, or when the controlled mode standard ramp is active and the drive is decelerating, to regulate the flow of current into the drive.

0.4	40 {	5.12}	Autot	une			
R١	N	Uni					
OL	₿		0 t	o 2	⇒	0	
VT	\hat{v}		0 te	o 4	⇔	0	
sv	$\hat{\mathbf{v}}$		0 t	o 6	⇔	0	

Open-Loop

There are two autotune tests available in open loop mode, a stationary and a rotating test. A rotating autotune should be used whenever possible, so the measured value of power factor of the motor is used by the drive.

- The stationary autotune can be used when the motor is loaded and it is not possible to remove the load from the motor shaft.
- A rotating autotune first performs a stationary autotune, before rotating the motor at $^{2}/_{3}$ base speed in the forward direction for several seconds. The motor must be free from load for the rotating autotune.

To perform an autotune, set Pr **0.40** to 1 for a stationary test or 2 for a rotating test, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).

Following the completion of an autotune test the drive will go into the inhibit state. The drive must be placed into a controlled disable condition before the drive can be made to run at the required reference. The drive can be put in to a controlled disable condition by removing the SAFE TORQUE OFF (SECURE DISABLE) signal from terminal 31, setting the drive enable parameter Pr **6.15** to OFF (0) or disabling the drive via the control word (Pr **6.42** & Pr **6.43**).

For further information refer to section *Pr 0.40 {5.12} Autotune* on page 136.

Closed-loop

There are three autotune tests available in closed loop vector mode, a stationary test, a rotating test and an inertia measurement test. A stationary autotune will give moderate performance whereas a rotating autotune will give improved performance as it measures the actual values of the motor parameters required by the drive. An inertia measurement test should be performed separately to a stationary or rotating autotune.

- The stationary autotune can be used when the motor is loaded and it is not possible to remove the load from the motor shaft.
- A rotating autotune first performs a stationary autotune, before rotating the motor at ²/₃ base speed in the forward direction for approximately 30 seconds. The motor must be free from load for the rotating autotune.
- The inertia measurement test can measure the total inertia of the load and the motor. This is used to set the speed loop gains (see

0.4.1	1	D 1 1	A 1		E1 1 1	0		D .			<u>.</u>		T 1 1 1		1.11.1.1.1.1
Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	Onboard	Advanced	lechnical	Diagnostics	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information
internation		monutation	configuration	motanation	motunation	oturtou	parametero			operation	1 20	parametero	Duiu		monnation

Speed loop gains, below) and to provide torque feed forwards when required during acceleration. During the inertia measurement test the motor speed changes from ${}^{1}\!{}_{3}$ to ${}^{2}\!{}_{3}$ rated speed in the forward direction several times. The motor can be loaded with a constant torque load and still give an accurate result, however, non-linear loads and loads that change with speed will cause measurement errors.

To perform an autotune, set Pr **0.40** to 1 for a stationary test, 2 for a rotating test, or 3 for an inertia measurement test and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).

Following the completion of an autotune test the drive will go into the inhibit state. The drive must be placed into a controlled disable condition before the drive can be made to run at the required reference. The drive can be put in to a controlled disable condition by removing the SAFE TORQUE OFF (SECURE DISABLE) signal from terminal 31, setting the drive enable parameter Pr **6.15** to OFF (0) or disabling the drive via the control word (Pr **6.42** & Pr **6.43**).

Setting Pr **0.40** to 4 will cause the drive to calculate the current loop gains based on the previously measured values of motor resistance and inductance. The drive does apply any voltage to the motor during this test. The drive will change Pr **0.40** back to 0 as soon as the calculations are complete (approximately 500ms).

For further information refer to section *Pr 0.40 {5.12} Autotune* on page 139.

Servo

There are five autotune tests available in servo mode, a short low speed test, a normal low speed test, an inertia measurement test, a stationary test and a minimal movement test. A normal low speed should be done where possible as the drive measures the stator resistance and inductance of the motor, and from these calculates the current loop gains. An inertia measurement test should be performed separately to a short low speed or normal low speed autotune.

- A short low speed test will rotate the motor by 2 electrical revolutions (i.e. up to 2 mechanical revolutions) in the forward direction, and measure the encoder phase angle. The motor must be free from load for this test.
- A normal low speed test will rotate the motor by 2 electrical revolutions (i.e. up to 2 mechanical revolutions) in the forward direction. This test measures the encoder phase angle and updates other parameters including the current loop gains. The motor must be free from load for this test.
- The inertia measurement test can measure the total inertia of the load and the motor. This is used to set the speed loop gains and to provide torque feed forwards when required during acceleration. During the inertia measurement test the motor speed changes from

 $^{1}/_{3}$ to $^{2}/_{3}$ rated speed in the forward direction several times. The motor can be loaded with a constant torque load and still give an accurate result, however, non-linear loads and loads that change with speed will cause measurement errors.

- The stationary test only measures the motor resistance and inductance, and updates the current loop gain parameters. This test does not measure the encoder phase angle so this test needs to be done in conjunction with either the short low speed or minimal movement tests.
- The minimal movement test will move the motor through a small angle to measure the encoder phase angle. This test will operate correctly when the load is an inertia, and although a small amount of cogging and stiction is acceptable, this test cannot be used for a loaded motor.

To perform an autotune, set Pr **0.40** to 1 for a short low speed test, 2 for a normal low speed test, 3 for an inertia measurement test, 4 for a stationary test or 5 for a minimal movement test, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).

Following the completion of an autotune test the drive will go into the inhibit state. The drive must be placed into a controlled disable condition before the drive can be made to run at the required reference. The drive can be put in to a controlled disable condition by removing the SAFE TORQUE OFF (SECURE DISABLE) signal from terminal 31, setting the drive enable parameter Pr **6.15** to OFF (0) or disabling the drive via the control word (Pr **6.42** & Pr **6.43**).

Setting Pr **0.40** to 6 will cause the drive to calculate the current loop gains based on the previously measured values of motor resistance and inductance. The drive does apply any voltage to the motor during this test. The drive will change Pr **0.40** back to 0 as soon as the calculations are complete (approximately 500ms).

For further information refer to section *Pr 0.40 {5.12} Autotune* on page 139.

0.4	1 {	5.18}	Maxin	num s\	vitchin	g fi	requ	ency			
R١	N	Txt				F	RA			US	
OL						⊳			3 (0)		
CL	ţ	3	8 (0), 4 (1), 6 (2)			⇒	VT	3 (0)			
02						sv	6 (2)				

This parameter defines the required switching frequency. The drive may automatically reduce the actual switching frequency (without changing this parameter) if the power stage becomes too hot. A thermal model of the IGBT junction temperature is used based on the heatsink temperature and an instantaneous temperature drop using the drive output current and switching frequency. The estimated IGBT junction temperature is displayed in Pr **7.34**. If the temperature exceeds 145°C the switching frequency is reduced if this is possible (i.e >3kHz). Reducing the switching frequency reduces the drive losses and the junction temperature displayed in Pr **7.34** also reduces. If the load condition persists the junction temperature may continue to rise again above 145°C and the drive cannot reduce the switching frequency further the drive will initiate an 'O.ht1' trip. Every second the drive will attempt to restore the switching frequency to the level set in Pr **0.41**.

The full range of switching frequencies is not available on all ratings of Unidrive SP. See section 10.5 *Switching frequency* on page 147, for the maximum available switching frequency for each drive rating.

8.2.7 Motor parameters

0.4	42 {	5.11}	No. of	moto	r poles			_	_		
R١	N	Txt								US	
OL	ţ					₽			Auto (0)	
CL	☆	0 to 60) (Auto	to 120	Pole)	⇔	VT		Auto	o (0)	
	v						sv		6 POI	_E (3)	

Open-loop

This parameter is used in the calculation of motor speed, and in applying the correct slip compensation. When auto is selected, the number of motor poles is automatically calculated from the rated frequency (Pr **0.47**) and the rated full load rpm (Pr **0.45**). The number of poles = 120 * rated frequency / rpm rounded to the nearest even number.

Closed-loop vector

This parameter must be set correctly for the vector control algorithms to operate correctly. When auto is selected, the number of motor poles is automatically calculated from the rated frequency ($\Pr 0.47$) and the rated full load rpm ($\Pr 0.45$). The number of poles = 120 * rated frequency / rpm rounded to the nearest even number.

Servo

This parameter must be set correctly for the vector control algorithms to operate correctly. When auto is selected the number of poles is set to 6.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

0.4	43 {	5.10}	Motor	rated	power	factor						
R۱	N	Uni						US				
OL	\hat{v}		0.000 te	- 1 000	h	⇔	0.850					
VT	\hat{v}		0.000 1	5 1.000	,	⇔	0.00	0				

The power factor is the true power factor of the motor, i.e. the angle between the motor voltage and current.

Open-loop

The power factor is used in conjunction with the motor rated current (Pr **0.46**) to calculate the rated active current and magnetising current of the motor. The rated active current is used extensively to control the drive, and the magnetising current is used in vector mode Rs compensation. It is important that this parameter is set up correctly.

This parameter is obtained by the drive during a rotational autotune. If a stationary autotune is carried out, then the nameplate value should be entered in Pr 0.43.

Closed-loop vector

If the stator inductance (Pr **5.25**) contains a non-zero value, the power factor used by the drive is continuously calculated and used in the vector control algorithms (this will not update Pr **0.43**).

If the stator inductance is set to zero (Pr **5.25**) then the power factor written in Pr **0.43** is used in conjunction with the motor rated current and other motor parameters to calculate the rated active and magnetising currents which are used in the vector control algorithm.

This parameter is obtained by the drive during a rotational autotune. If a stationary autotune is carried out, then the nameplate value should be entered in Pr 0.43.

0.4	43 {	3.25}	Encoc	ler pha	ise ang	le				
R١	N	Uni							US	
sv	\hat{v}		0.0 to 359.9°					0.0		

The phase angle between the rotor flux in a servo motor and the encoder position is required for the motor to operate correctly. If the phase angle is known it can be set in this parameter by the user. Alternatively the drive can automatically measure the phase angle by performing a phasing test (see autotune in servo mode Pr **0.40**). When the test is complete the new value is written to this parameter. The encoder phase angle can be modified at any time and becomes effective immediately. This parameter has a factory default value of 0.0, but is not affected when defaults are loaded by the user.

0.4	44 {	5.09}	Motor	rated	voltage)		_			
R١	N	Uni				R	A			US	
ţ	A	C_VOL	0 to TAGE_		IAX V	Ŷ		400V 57	0V drive drive: E U 5V drive 0V drive	UR> 4 SA> 46 e: 575	

Open-loop & Closed-loop vector

Enter the value from the rating plate of the motor.

0.4	45 {	5.08}	Motor	rated	full loa	ad s	peed	d (rpm)			
R١	N	Uni								US	
OL	ţ	0	to 180,	000 rp	m	Û			UR> 1, JSA> 1,		
VT	ţ	0.00	to 40,0	rpm	₽			IR> 1,4 SA> 1,7			

Open-loop

This is the speed at which the motor would rotate when supplied with its base frequency at rated voltage, under rated load conditions (=

synchronous speed - slip speed). Entering the correct value into this parameter allows the drive to increase the output frequency as a function of load in order to compensate for this speed drop.

Slip compensation is disabled if Pr **0.45** is set to 0 or to synchronous speed, or if Pr **5.27** is set to 0.

If slip compensation is required this parameter should be set to the value from the rating plate of the motor, which should give the correct rpm for a hot machine. Sometimes it will be necessary to adjust this when the drive is commissioned because the nameplate value may be inaccurate. Slip compensation will operate correctly both below base speed and within the field weakening region. Slip compensation is normally used to correct for the motor speed to prevent speed variation with load. The rated load rpm can be set higher than synchronous speed to deliberately introduce speed droop. This can be useful to aid load sharing with mechanically coupled motors.

Closed loop vector

Rated load rpm is used with motor rated frequency to determine the full load slip of the motor which is used by the vector control algorithm. Incorrect setting of this parameter can result in the following:

- Reduced efficiency of motor operation
- Reduction of maximum torque available from the motor
- Failure to reach maximum speed
- Over-current trips
- Reduced transient performance

• Inaccurate control of absolute torque in torque control modes The nameplate value is normally the value for a hot machine, however, some adjustment may be required when the drive is commissioned if the nameplate value is inaccurate.

The rated full load rpm can be optimised by the drive (For further information, refer to section 10.1.3 *Closed loop vector motor control* on page 141).

0.45 {4.15} Motor thermal time constant											
R١	Ν	Uni								US	
sv	\hat{v}		0 to 3	000.0		⇧			20.0		

Servo

Pr 0.45 is the motor thermal time constant of the motor, and is used (along with the motor rated current Pr 0.46, and total motor current Pr 0.12) in the thermal model of the motor in applying thermal protection to the motor.

Setting this parameter to 0 disables the motor thermal protection.

For further details, refer to section 10.4 *Motor thermal protection* on page 146.

0.4	46 {	5.07}	Motor	rated	current	t					
R۱	Ν	Uni				R	A			US	
€	C) to Rat	ed_cur	rent_m	ax A	₽	I	Drive ra	ted cur	rent [11	.32]

Enter the name-plate value for the motor rated current.

0.4	47 {	5.06}	Rated	freque	ency					
R۱	N	Uni							US	
OL	$\hat{\mathbb{V}}$		0 to 3,0	00.0Hz	7	₽	EUR>	50.0, L	JSA> 60	0.0
VT	$\hat{\mathbb{T}}$		0 to 1,2	⇒	EUR>	50.0, L	JSA> 60	0.0		

Open-loop & Closed-loop vector

Enter the value from the rating plate of the motor.

Safety	Introduction		System	Mechanical		Getting	Basic	Running	Optimization		Onboard		Technical	Diagnostics	UL Listing
Information	introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	optimization	operation	PLC	parameters	Data	Diagnoolioo	Information

8.2.8 Operating-mode selection

0.4	8 {1	1.31}	Opera	ting m	ode se	lec	tor			
R۱	V	Txt	NC					PT		
							OL		1	
Û	û 1 to 4						VT	2	2	
							sv		3	

The settings for Pr 0.48 are as follows:

Setting		Operating mode
OPEn LP	1	Open-loop
CL VECt	2	Closed-loop vector
SerVO	3	Servo
rEgEn	4	Regen

This parameter defines the drive operating mode. Pr **xx.00** must be set to 1253 (European defaults) or 1254 (USA defaults) before this parameter can be changed. When the drive is reset to implement any change in this parameter, the default settings of all parameters will be set according to the drive operating mode selected and saved in memory.

8.2.9 Status information

0.4	9 {1	1.44}	Secur	ity stat	us					
R١	Ν	Txt						PT	US	
\hat{U}			0 to :	2		⇔		0		

This parameter controls access via the drive keypad as follows:

Value	String	Action
0	L1	Only menu 0 can be accessed
1	L2	All menus can be accessed
2	Loc	Lock user security when drive is reset. (This parameter is set to L1 after reset.)

The keypad can adjust this parameter even when user security is set.

0.5	0.50 {11.29} Software version number												
R	O Uni NC PT												
Û		1	.00 to 9	9.99		⇒							

The parameter displays the software version of the drive.

0.5	0.51 {10.37} Action on trip detection												
R١	N Uni US												
Û			0 to 1	5		⇒			0				

Each bit in this parameter has the following functions:

Bit	Function
0	Stop on non-important trips
1	Disable braking IGBT trips
2	Disable phase loss trip (Unidrive SP size 0 only)
3	Disable braking resistor temperature monitoring failure detection. (Unidrive SP size 0 only)

Stop on non-important trips

If bit 0 is set to zero then the drive simply trips when a non-important trip occurs. Non-important trips are: th, ths, Old1, cL2, cL3, SCL. If bit 0 is set to one the drive will stop before tripping when one of these trips is initiated, except in Regen mode where the drive trips immediately.

Disable braking IGBT trips

For details of braking IGBT trip mode see Pr 10.31.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical		UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

9 Running the motor

This chapter takes the new user through all the essential steps to running a motor for the first time, in each of the possible operating modes.

For information on tuning the drive for the best performance, see Chapter 10 Optimization .

Ensure that no damage or safety hazard could arise from the motor starting unexpectedly.

The values of the motor parameters affect the protection of the motor.

The default values in the drive should not be relied upon. It is essential that the correct value is entered in $\Pr{0.46}\ \textit{Motor}$

rated current. This affects the thermal protection of the motor.

If the keypad mode has been used previously, ensure that

the keypad reference has been set to 0 using the buttons as if the drive is started using the keypad it will run to

CAUTION the speed defined by the keypad reference (Pr 0.35).

If the intended maximum speed affects the safety of the machinery, additional independent over-speed protection must be used.

9.1 Quick start Connections

9.1.1 Basic requirements

This section shows the basic connections which must be made for the drive to run in the required mode. For minimal parameter settings to run in each mode please see the relevant part of section 9.4 *Quick Start commissioning/start-up* on page 128.

Table 9-1 Minimum control connection requirements for each control mode

Drive control method	Requirements
Terminal mode	Drive Enable Speed reference Run forward or run reverse command
Keypad mode	Drive Enable
Serial communications	Drive Enable Serial communications link

Table 9-2 Minimum control connection requirements for each mode of operation

Operating mode	Requirements
Open loop mode	Induction motor
Closed loop vector mode	Induction motor with speed feedback
Closed loop servo mode	Permanent magnet motor with speed and position feedback

Speed feedback

Suitable devices are:

- Incremental encoder (A, B or F, D with or without Z)
- Incremental encoder with forward and reverse outputs (F, R with or without Z)
- SINCOS encoder (with, or without Stegmann Hiperface, EnDat or SSI communications protocols)
- EnDat absolute encoder

Speed and position feedback

Suitable devices are:

- Incremental encoder (A, B or F, D with or without Z) with commutation signals (U, V, W)
- Incremental encoder with forward and reverse outputs (F, R with or without Z) and commutation outputs (U, V, W)
- SINCOS encoder (with Stegmann Hiperface, EnDat or SSI communications protocols)
- EnDat absolute encoder

For Solutions Module terminal information see section 13.15 *Menus 15, 16 and 17: Solutions Module set-up* on page 215 or the appropriate Solutions Module option user guide.

9.2 Changing the operating mode

Changing the operating mode returns all parameters to their default value, including the motor parameters. (Pr 0.49 and Pr 0.34 are not affected by this procedure.)

Procedure

Use the following procedure only if a different operating mode is required:

- Enter either of the following values in Pr xx.00, as appropriate: 1253 (EUR, 50Hz AC supply frequency) 1254 (USA, 60Hz AC supply frequency)
- 2. Change the setting of Pr 0.48 as follows:

Pr 0.48 setting		Operating mode
048 026n LP	1	Open-loop
С. UECE	2	Closed-loop vector
0.48 567-00	3	Closed-loop Servo
048 FESEn	4	Regen (See the Unidrive SP Regen Installation Guide for more information about operating in this mode)

The figures in the second column apply when serial communications are used.

- Toggle the reset digital input
- Carry out a drive reset through serial communications by setting Pr 10.38 to 100 (ensure that Pr. xx.00 returns to 0).

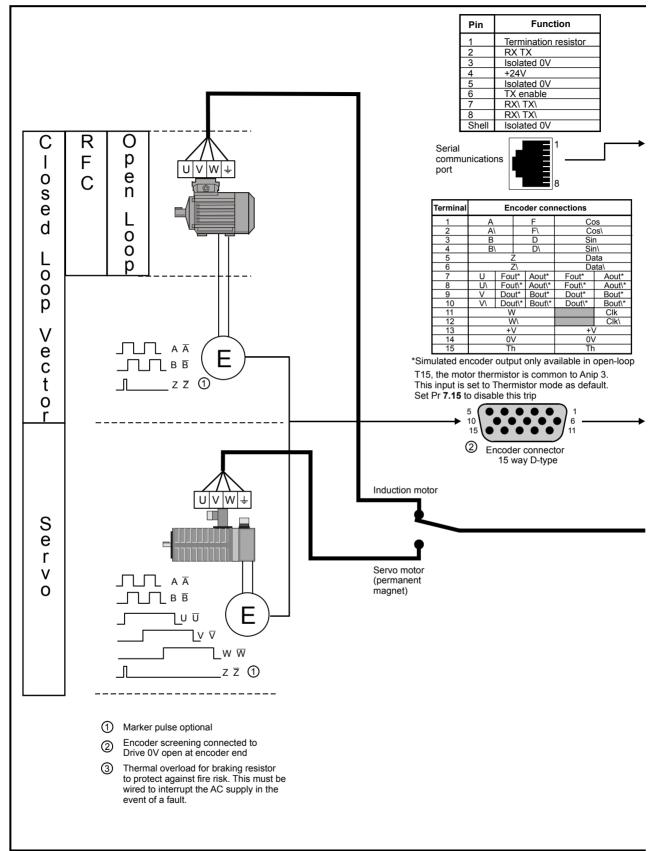
9.3 Changing keypad mode

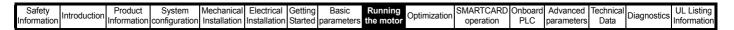
Pressing the following keypad buttons selects the keypad mode

- Blue Auto
- Red 💿 Off
- Green Hand

In Hand mode, the motor speed is adjusted by pressing the keypad up/ down arrow buttons.

In Auto mode, the motor speed control reference is determined by the value set in the speed/frequency reference selector Pr **0.05**. If hand mode is selected then the motor speed will not change during the transition.


In Off mode, the motor will be stopped but pressing the keypad up/down arrow buttons will allow the keypad control reference Pr **1.17** to be adjusted. Selecting Hand mode will then ramp the motor up to the selected speed.


^{3.} Either:

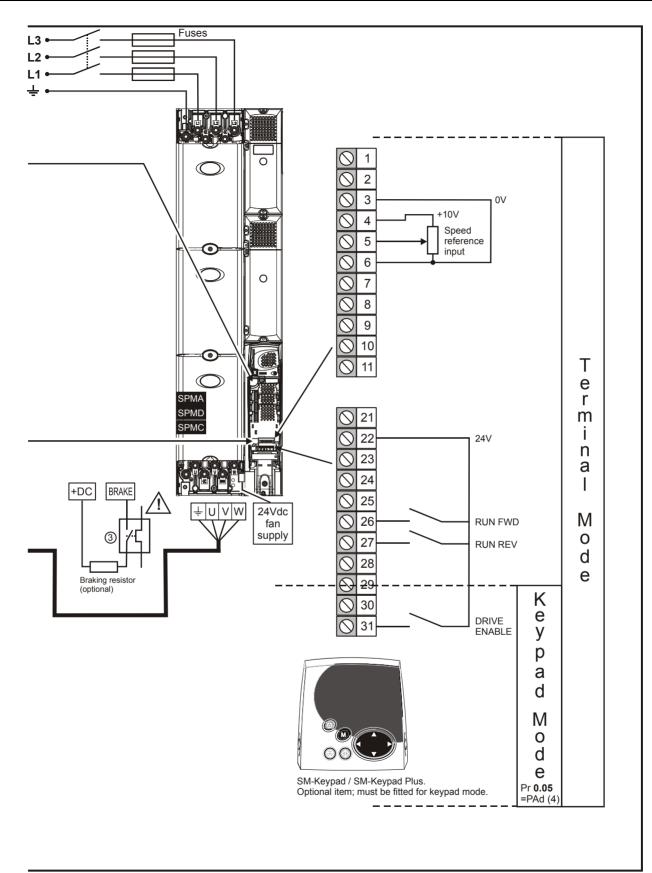

							-								
Safety		Product	System	Mechanical	Electrical	Gettina	Basic	Runnina	.	SMARTCARD	Onboard	Advanced	Technical	D ' ''	UL Listina
	Introduction	Information	a and a making	Installation	Inchallation	Chambard		the motor	Optimization	an anation		paramotore	Data	Diagnostics	Information
Information		Information	configuration	Installation	Installation	Started	parameters	the motor	•	operation	PLC	parameters	Data	•	information

Figure 9-1 Minimum connections to get the motor running in any operating mode

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical		UL Listing
Informatio	n	Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	Diagnostics	Information

9.4 Quick Start commissioning/start-up

9.4.1 Open loop

Action	Detail	
Before power-up	 Ensure: The drive enable signal is not given (terminal 31) Run signal is not given Motor is connected 	×
Power-up the drive	Ensure: • Drive displays 'inh' If the drive trips, see Chapter 15 <i>Diagnostics</i> on page 275.	
Enter motor nameplate details	 Enter: Motor rated frequency in Pr 0.47 (Hz) Motor rated current in Pr 0.46 (A) Motor rated speed in Pr 0.45 (rpm) Motor rated voltage in Pr 0.44 (V) - check if	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Set maximum frequency	Enter: • Maximum frequency in Pr 0.02 (Hz)	0.02
Set acceleration / deceleration rates	 Enter: Acceleration rate in Pr 0.03 (s/100Hz) Deceleration rate in Pr 0.04 (s/100Hz) (If braking resistor installed, set Pr 0.15 = FAST. Also ensure Pr 10.30 and Pr 10.31 are set correctly, otherwise premature 'It.br' trips may be seen.) 	
Autotune	 The drive is able to perform either a stationary or a rotating autotune. The motor must be at a standstill before an autotune is enabled. A rotating autotune should be used whenever possible so the measured value of power factor of the motor is used by the drive. A rotating autotune will cause the motor to accelerate up to ²/₃ base speed in the direction selected regardless of the reference provided. Once complete the motor will coast to a stop. The enable signal must be removed before the drive can be made to run at the required reference. The drive can be stopped at any time by removing the run signal or removing the drive enable. A stationary autotune can be used when the motor is loaded and it is not possible to uncouple the load from the motor shaft. A stationary autotune measures the stator resistance of the motor and the voltage offset in the drive. These are required for good performance in vector control modes. A stationary autotune does not measure the power factor of the motor so the value on the motor is uncoupled. A rotating autotune first performs a stationary autotune before rotating the motor at ²/₃ base speed in the direction selected. The rotating autotune measures the power factor of the motor at the rotating autotune or set Pr 0.40 = 2 for a rotating autotune Close the Drive Enable signal (terminal 31). The drive will display 'rdY'. Close the Drive Enable signal (terminal 26 or 27). The lower display will flash 'Auto' and 'tunE' alternatively, while the drive is performing the autotune. Wait for the drive to display 'rdY' or 'inh' and for the motor to come to a standstill. If the drive trips, see Chapter 15 <i>Diagnostics</i> on page 275. Remove the drive enable and run signal from the drive. 	
Save parameters	Enter 1000 in Pr xx.00 Press the red reset button or toggle the reset digital input (ensure Pr xx.00 returns to 0)	
Run	Drive is now ready to run	

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running		SMARTCARD	Onboard	Advanced	Technical		UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

9.4.2 RFC mode

Software V01.10.00 or later should be used for RFC mode.

Induction motor

Action moto	Detail	
Before power-up	 Ensure: Drive Enable signal is not given (terminal 31) Run signal is not given Motor and feedback device are connected 	\times
Power-up the drive	Ensure: • Drive displays 'inh' If the drive trips, see Chapter 15 <i>Diagnostics</i> on page 275.	7
Select RFC mode and disable encoder wire-break trip	 Set Pr 3.24 = 1 or 3 to select RFC mode Set Pr 3.40 = 0 	
Enter motor nameplate details	 Enter: Motor rated frequency in Pr 0.47 (Hz) Motor rated current in Pr 0.46 (A) Motor rated speed (base speed - slip speed) in Pr 0.45 (rpm) Motor rated voltage in Pr 0.44 (V) - check if 人 or △ connection 	
Set maximum speed	Enter: • Maximum speed in Pr 0.02 (rpm)	0.02
Set acceleration / deceleration rates	 Enter: Acceleration rate in Pr 0.03 (s/1000rpm) Deceleration rate in Pr 0.04 (s/1000rpm) (If braking resistor installed, set Pr 0.15 = FAST. Also ensure Pr 10.30 and Pr 10.31 are set correctly, otherwise premature 'It.br' trips may be seen.) 	
Select or deselect catch a spinning motor mode	If catch a spinning motor mode is not required then set Pr 6.09 to 0. If catch a spinning motor mode is required then leave Pr 6.09 at the default of 1, but depending on the size of the motor the value in Pr 5.40 may need to be adjusted. Pr 5.40 defines a scaling function used by the algorithm that detects the speed of the motor. The default value of Pr 5.40 is 1 which is suitable for small motors (<4kW). For larger motors the value in Pr 5.40 will need to be increased. Approximate values of Pr 5.40 for different motor sizes are as follows, 2 for 11kW, 3 for 55kW and 5 for 150kW. If the value of Pr 5.40 is too large the motor may accelerate from standstill when the drive is enabled. If the value of this parameter is too small the drive will detect the motor speed as zero even if the motor is spinning.	
	The drive is able to perform either a stationary or a rotating autotune. The motor must be at a standstill before an autotune is enabled. A stationary autotune will give moderate performance whereas a rotating autotune will give improved performance as it measures the actual values of the motor parameters required by the drive. NOTE It is highly recommended that a rotating autotune is performed (Pr 0.40 set to 2).	
	A rotating autotune will cause the motor to accelerate up to ${}^{2}_{l_3}$ base speed in the direction selected regardless of the reference provided. Once complete the motor will coast to a stop. The enable signal must be removed before the drive can be made to run at the required reference.	
Autotune	 A stationary autotune can be used when the motor is loaded and it is not possible to uncouple the load from the motor shaft. The stationary autotune measures the stator resistance and transient inductance of the motor. These are used to calculate the current loop gains, and at the end of the test the values in Pr 0.38 and Pr 0.39 are updated. A stationary autotune does not measure the power factor of the motor so the value on the motor nameplate must be entered into Pr 0.43. A rotating autotune should only be used if the motor is uncoupled. A rotating autotune first performs a 	R _s dL _a T Nm Saturation break- points N rpm
	 stationary autotune before rotating the motor at ²/₃ base speed in the direction selected. The rotating autotune measures the stator inductance of the motor and calculates the power factor. To perform an autotune: Set Pr 0.40 = 1 for a stationary autotune or set Pr 0.40 = 2 for a rotating autotune Close the Drive Enable signal (terminal 31). The drive will display 'rdY'. Close the run signal (terminal 26 or 27). The lower display will flash 'Auto' and 'tunE' alternatively, while the drive is performing the autotune. Wait for the drive to display 'rdY' or 'inh' and for the motor to come to a standstill If the drive trips, see Chapter 15 <i>Diagnostics</i> on page 275. 	
Save parameters	Enter 1000 in Pr xx.00 Press the red reset button or toggle the reset digital input (ensure Pr xx.00 returns to 0)	
Run	Drive is now ready to run	() ()

	Safety nformation	Introduction	Product Information	-)	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	()ntimization	SMARTCARD operation		Advanced parameters	Technical Data	Diagnostics	UL Listing Information
1	nonnation		mormation	configuration	matanation	motanation	Otaricu	parameters	the motor		operation	1 20	parameters	Data		mormation

9.4.3 Closed loop vector mode

Induction motor with incremental encoder feedback

For simplicity only an incremental quadrature encoder will be considered here. For information on setting up one of the other supported speed feedback devices, refer to section 9.6 Setting up a feedback device on page 132.

Action	Detail	
Before power-up	 Ensure: Drive Enable signal is not given (terminal 31) Run signal is not given Motor and feedback device are connected 	\times
Power-up the drive	Ensure: • Drive displays 'inh' If the drive trips, see Chapter 15 <i>Diagnostics</i> on page 275.	[7
Set motor feedback parameters	 Incremental encoder basic set-up Enter: Drive encoder type in Pr 3.38 = Ab (0): Quadrature encoder Encoder power supply in Pr. 3.36 = 5V (0), 8V (1) or 15V (2). If output voltage from the encoder is >5V, then the termination resistors must be disabled Pr 3.39 to 0. Setting the encoder voltage supply too high for the encoder could result in damage to the feedback device. Drive encoder Lines Per Revolution (LPR) in Pr 3.34 (set according to encoder) Drive encoder termination resistors disabled 1 = A-A, B-B, Z-Z\ termination resistors enabled, Z-Z\ termination resistors disabled 2 = A-A, B-B, Z-Z\ termination resistors enabled 	
Enter motor nameplate details	 Enter: Motor rated frequency in Pr 0.47 (Hz) Motor rated current in Pr 0.46 (A) Motor rated speed (base speed - slip speed) in Pr 0.45 (rpm) Motor rated voltage in Pr 0.44 (V) - check if	
Set maximum speed	Enter: • Maximum speed in Pr 0.02 (rpm)	0.02
Set acceleration / deceleration rates	 Enter: Acceleration rate in Pr 0.03 (s/1000rpm) Deceleration rate in Pr 0.04 (s/1000rpm) (If braking resistor installed, set Pr 0.15 = FAST. Also ensure Pr 10.30 and Pr 10.31 are set correctly, otherwise premature 'It.br' trips may be seen.) 	1000pm
	Unidrive SP is able to perform either a stationary or a rotating autotune. The motor must be at a standstill before an autotune is enabled. A stationary autotune will give moderate performance whereas a rotating autotune will give improved performance as it measures the actual values of the motor parameters required by the drive.	
	A rotating autotune will cause the motor to accelerate up to ${}^{2}_{/_{3}}$ base speed in the direction selected regardless of the reference provided. Once complete the motor will coast to a stop. The enable signal must be removed before the drive can be made to run at the required reference. The drive can be stopped at any time by removing the run signal or removing the drive enable.	↑ cos Ø
Autotune	 A stationary autotune can be used when the motor is loaded and it is not possible to uncouple the load from the motor shaft. The stationary autotune measures the stator resistance and transient inductance of the motor. These are used to calculate the current loop gains, and at the end of the test the values in Pr 0.38 and Pr 0.39 are updated. A stationary autotune does not measure the power factor of the motor so the value on the motor nameplate must be entered into Pr 0.43. A rotating autotune should only be used if the motor is uncoupled. A rotating autotune first performs a stationary autotune before rotating the motor at ²/₃ base speed in the direction selected. The rotating autotune measures the stator inductance of the motor and calculates the power factor. To perform an autotune: Set Pr 0.40 = 1 for a stationary autotune or set Pr 0.40 = 2 for a rotating autotune Close the Drive Enable signal (terminal 31). The drive will display 'rdY' Close the run signal (terminal 26 or 27). The lower display will flash 'Auto' and 'tunE' alternatively, while the drive is performing the autotune. Wait for the drive to display 'rdY' or 'inh' and for the motor to come to a standstill If the drive trips, see Chapter 15 <i>Diagnostics</i> on page 275. Remove the drive enable and run signal from the drive. 	R, dLs saturation Nm break- points N rpm
Save parameters	Enter 1000 in Pr xx.00 Press the red low reset button or toggle the reset digital input (ensure Pr xx.00 returns to 0)	
Run	Drive is now ready to run	<u>·</u>

Safety	Introduction	Product	System	Mechanical		Getting	Basic	Running	Optimization	SMARTCARD	Oliboalu	Advanced	Technical	Diagnostics	UL Listing
Information		Information	configuration	Installation	Installation	Started	parameters	the motor	opunization	operation	PLC	parameters	Data	Diagnootice	Information

9.4.4 Servo Permanent magnet motor with a speed and position feedback device For simplicity only an incremental quadrature encoder with commutation outputs will be considered here. For information on setting up one of the other supported speed feedback devices, refer to section 9.6 Setting up a feedback device on page 132.

Action	Detail	
Before power- up	 Drive Enable signal is not given (terminal 31) Run signal is not given Motor is connected Feedback device is connected 	×
Power-up the drive	Ensure: • Drive displays 'inh' If the drive trips, see Chapter 15 <i>Diagnostics</i> on page 275.	Ţ
Set motor feedback parameters	 Incremental encoder basic set-up Enter: Drive encoder type in Pr. 3.38 = Ab.SErVO (3): Quadrature encoder with commutation outputs Encoder power supply in Pr. 3.36 = 5V (0), 8V (1) or 15V (2). NOTE If output voltage from the encoder is >5V, then the termination resistors must be disabled Pr 3.39 to 0. Setting the encoder voltage supply too high for the encoder could result in damage to the feedback device. CAUTION Setting the encoder voltage supply too high for the encoder could result in damage to the feedback device. Drive encoder Pulses Per Revolution in Pr. 3.34 (set according to encoder) Drive encoder termination resistor setting in Pr. 3.39: A-A B-B Z-Z\ termination resistors disabled A-A B-B Z-Z\ termination resistors enabled, Z-Z\ termination resistors disabled 	
Enter motor nameplate details	 Enter: Motor rated current in Pr 0.46 (A) Ensure that this equal to or less than the Heavy Duty rating of the drive otherwise It.AC trips may occur during the autotune. Number of poles in Pr 0.42 	A CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR
Set maximum speed	Enter: • Maximum speed in Pr 0.02 (rpm)	0.02
Set acceleration / deceleration rates	 Enter: Acceleration rate in Pr 0.03 (s/1000rpm) Deceleration rate in Pr 0.04 (s/1000rpm) (If braking resistor installed, set Pr 0.15 = FAST. Also ensure Pr 10.30 and Pr 10.31 are set correctly, otherwise premature 'It.br' trips may be seen.) Unidrive SP is able to perform a short low speed, a normal low speed or a minimal movement autotune. The 	
Autotune	 motor must be at a standstill before an autotune is enabled. A normal low speed autotune will measure the encoder phase offset angle and calculate the current gains. The short low speed and normal low speed tests will rotate the motor by up to 2 revolutions in the direction selected, regardless of the reference provided. The minimal movement test will move the motor through an angle defined by Pr 5.38. Once complete the motor will come to a standstill. The enable signal must be removed before the drive can be made to run at the required reference. The drive can be stopped at any time by removing the run signal or removing the Drive Enable. The motor must not be loaded when attempting an autotune. The short low speed and normal low speed tests will rotate the motor by up to 2 rotations in the direction selected and the drive measures the encoder phase angle and updates the value in Pr 3.25. The normal low speed test also measures the stator resistance, and inductance of the motor. These are used to calculate the current loop gains, and at the end of the test the values in Pr 0.38 and Pr 0.39 are updated. The short low speed test takes approximately 2s and the normal low speed test approximately 2s to complete. The minimal movement autotune will move the motor through an angle defined by Pr 5.38. The motor must not be loaded for this test although it will operate correctly when the load is an inertia. To perform an autotune: Set Pr 0.40 = 1 for a short low speed autotune, Pr 0.40 = 2 for a normal low speed test or Pr 0.40 = 5 for a minimal movement autotune. Close the Drive Enable signal (terminal 31). The lower display will flash 'Auto' and 'tunE' alternatively, while the drive is performing the test. Wait for the drive to display 'rdy' or 'inh' and for the motor to come to a standstill. If the drive tips it cannot be reset until the drive enable signal (terminal 31) has been removed. See Chapter 15 <i>Diagnostics</i> o	
Save parameters	Enter 1000 in Pr xx.00 Press the red reset button or toggle the reset digital input (ensure Pr xx.00 returns to 0)	
Run	Drive is now ready to run	•

In	Safety formation	Introduction	Product Information	-)	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
	Iomation		mormation	configuration	matanation	motanation	Otaricu	parameters	the motor		operation	1 20	parameters	Data		mormation

9.5 Quick start commissioning/start-up (CTSoft)

CTSoft is a Windows™ based software commissioning/start-up tool for Unidrive SP and other Control Techniques products.

CTSoft can be used for commissioning/start-up and monitoring, drive parameters can be uploaded, downloaded and compared, and simple or custom menu listings can be created. Drive menus can be displayed in standard list format or as live block diagrams. CTSoft is able to communicate with a single drive or a network.

CTSoft can be found on the CD which is supplied with the drive and is also available for download from www.controltechniques.com (file size approximately 25MB).

CTSoft system requirements:

- Windows 2000/XP. Windows 95/98/98SE/ME/NT4 and Windows 2003 server are NOT supported
- Internet Explorer V5.0 or later must be installed
- Minimum of 800x600 screen resolution with 256 colors. 1024x768 is recommended.
- 128MB RAM
- Pentium III 500MHz or better recommended.
- Adobe Acrobat Reader 5.1 or later (for parameter help). See CD provided
- Microsoft.Net Frameworks 2.0
- Note that you must have administrator rights under Windows 2000/ XP to install.

To install CTSoft from the CD, insert the CD and the auto-run facility should start up the front-end screen from which CTSoft can be selected. Any previous copy of CTSoft should be uninstalled before proceeding with the installation (existing projects will not be lost).

Included with CTSoft are the user guides for the supported drive models. When help on a particular parameter is request by the user, CTSoft links to the parameter in the relevant advanced user guide.

9.6 Setting up a feedback device

This section shows the parameter settings which must be made to use each of the compatible encoder types with Unidrive SP. For more information on the parameters listed here please refer to the *Unidrive SP Advanced User Guide*.

9.6.1 Overview

Table 9-3 Parameters required for feedback device set-up

	Parameter	Ab, Fd, Fr, Ab.SErVO, Fd.SErVO, Fr.SErVO, or SC encoders	SC.HiPEr encoder	SC.EndAt or SC.SSI encoders	EndAt encoder	SSI encoder
3.33	Drive encoder turns		√ x	√ x	√ x	✓
3.34	Drive encoder lines per revolution	✓	√ x	√ x		
3.35	Drive encoder comms resolution		√ x	√ x	√ x	~
3.36	Drive encoder supply voltage*	√	\checkmark	✓	\checkmark	✓
3.37	Drive encoder comms baud rate			~	\checkmark	~
3.38	Drive encoder type	✓	\checkmark	✓	\checkmark	✓
3.41	Drive encoder auto configuration enable or SSI binary format select		\checkmark	~	\checkmark	~

✓ Information required

x Parameter can be set-up automatically by the drive through auto-configuration

* Pr 3.36: If A + B >5V then disable termination resistors

Table 9-3 shows a summary of the parameters required to set-up each feedback device. More detailed information folows.

Safety	Introduction	Product	System	Mechanical	La stall attain	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information		Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data		Information

9.6.2 Detailed feedback device commissioning/start-up information

Standard quadrature encoder w Sincos encoder without serial o		ut commutation signals (A, B, Z or A, B, Z, U, V, W), or ions
Encoder type	Pr 3.38	 Ab (0) for a quadrature encoder without commutation signals * Ab.SErVO (3) for a quadrature encoder with commutation signals SC (6) for a Sincos encoder without serial communications *
Encoder power supply voltage	Pr 3.36	5V (0), 8V (1) or 15V (2) NOTE If output voltage from the encoder is >5V, then the termination resistors must be disabled Pr 3.39 to 0
Encoder number of lines per revolution	Pr 3.34	Set to the number of lines or sine waves per revolution of the encoder. See section 9.6.3 <i>Restriction of encoder number of lines per revolution</i> on page 135 for restrictions on this parameter.
Encoder termination selection (Ab or Ab.SErVO only)	Pr 3.39	 0 = A, B, Z termination resistors disabled 1 = A, B termination resistors enabled and Z termination resistors disabled 2 = A, B, Z termination resistors enabled
Encoder error detection level	Pr 3.40	 0 = Error detection disable 1 = Wire break detection on A, B and Z inputs enabled 2 = Phase error detection (Ab.SErVO only) 3 = Wire break detection on A, B and Z inputs and phase error detection (Ab.SErVO only) Termination resistors must be enabled for wire break detection to operate

* These settings should only be used in closed loop vector mode, otherwise a phase offset test must be performed after every power up.

Incremental encoder with frequ Forward and Reverse (CW and		rection (F and D), or Ils, with or without commutation signals
Encoder type	Pr 3.38	 Fd (1) for frequency and direction signals without commutation signals * Fr (2) for forward and reverse signals without commutation signals * Fd.SErVO (4) for a frequency and direction encoder with commutation signals Fr.SErVO (5) for forward and reverse signals with commutation signals
Encoder power supply voltage	Pr 3.36	5V (0), 8V (1) or 15V (2) NOTE If output voltage from the encoder is >5V, then the termination resistors must be disabled Pr 3.39 to 0
Encoder number of lines per revolution	Pr 3.34	Set to the number of pulses per revolution of the encoder divide by 2. See section 9.6.3 <i>Restriction of encoder number of lines per revolution</i> on page 135 for restrictions on this parameter.
Encoder termination selection	Pr 3.39	 0 = F or CW, D or CCW, Z termination resistors disabled 1 = F or CW, D or CCW termination resistors enabled and Z termination resistors disabled 2 = For CW, D or CCW, Z termination resistors enabled
Encoder error detection level	Pr 3.40	 0 = Error detection disable 1 = Wire break detection on F & D or CW & CCW, and Z inputs enabled 2 = Phase error detection (Fd.SErVO and Fr.SErVO only) 3 = Wire break detection on F & D or CW & CCW, and Z inputs and Phase error detection (Fd.SErVO and Fr.SErVO only) Termination resistors must be enabled for wire break detection to operate

* These settings should only be used in closed loop vector mode, otherwise a phase offset test must be performed after every power up.

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
			-				-								

Absolute EnDat communications The Unidrive SP is compatible with the SCS 60/70 SCM 60/70 SRS 50	the following H	
Encoder type	Pr 3.38	SC.HiPEr (7) for a Sincos encoder with Hiperface serial communications
Encoder power supply voltage	Pr 3.36	5V (0), 8V (1) or 15V (2)
Encoder auto configure enable	Pr 3.41	Setting this to 1 automatically sets up the following parameters: Pr 3.33 Encoder turn bits Pr 3.34 Encoder number of lines of revolution (SC.HiPEr and SC.EndAt only) * Pr 3.35 Encoder single turn comms resolution Alternatively these parameters can be entered manually.
Encoder comms baud rate (EndAt and SC.EndAt only)	Pr 3.37	100 = 100k, 200 = 200k, 300 = 300k, 500 = 500k, 1000 = 1M, 1500 = 1.5M, or 2000 = 2M
Encoder error detection level (SC.HiPEr and SC.EndAt only)	Pr 3.40	 0 = Error detection disabled 1 = Wire break detection on Sin and Cos inputs 2 = Phase error detection 3 = Wire break detection on Sin and Cos inputs and phase error detection

* See section 9.6.3 Restriction of encoder number of lines per revolution on page 135 for restrictions on this parameter.

Absolute SSI communications only e Absolute Sincos encoder with SSI	encoder, o	r
Encoder type	Pr 3.38	SSI (10) for a SSI communications only encoder SC.SSI (11) for a Sincos encoder with SSI
Encoder power supply voltage	Pr 3.36	5V (0), 8V (1) or 15V (2)
Encoder number of lines per revolution. (SC.SSI only)	Pr 3.34	Set to the number of sine waves per revolution of the encoder. See section 9.6.3 <i>Restriction of encoder number of lines per revolution</i> on page 135 for restrictions on this parameter.
SSI binary format select	Pr 3.41	OFF (0) for gray code, or On (1) for binary format SSI encoders
Encoder turn bits	Pr 3.33	Set to the number of turn bits for the encoder (this is usually 12bits for a SSI encoder)
Encoder single turn comms resolution	Pr 3.35	Set to the single turn comms resolution for the encoder (this is usually 13bits for a SSI encoder)
Encoder comms baud rate	Pr 3.37	100 = 100k, 200 = 200k, 300 = 300k, 500 = 500k, 1000 = 1M, 1500 = 1.5M, or 2000 = 2M
Encoder error detection level	Pr 3.40	 0 = Error detection disabled 1 = Wire break detection on Sin and Cos inputs (SC.SSI only) 2 = Phase error detection (SC.SSI only) 3 = Wire break detection and phase error detection (SC.SSI only) 4 = SSI power supply bit monitor 5 = SSI power supply bit monitor and wire break detection (SC.SSI only) 6 = SSI power supply bit monitor and phase error detection (SC.SSI only) 7 = SSI power supply bit monitor, wire break detection and phase error detection (SC.SSI only)

UVW commutation signal only encoders*											
Encoder type	Pr 3.38	Ab.servo									
Encoder power supply voltage	Pr 3.36	5V (0), 8V (1) or 15V (2)									
Encoder number of lines per revolution	Pr 3.34	Set to zero									
Encoder error detection level	Pr 3.40	Set to zero to disable wire break detection									

* This feedback device provides very low resolution feedback and should not be used for applications requiring a high level of performance.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information		Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data		Information

9.6.3 Restriction of encoder number of lines per revolution

Although Pr **3.34** can be set to any value from 0 to 50,000 there are restrictions on the values actually used by the drive. These restrictions are dependent on the software version as follows:

Software version V01.06.01 and later

Table 9-4 Restrictions of drive encoder lines per revolution with software version V01.06.01 and later

Position feedback device	Equivalent Lines per revolution used by the drive
Ab, Fd, Fr, Ab.SErVO, Fd.SErVO, Fr.SerVO, SC	The drive uses the value in Pr 3.34 .
SC.HiPEr, SC.EndAt, SC.SSI (rotary encoders)	If Pr $3.34 \le 1$, the drive uses the value of 1. If 1< Pr $3.34 < 32,768$, the drive uses the value in Pr 3.34 rounded down to nearest value that is a power of 2. If Pr $3.34 \ge 32,768$, the drive uses the value of 32,768.
SC.HiPEr, SC.EndAt, SC.SSI (linear encoders	The drive uses the value in Pr 3.34 .

Software version V01.06.00 and earlier

Table 9-5 Restrictions of drive encoder lines per revolution with software version V01.06.00 and earlier

Position feedback device	Equivalent Lines per revolution used by the drive
Ab, Fd, Fr	If Pr 3.34 <2, the drive uses the value of 2. If $2 \le Pr$ 3.34 . $\le 16,384$, the drive uses the value in Pr 3.34 . If Pr 3.34 >16,384, the drive uses the value in Pr 3.34 rounded down to nearest value divisible by 4.
Ab.SErVO, Fd.SErVO, Fr.SErVO	If Pr $3.34 \le 2$, the drive uses the value of 2. If 2< Pr $3.34 < 16,384$, the drive uses the value in Pr 3.34 rounded down to nearest value that is a power of 2. If Pr $3.34 \ge 16,384$, the drive uses the value of 16,384.
SC, SC.HiPEr, SC.EndAt, SC.SSI	If Pr $3.34 \le 2$, the drive uses the value of 2. If 2< Pr $3.34 < 32,768$, the drive uses the value in Pr 3.34 rounded down to nearest value that is a power of 2. If Pr $3.34 \ge 32,768$, the drive uses the value of 32,768.

At power-up Pr **3.48** is initially zero, but is set to one when the drive encoder and any encoders connected to any Solutions Modules have been initialised. The drive cannot be enabled until this parameter is one.

Encoder initialisation will occur as follows:

- At drive power-up
- When requested by the user via Pr 3.47
- When trips PS.24V, Enc1 to Enc8, or Enc11 to Enc17 trips are reset
- The encoder number of lines per revolution (Pr 3.34) or the number of motor poles (Pr 5.11 and Pr 21.11) are changed (software version V01.08.00 and later).

Initialisation causes an encoder with communications to be re-initialised and auto-configuration to be performed if selected. After initialisation Ab.SErVO, Fd.SErVO and Fr.SErVO encoders will use the UVW commutations signals to give position feedback for the first 120° (electrical) of rotation when the motor is restarted.

Safety Information	Introduct		Produc formati		System onfiguration		echanic stallatio			Getting Started	Basic paramete	Running rs the moto		ion	SMARTCARE operation	Onboar PLC	d Advance paramete		I Diagnostic	uL Listin
10	0	nt	imi	172	atio	n				I							1	1	1	I
∎ ♥ This chap							iods o	f opt	imizin	g the p	roduct									
et-up, m simplify ti	naximizi	ng p																		
10.1	Мс	oto	r ma	ар	para	m	eter	S												
10.1.1	Оре	en l	оор	mo	otor co	ont	rol													
Pr 0.46	{5.07} N	Moto	or rate	ed c	urrent							Defir	es the m	axiı	mum cont	linuous	s motor o	urrent		
page 146 Curr Moto Vect Slip	6, for info rent limi or therm tor mode	orma ts (s nal o e vol nsati	ition al ee se verloa Itage o on (se	bout ctior ad pr cont	setting 10.3 (rotectio rol (see	y this C <i>urr</i> on (s e Vo	s paran re <i>nt lin</i> see se ltage	neter nits c ction mode	⁻ highe on pag i 10.4 e Pr 0	r then t e 146, <i>Motor</i> . 07 , lat	he maxir for more	num Hea e informa <i>protectic</i> s table)	ivy Duty cu ation)	urrei	(See sectio nt rating.) T 16, for more	he mot	or rated c			
Pr 0.44	{5.09} N	Noto	or rate	ed v	oltage							Defir	ies the vo	olta	ge applied	d to the	e motor a	t rated f	requency	y
Pr 0.47	{5.06} N	Moto	or rate	ed fr	equen	су						Defir	es the fre	əqu	iency at w	hich ra	ated volta	ge is ap	plied	
The mot are used motor (s frequend calculate 0.45 , late	d to defi ee volta cy is als e the rat	ne th age r to us ted s	ne voli node ed in ilip for	tage Pr 0 conj	to freq .07, lat unctior	quer ter ii n wit	ncy ch n this t th the	arac table moto	teristic). The or rate	applie motor d spee	ed to the rated d to				voltage Pr 0.44 Pr 0.44 / 2	Pr 0.47 /	2 Pr 0.47	Output frequency		
Pr 0.45	{5.08} N	Noto	or rate	ed s	peed							Defir	es the fu	ll Ic	oad rated	speed	of the m	otor		
Pr 0.42	{5.11} N	loto	r nun	nbei	r of pol	les						Defir	ies the nu	umk	ber of mot	or pole	es			
The mot	or rated	d spe	ed ar	nd th	e num	ber	of pole	es ar	e use	d with t	the moto	or rated f	requency	to c	calculate th	ne ratec	l slip of in	duction r	machines	in Hz.
Rate	ed slip (Hz):	= Mot	or ra	ated fre	ane	ncv -	(Nun	nber o	f pole i	oairs x []	Motor rat	ed speed	/ 60	0]) = 0.4 7	$7 - \left(\frac{0.4}{2}\right)$	$\frac{2}{2} \times \frac{0.45}{22}$			
If Pr 0.4 namepla because region. S	5 is set ate value the na Slip com	to 0 e, wł mep npen	or to s nich sl late va sation	synd houl alue n is r	chronou d give t may b normally	us s the o e in y us	peed, correc accura ed to (slip t rpm ate. S corre	compe n for a Slip co ect for	ensatio hot ma ompens the mo	n is disa achine. S sation wi tor spee	bled. If s Sometime Il operated to prev	slip compe es it will be e correctly vent speed	ensa e ne / bo d va	ation is req ecessary to oth below b ariation with d sharing v	uired th adjust ase sp n load.	his param this when eed and The rated	the driv vithin the load rpn	re is comr e field-we n can be s	nissione akening
															ut frequend ted speed			is set to	'Auto', th	e numbe
					`			lnend	cy Pr ().47 / N	lotor rat		,		unded to th					
Pr 0.43	•													<u> </u>	e between			0		
with the extensiv	motor r ely to c	ated	curre	ent P drive	Pr 0.46 , e, and t	to c the	alcula magne	ate th etisin	ne rate ng curr	d activ	e currer used in v	nt and ma vector m	agnetising ode stator	cui res	ge and curr rrent of the sistance co ning a rota	e motor ompens	. The rate ation. It is	d active importa	current is int that th	s used is
Pr 0.40	{5.12} <i>I</i>	Auto	tune																	
the mea • A sta mea Volta nam	sured v ationary isures tl age mod	alue / aut/ he st de P must	of po otune ator r r 0.07 be er l a rur	ower can resis r, lat ntere n sig	factor of be use tance (l er in thi ed into l nal (on	of th ed w Pr 5 is ta Pr 0 teri	ne mot /hen tl (.17) a (ble). (.43. To minal	tor is he m and v The s o per 26 o	used otor is oltage station rform a r 27).	by the loade offset ary au a Static	drive. d and it (Pr 5.23 totune d onary au	is not po 6), which oes not totune, s	ssible to r are requir measure t et Pr 0.40	rem red he to	otating aut ove the loa for good p power fact 1, and pro-	ad from erforma or of th vide the	the moto ance in ve e motor s e drive wit	r shaft. ∃ ctor con o the val h both ai	The statio itrol mode lue on the n enable s	nary tes es (see e motor signal (o

A rotating autotune should only be used if the motor is unloaded. A rotating autotune first performs a stationary autotune, as above, before rotating the motor at ²/₃ base speed in the direction selected for several seconds (regardless of the speed reference). In addition to the stator resistance (Pr 5.17) and voltage offset (Pr 5.23), the rotating autotune measures the power factor of the motor and updates Pr 0.43 with the correct value. To perform a Rotating autotune, set Pr 0.40 to 2, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).

Following the completion of an autotune test the drive will go into the inhibit state. The drive must be placed into a controlled disable condition before the drive can be made to run at the required reference. The drive can be put in to a controlled disable condition by removing the SAFE TORQUE OFF (SECURE DISABLE) signal from terminal 31, setting the drive enable parameter Pr **6.15** to OFF (0) or disabling the drive via the control word (Pr **6.42** & Pr **6.43**).

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information

Pr 0.07 {5.14} Voltage mode

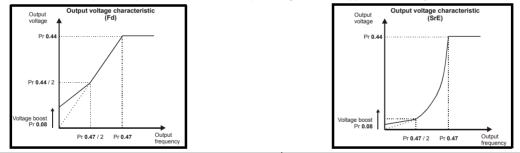
There are six voltage modes available which fall into two categories, vector control and fixed boost.

Vector control

Vector control mode provides the motor with a linear voltage characteristic from 0Hz to motor rated frequency (Pr **0.47**), and then a constant voltage above motor rated frequency. When the drive operates between motor rated frequency/50 and motor rated frequency/4, full vector based stator resistance compensation is applied. When the drive operates between motor rated frequency/4 and motor rated frequency/2 the stator resistance compensation is gradually reduced to zero as the frequency increases. For the vector modes to operate correctly the motor rated power factor (Pr **0.43**), stator resistance (Pr **5.17**) and voltage offset (Pr **5.23**) are all required to be set up accurately. The drive can be made to measure these by performing an autotune (see Pr **0.40** Autotune). The drive can also be made to measure the stator resistance and voltage offset automatically every time the drive is enabled or the first time the drive is enabled after it is powered up, by selecting one of the vector control voltage modes.

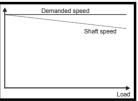
(0) Ur_S = The stator resistance and the voltage offset are measured and the parameters for the selected motor map are over-written each time the drive is made to run. This test can only be done with a stationary motor where the flux has decayed to zero. Therefore this mode should only be used if the motor is guaranteed to be stationary each time the drive is made to run. To prevent the test from being done before the flux has decayed there is a period of 1 second after the drive has been in the ready state during which the test is not done if the drive is made to run again. In this case, previously measured values are used. Ur_s mode ensures that the drive compensates for any change in motor parameters due to changes in temperature. The new values of stator resistance and voltage offset are not automatically saved to the drive's EEPROM.
(4) Ur_I = The stator resistance and voltage offset are measured when the drive is first made to run after each power-up. This test can only be done with a stationary motor. Therefore this mode should only be used if the motor is guaranteed to be stationary the first time the drive is made to run after each power-up. The new values of stator resistance and voltage offset are not automatically saved to the drive's EEPROM.
(1) Ur = The stator resistance and voltage offset are not measured. The user can enter the motor and cabling resistance into the stator resistance parameter (Pr 5.17). However this will not include resistance effects within the drive inverter. Therefore if this mode is to be used, it is best to use an autotune test initially to measure the stator resistance and voltage offset.

(3) **Ur_Auto=** The stator resistance and voltage offset are measured once, the first time the drive is made to run. After the test has been completed successfully the voltage mode (Pr 0.07) is changed to Ur mode. The stator resistance (Pr 5.17) and voltage offset (Pr 5.23) parameters are written to, and along with the voltage mode (Pr 0.07), are saved in the drive's EEPROM. If the test fails, the voltage mode will stay set to Ur_Auto and the test will be repeated next time the drive is made to run.


Fixed boost

Neither the stator resistance nor the voltage offset are used in the control of the motor, instead a fixed characteristic with low frequency voltage boost as defined by parameter Pr **0.08**, is used. Fixed boost mode should be used when the drive is controlling multiple motors. There are two settings of fixed boost available:

(2) Fd = This mode provides the motor with a linear voltage characteristic from 0Hz to rated frequency (Pr 0.47), and then a constant voltage above rated frequency.


(5) **SrE** = This mode provides the motor with a square law voltage characteristic from 0Hz to rated frequency (Pr **0.47**), and then a constant voltage above rated frequency. This mode is suitable for variable torque applications like fans and pumps where the load is proportional to the square of the speed of the motor shaft. This mode should not be used if a high starting torque is required.

For both these modes, at low frequencies (from 0Hz to ½ x Pr 0.47) a voltage boost is applied defined by Pr 0.08 as shown below:

Pr 5.27 Slip compensation

When a motor, being controlled in open loop mode, has load applied a characteristic of the motor is that the output speed droops in proportion to the load applied as shown:

In order to prevent the speed droop shown above slip compensation should be enabled.

To enable slip compensation Pr **5.27** must be set to a 1 (this is the default setting), and the motor rated speed must be entered in Pr **0.45** (Pr **5.08**). The motor rated speed parameter should be set to the synchronous speed of the motor minus the slip speed. This is normally displayed on the motor nameplate, i.e. for a typical 18.5kW, 50Hz, 4 pole motor, the motor rated speed would be approximately 1465rpm. The synchronous speed for a 50Hz, 4 pole motor is 1500rpm, so therefore the slip speed would be 35rpm.

If the synchronous speed is entered in Pr 0.45, slip compensation will be disabled. If too small a value is entered in Pr 0.45, the motor will run faster than the demanded frequency.

The synchronous speeds for 50Hz motors with different numbers of poles are as follows:

2 pole = 3000rpm, 4 pole = 1500rpm, 6pole =1000rpm, 8 pole = 750rpm

ľ	Safety	Introduction	Product Information	System	Mechanical	Electrical	Getting		Running	Optimization	SMARTCARD	Onboard	Advanced	Technical Data	Diagnostics	UL Listing
	Information		Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	- 3	Information

10.1.2 RFC mode

Software V01.10.00 or later should be used for RFC mode.

Pr 0.46 {5.07} Motor rated current

Defines the maximum motor continuous current

The motor rated current parameter must be set to the maximum continuous current of the motor. (See section 10.2 *Maximum motor rated current* on page 146, for information about setting this parameter higher than the maximum Heavy Duty current rating.) The motor rated current is used in the following:

- Current limits (see section 10.3 Current limits on page 146, for more information)
- Motor thermal overload protection (see section 10.4 Motor thermal protection on page 146, for more information)
- Vector control algorithm

Defines the voltage applied to the motor at rated frequency Defines the frequency at which rated voltage is applied

Pr 0.47 {5.06} Motor rated frequency

Pr 0.44 {5.09} Motor rated voltage

The motor rated voltage Pr **0.44** and the motor rated frequency Pr **0.47** are used to define the relationship between the voltage and frequency applied to the motor, as shown.

The motor rated voltage is used by the field controller to limit the voltage applied to the motor. Normally this is set to the nameplate value. To allow current control to be maintained, it is necessary for the drive to leave some 'headroom' between the motor terminal voltage and the maximum available drive output voltage. For good transient performance at high speed, the motor rated voltage should be set below 95% of the minimum supply voltage to the drive.

The motor rated voltage and motor rated frequency are also used during the rotating autotune test (see Autotune Pr **0.40** later in this table) and in the calculations required for automatic optimization of the motor rated speed (see Motor rated speed optimization Pr **5.16**, later in this table). Therefore, it is important that the correct value for motor rated voltage is used.

Pr 0.44 / 2 Pr 0.44 / 2 Pr 0.47 / 2 Pr 0.47 Output frequency

Output voltage characteristic

Pr 0.45 {5.08} Motor rated speed

Pr 0.42 {5.11} Motor number of poles

Defines the number of motor poles

Output

The motor rated speed and motor rated frequency are used to determine the full load slip of the motor which is used by the vector control algorithm. Incorrect setting of this parameter has the following effects:

- · Reduced efficiency of motor operation
- · Reduction of maximum torque available from the motor
- Reduced transient performance
- Inaccurate control of absolute torque in torque control modes

The nameplate value is normally the value for a hot motor; however, some adjustment may be required when the drive is commissioned if the nameplate value is inaccurate. Either a fixed value can be entered in this parameter or an optimization system may be used to automatically adjust this parameter (see Motor rated speed autotune Pr **5.16**, later in this table).

When Pr 0.42 is set to 'Auto', the number of motor poles is automatically calculated from the motor rated frequency Pr 0.47, and the motor rated speed Pr 0.45

Number of poles = 120 x (Motor rated frequency Pr 0.47 / Motor rated speed Pr 0.45) rounded to the nearest even number

Pr 0.43 {5.10} Motor rated power	r factor		Define	es the	angle l	between th	ne mot	or voltage a	nd current	
	A	 								-

The power factor is the true power factor of the motor, i.e. the angle between the motor voltage and current. If the stator inductance is set to zero (Pr **5.25**) then the power factor is used in conjunction with the motor rated current Pr **0.46** and other motor parameters to calculate the rated active and magnetising currents of the motor, which are used in the vector control algorithm. If the stator inductance has a non-zero value this parameter is not used by the drive, but is continuously written with a calculated value of power factor. The stator inductance can be measured by the drive by performing a rotating autotune (see Autotune Pr **0.40**, later in this table).

Safety Introduction Information Configuration Installation Installation Installation Started parameters the motor Optimization Optimization PLC parameters Data Diagnostics Information

Pr 0.40 {5.12} Autotune

There are three autotune tests available in RFC mode, a stationary test, a rotating test and an inertia measurement test. A stationary autotune will give moderate performance whereas a rotating autotune will give improved performance as it measures the actual values of the motor parameters required by the drive. An inertia measurement test should be performed separately to a stationary or rotating autotune.

NOTE

It is highly recommended that a rotating autotune is performed (Pr 0.40 set to 2).

- A stationary autotune can be used when the motor is loaded and it is not possible to remove the load from the motor shaft. The stationary autotune measures the stator resistance (Pr 5.17) and transient inductance (Pr 5.24) of the motor. These are used to calculate the current loop gains, and at the end of the test the values in Pr 4.13 and Pr 4.14 are updated. A stationary autotune does not measure the power factor of the motor so the value on the motor nameplate must be entered into Pr 0.43. To perform a Stationary autotune, set Pr 0.40 to 1, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).
- A rotating autotune should only be used if the motor is unloaded. A rotating autotune first performs a stationary autotune before rotating the motor at ²/₃ of motor rated frequency in the direction selected for approximately 30s. During the rotating autotune the stator inductance (Pr 5.25), and the motor saturation breakpoints (Pr 5.29 and Pr 5.30) are modified by the drive. The power factor is also modified for user information only, but is not used after this point as the stator inductance is used in the vector control algorithm instead. To perform a Rotating autotune, set Pr 0.40 to 2, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).
- The inertia measurement test can measure the total inertia of the load and the motor. This is used to set the speed loop gains (see *Speed loop gains*) and to provide torque feed-forwards when required during acceleration.

During the inertia measurement test the drive attempts to accelerate the motor in the direction selected up to ${}^{3}{}_{4}$ x rated load rpm and then back to standstill. The drive uses rated torque/16, but if the motor cannot be accelerated to the required speed the drive then increases the torque progressively to $x^{1}{}_{8}$, $x^{1}{}_{4}$, $x^{1}{}_{2}$ and x1 rated torque. If the required speed is not achieved on the final attempt the test is aborted and a tunE1 trip is initiated. If the test is successful the acceleration and deceleration times are used to calculate the motor and load inertia which is then written to Pr **3.18**. The motor map parameters must be set up correctly including the power factor before performing an inertia measurement test. To perform an Inertia measurement autotune, set Pr **0.40** to 3, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).

Following the completion of an autotune test the drive will go into the inhibit state. The drive must be placed into a controlled disable condition before the drive can be made to run at the required reference. The drive can be put in to a controlled disable condition by removing the SAFE TORQUE OFF (SECURE DISABLE) signal from terminal 31, setting the drive enable parameter Pr **6.15** to OFF (0) or disabling the drive via the control word (Pr **6.42** & Pr **6.43**).

Pr 0.38 {4.13} / Pr 0.39 {4.14} Current loop gains

The current loop gains proportional (Kp) and integral (Ki) gains control the response of the current loop to a change in current (torque) demand. The default values give satisfactory operation with most motors. However, for optimal performance in dynamic applications it may be necessary to change the gains to improve the performance. The proportional gain (Pr **4.13**) is the most critical value in controlling the performance. The values for the current loop gains can be calculated by one of the following:

- During a stationary or rotating autotune (see Autotune Pr 0.40, earlier in this table) the drive measures the stator resistance (Pr 5.17) and transient inductance (Pr 5.24) of the motor and calculates the current loop gains.
- By setting Pr 0.40 to 4 the drive will calculate the current loop gains from the values of stator resistance (Pr 5.17) and transient inductance (Pr 5.24) set in the drive.

This will give a step response with minimum overshoot after a step change of current reference. The proportional gain can be increased by a factor of 1.5 giving a similar increase in bandwidth; however, this gives a step response with approximately 12.5% overshoot. The equation for the integral gain gives a conservative value. In some applications where it is necessary for the reference frame used by the drive to dynamically follow the flux very closely (i.e. high speed RFC induction motor applications) the integral gain may need to have a significantly higher value.

Pr 3.42 Drive encoder filter

In RFC mode Pr **3.42** defines a filter on the output of the speed estimator which is used as the speed feedback. A filter with a 4ms time constant is always present on the output of the speed estimator, but this filter may be extended as follows:

0 = 4ms, 1 = 8ms, 2 = 16ms, 3 = 32ms, 4 = 64ms, 5 = 128ms.

The output of the speed estimator can include some ripple, which increases as the drive passes into field weakening and the filter can be used to remove this ripple. This is particularly useful when using standard ramp or spinning start with a low friction, high inertia load, and can prevent over voltage trips when the drive has no braking resistor.

Pr 5.40 Spin start boost

If Pr **6.09** is set to enable the catch a spinning motor function in open-loop mode or RFC modes, this parameter defines a scaling function used by the algorithm that detects the speed of the motor. It is likely that for smaller motors (~4kW) the default value of 1.0 is suitable, but for larger motors this parameter may need to be increased. If the value of this parameter is too large the motor may accelerate from standstill when the drive is enabled. If the value of this parameter is too small the drive will detect the motor speed as zero even if the motor is spinning.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting		Running	Optimization		Onboard				UL Listing
Information	introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	opumzation	operation	PLC	parameters	Data	Diagnootioo	Information

Speed loop gains (Pr 0.07 {3.10}, Pr 0.08 {3.11}, Pr 0.09 {3.12})

The speed loop gains control the response of the speed controller to a change in speed demand. The speed controller includes proportional (Kp) and integral (Ki) feed forward terms, and a differential (Kd) feedback term. The drive holds two sets of these gains and either set may be selected for use by the speed controller with Pr **3.16**. If Pr **3.16** = 0, gains Kp1, Ki1 and Kd1 (Pr **0.07** to Pr **0.09**) are used, and if Pr **3.16** = 1, gains Kp2, Ki2 and Kd2 (Pr **3.13** to Pr **3.15**) are used. Pr **3.16** may be changed when the drive is enabled or disabled. If the load is predominantly a constant inertia and constant torque, the drive can calculate the required Kp and Ki gains to give a required compliance angle or bandwidth dependant on the setting of Pr **3.17**.

Proportional gain (Kp), Pr 0.07 {3.10} and Pr 3.13

If the proportional gain has a value and the integral gain is set to zero the controller will only have a proportional term, and there must be a speed error to produce a torque reference. Therefore as the motor load increases there will be a difference between the reference and actual speeds. This effect, called regulation, depends on the level of the proportional gain, the higher the gain the smaller the speed error for a given load. If the proportional gain is too high either the acoustic noise produced by speed feedback quantization becomes unacceptable, or the stability limit is reached.

Integral gain (Ki), Pr 0.08 {3.11} and Pr 3.14

The integral gain is provided to prevent speed regulation. The error is accumulated over a period of time and used to produce the necessary torque demand without any speed error. Increasing the integral gain reduces the time taken for the speed to reach the correct level and increases the stiffness of the system, i.e. it reduces the positional displacement produced by applying a load torque to the motor. Unfortunately increasing the integral gain also reduces the system damping giving overshoot after a transient. For a given integral gain the damping can be improved by increasing the proportional gain. A compromise must be reached where the system response, stiffness and damping are all adequate for the application. For RFC mode, it is unlikely that the integral gain can be increased much above 0.50.

Differential gain (Kd), Pr 0.09 {3.12} and Pr 3.15

The differential gain is provided in the feedback of the speed controller to give additional damping. The differential term is implemented in a way that does not introduce excessive noise normally associated with this type of function. Increasing the differential term reduces the overshoot produced by under-damping, however, for most applications the proportional and integral gains alone are sufficient.

There are three methods of tuning the speed loop gains dependant on the setting of Pr 3.17:

1. Pr 3.17 = 0, User set-up.

This involves the connecting of an oscilloscope to analog output 1 to monitor the speed feedback.

Give the drive a step change in speed reference and monitor the response of the drive on the oscilloscope.

The proportional gain (Kp) should be set up initially. The value should be increased up to the point where the speed overshoots and then reduced slightly.

The integral gain (Ki) should then be increased up to the point where the speed becomes unstable and then reduced slightly.

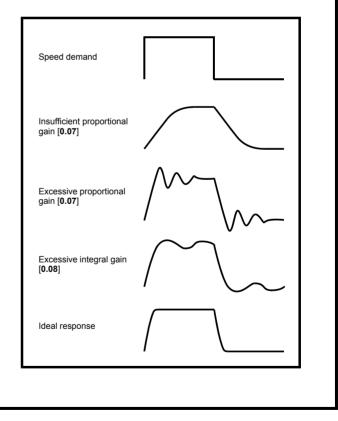
It may now be possible to increase the proportional gain to a higher value and the process should be repeated until the system response matches the ideal response as shown.

The diagram shows the effect of incorrect P and I gain settings as well as the ideal response.

2. Pr 3.17 = 1, Bandwidth set-up

If bandwidth based set-up is required, the drive can calculate Kp and Ki if the following parameters are set up correctly:

- Pr 3.20 Required bandwidth,
- Pr 3.21 Required damping factor,


Pr **3.18** - Motor and load inertia. The drive can be made to measure the motor and load inertia by performing an inertia measurement autotune (see Autotune Pr **0.40**, earlier in this table).

3. Pr 3.17 = 2, Compliance angle set-up

If compliance angle based set-up is required, the drive can calculate Kp and Ki if the following parameters are set up correctly:

- Pr 3.19 Required compliance angle,
- Pr 3.21 Required damping factor,

Pr **3.18** - Motor and load inertia The drive can be made to measure the motor and load inertia by performing an inertia measurement autotune (see Autotune Pr **0.40**, earlier in this table).

				_											
Safety		Product	Svstem	Mechanical	Electrical	Gettina	Basic	Runnina		SMARTCARD	Onboard	Advanced	Technical		UL Listing
	Introduction			In stall stars	La stall at an	Chambard			Optimization		DI O			Diagnostics	lu fa ma ti an
nformation		Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	U	Information

10.1.3 **Closed loop vector motor control**

Pr 0.46 {5.07} Motor rated current Defines the maximum motor continuous current The motor rated current parameter must be set to the maximum continuous current of the motor. (See section 10.2 Maximum motor rated current on page 146, for information about setting this parameter higher than the maximum Heavy Duty current rating.) The motor rated current is used in the followina: Current limits (see section 10.3 Current limits on page 146, for more information) Motor thermal overload protection (see section 10.4 Motor thermal protection on page 146, for more information) Vector control algorithm Pr 0.44 {5.09} Motor rated voltage Defines the voltage applied to the motor at rated frequency Pr 0.47 {5.06} Motor rated frequency Defines the frequency at which rated voltage is applied The motor rated voltage Pr 0.44 and the motor rated frequency Pr 0.47 Output voltage characteristic are used to define the relationship between the voltage and frequency Output , oltage applied to the motor, as shown. The motor rated voltage is used by the field controller to limit the voltage Pr 0.44 applied to the motor. Normally this is set to the nameplate value. To allow current control to be maintained, it is necessary for the drive to leave some 'headroom' between the motor terminal voltage and the maximum available drive output voltage. For good transient performance at high Pr 0.44 / 2 speed, the motor rated voltage should be set below 95% of the minimum supply voltage to the drive. The motor rated voltage and motor rated frequency are also used during the rotating autotune test (see Autotune Pr 0.40 later in this table) and in the calculations required for automatic optimization of the motor rated Output frequer Pr 0.47 / 2 Pr 0 47 speed (see Motor rated speed optimization Pr 5.16, later in this table). Therefore, it is important that the correct value for motor rated voltage is used. Pr 0.45 {5.08} Motor rated speed Defines the full load rated speed of the motor Pr 0.42 {5.11} Motor number of poles Defines the number of motor poles The motor rated speed and motor rated frequency are used to determine the full load slip of the motor which is used by the vector control algorithm. Incorrect setting of this parameter has the following effects: Reduced efficiency of motor operation Reduction of maximum torque available from the motor Reduced transient performance Inaccurate control of absolute torgue in torgue control modes The nameplate value is normally the value for a hot motor; however, some adjustment may be required when the drive is commissioned if the nameplate value is inaccurate. Either a fixed value can be entered in this parameter or an optimization system may be used to automatically adjust this parameter (see Motor rated speed autotune Pr 5.16, later in this table). When Pr 0.42 is set to 'Auto', the number of motor poles is automatically calculated from the motor rated frequency Pr 0.47, and the motor rated speed Pr 0.45 Number of poles = 120 x (Motor rated frequency Pr 0.47 / Motor rated speed Pr 0.45) rounded to the nearest even number Pr 0.43 {5.10} Motor rated power factor Defines the angle between the motor voltage and current

The power factor is the true power factor of the motor, i.e. the angle between the motor voltage and current. If the stator inductance is set to zero (Pr 5.25) then the power factor is used in conjunction with the motor rated current Pr 0.46 and other motor parameters to calculate the rated active and magnetising currents of the motor, which are used in the vector control algorithm. If the stator inductance has a non-zero value this parameter is not used by the drive, but is continuously written with a calculated value of power factor. The stator inductance can be measured by the drive by performing a rotating autotune (see Autotune Pr 0.40, later in this table).

	Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARICARD	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	-----------------------	--------------	------------------------	-------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	-----------	----------------	---------------------	-------------------	-------------	---------------------------

Pr 0.40 {5.12} Autotune

There are three autotune tests available in closed loop vector mode, a stationary test, a rotating test and an inertia measurement test. A stationary autotune will give moderate performance whereas a rotating autotune will give improved performance as it measures the actual values of the motor parameters required by the drive. An inertia measurement test should be performed separately to a stationary or rotating autotune.

- A stationary autotune can be used when the motor is loaded and it is not possible to remove the load from the motor shaft. The stationary autotune measures the stator resistance (Pr 5.17) and transient inductance (Pr 5.24) of the motor. These are used to calculate the current loop gains, and at the end of the test the values in Pr 4.13 and Pr 4.14 are updated. A stationary autotune does not measure the power factor of the motor so the value on the motor nameplate must be entered into Pr 0.43. To perform a Stationary autotune, set Pr 0.40 to 1, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).
- A rotating autotune should only be used if the motor is unloaded. A rotating autotune first performs a stationary autotune before rotating the motor at 2/3 of motor rated frequency in the direction selected for approximately 30s. During the rotating autotune the stator inductance (Pr 5.25), and the motor saturation breakpoints (Pr 5.29 and Pr 5.30) are modified by the drive. The power factor is also modified for user information only, but is not used after this point as the stator inductance is used in the vector control algorithm instead. To perform a Rotating autotune, set Pr 0.40 to 2, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).
- The inertia measurement test can measure the total inertia of the load and the motor. This is used to set the speed loop gains (see Speed loop gains) and to provide torque feed-forwards when required during acceleration.

During the inertia measurement test the drive attempts to accelerate the motor in the direction selected up to ${}^{3}{}_{4}$ x rated load rpm and then back to standstill. The drive uses rated torque/16, but if the motor cannot be accelerated to the required speed the drive then increases the torque progressively to $x^{1}{}_{8}$, $x^{1}{}_{4}$, $x^{1}{}_{4}$, $x^{1}{}_{2}$ and x1 rated torque. If the required speed is not achieved on the final attempt the test is aborted and a tunE1 trip is initiated. If the test is successful the acceleration and deceleration times are used to calculate the motor and load inertia which is then written to Pr **3.18**. The motor map parameters must be set up correctly including the power factor before performing an inertia measurement test. To perform an Inertia measurement autotune, set Pr **0.40** to 3, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).

Following the completion of an autotune test the drive will go into the inhibit state. The drive must be placed into a controlled disable condition before the drive can be made to run at the required reference. The drive can be put in to a controlled disable condition by removing the SAFE TORQUE OFF (SECURE DISABLE) signal from terminal 31, setting the drive enable parameter Pr **6.15** to OFF (0) or disabling the drive via the control word (Pr **6.42** & Pr **6.43**).

Pr 5.16 Motor rated speed autotune

The motor rated speed parameter (Pr **0.45**) in conjunction with the motor rated frequency parameter (Pr **0.47**) defines the full load slip of the motor. The slip is used in the motor model for closed-loop vector control. The full load slip of the motor varies with rotor resistance which can vary significantly with motor temperature. When Pr **5.16** is set to 1 or 2 the drive can automatically sense if the value of slip defined by Pr **0.47** and Pr **0.45** has been set incorrectly or if it has varied with motor temperature. If the value is incorrect Pr **0.45** is automatically adjusted. Pr **0.45** is not saved at power-down, and so when the drive is powered-down and up again it will return to the last saved value. If the new value is required at the next power-up it must be saved by the user. Automatic optimization is only enabled when the speed is above rated speed/8, and when the load on the motor load rises above $\frac{5}{8}$ rated load. Optimization is disabled again if the load falls below $\frac{1}{2}$ rated load. For best optimization results the correct values of stator resistance (Pr **5.17**), transient inductance (Pr **5.24**), stator inductance (Pr **5.25**) and saturation breakpoints (Pr **5.29**, Pr **5.30**) should be stored in the relevant parameters (all these can be measured by the drive by performing a rotating autotune). Motor rated speed autotune is not available if the drive is not using external position/speed feedback.

The gain of the optimizer, and hence the speed with which it converges, can be set at a normal low level when Pr **5.16** is set to 1. If this parameter is set to 2, the gain is increased by a factor of 16 to give faster convergence.

Pr 0.38 {4.13} / Pr 0.39 {4.14} Current loop gains

The current loop gains proportional (Kp) and integral (Ki) gains control the response of the current loop to a change in current (torque) demand. The default values give satisfactory operation with most motors. However, for optimal performance in dynamic applications it may be necessary to change the gains to improve the performance. The proportional gain (Pr **4.13**) is the most critical value in controlling the performance. The values for the current loop gains can be calculated by one of the following:

- During a stationary or rotating autotune (see Autotune Pr 0.40, earlier in this table) the drive measures the stator resistance (Pr 5.17) and transient inductance (Pr 5.24) of the motor and calculates the current loop gains.
- By setting Pr 0.40 to 4 the drive will calculate the current loop gains from the values of stator resistance (Pr 5.17) and transient inductance (Pr 5.24) set in the drive.

This will give a step response with minimum overshoot after a step change of current reference. The proportional gain can be increased by a factor of 1.5 giving a similar increase in bandwidth; however, this gives a step response with approximately 12.5% overshoot. The equation for the integral gain gives a conservative value. In some applications where it is necessary for the reference frame used by the drive to dynamically follow the flux very closely (i.e. high speed closed-loop induction motor applications) the integral gain may need to have a significantly higher value.

Safety		Product	System	Mechanical	Electrical	Gettina	Basic	Runnina		SMARTCARD	Onboard	Advanced	Technical		UL Listina
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

Speed loop gains (Pr 0.07 {3.10}, Pr 0.08 {3.11}, Pr 0.09 {3.12})

The speed loop gains control the response of the speed controller to a change in speed demand. The speed controller includes proportional (Kp) and integral (Ki) feed forward terms, and a differential (Kd) feedback term. The drive holds two sets of these gains and either set may be selected for use by the speed controller with Pr **3.16**. If Pr **3.16** = 0, gains Kp1, Ki1 and Kd1 (Pr **0.07** to Pr **0.09**) are used, and if Pr **3.16** = 1, gains Kp2, Ki2 and Kd2 (Pr **3.13** to Pr **3.15**) are used. Pr **3.16** may be changed when the drive is enabled or disabled. If the load is predominantly a constant inertia and constant torque, the drive can calculate the required Kp and Ki gains to give a required compliance angle or bandwidth dependant on the setting of Pr **3.17**.

Proportional gain (Kp), Pr 0.07 {3.10} and Pr 3.13

If the proportional gain has a value and the integral gain is set to zero the controller will only have a proportional term, and there must be a speed error to produce a torque reference. Therefore as the motor load increases there will be a difference between the reference and actual speeds. This effect, called regulation, depends on the level of the proportional gain, the higher the gain the smaller the speed error for a given load. If the proportional gain is too high either the acoustic noise produced by speed feedback quantization becomes unacceptable, or the closed-loop stability limit is reached.

Integral gain (Ki), Pr 0.08 {3.11} and Pr 3.14

The integral gain is provided to prevent speed regulation. The error is accumulated over a period of time and used to produce the necessary torque demand without any speed error. Increasing the integral gain reduces the time taken for the speed to reach the correct level and increases the stiffness of the system, i.e. it reduces the positional displacement produced by applying a load torque to the motor. Unfortunately increasing the integral gain also reduces the system damping giving overshoot after a transient. For a given integral gain the damping can be improved by increasing the proportional gain. A compromise must be reached where the system response, stiffness and damping are all adequate for the application.

Differential gain (Kd), Pr 0.09 {3.12} and Pr 3.15

The differential gain is provided in the feedback of the speed controller to give additional damping. The differential term is implemented in a way that does not introduce excessive noise normally associated with this type of function. Increasing the differential term reduces the overshoot produced by under-damping, however, for most applications the proportional and integral gains alone are sufficient.

There are three methods of tuning the speed loop gains dependant on the setting of Pr 3.17:

1. Pr 3.17 = 0, User set-up.

This involves the connecting of an oscilloscope to analog output 1 to monitor the speed feedback. Give the drive a step change in speed reference and monitor the response of the drive on the oscilloscope.

The proportional gain (Kp) should be set up initially. The value

should be increased up to the point where the speed overshoots and then reduced slightly.

The integral gain (Ki) should then be increased up to the point where the speed becomes unstable and then reduced slightly.

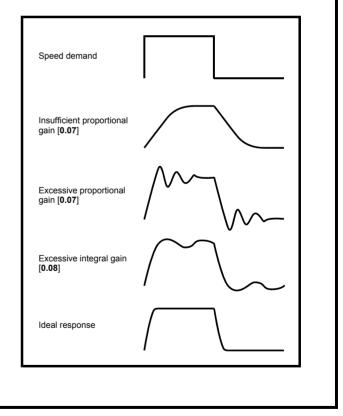
It may now be possible to increase the proportional gain to a higher value and the process should be repeated until the system response matches the ideal response as shown.

The diagram shows the effect of incorrect P and I gain settings as well as the ideal response.

2. Pr 3.17 = 1, Bandwidth set-up

If bandwidth based set-up is required, the drive can calculate Kp and Ki if the following parameters are set up correctly:

- Pr 3.20 Required bandwidth,
- Pr 3.21 Required damping factor,


Pr **3.18** - Motor and load inertia. The drive can be made to measure the motor and load inertia by performing an inertia measurement autotune (see Autotune Pr **0.40**, earlier in this table).

3. Pr 3.17 = 2, Compliance angle set-up

If compliance angle based set-up is required, the drive can calculate Kp and Ki if the following parameters are set up correctly:

- Pr **3.19** Required compliance angle,
- Pr 3.21 Required damping factor,

Pr **3.18** - Motor and load inertia The drive can be made to measure the motor and load inertia by performing an inertia measurement autotune (see Autotune Pr **0.40**, earlier in this table).

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
10.1.4	Servo	motor	control												
Pr 0.46 {	Pr 0.46 {5.07} Motor rated current Defines the maximum motor continuous current The motor rated current parameter must be set to the maximum continuous current of the motor. The motor rated current is used in the following:														
Curre	ent limits	(see secti	on 10.3 Cı	urrent limi	ts on pag	e 146,	for more	informat	tion)	otor. The mo 46, for more			is used	in the foll	owing:
Pr 0.42 {	[5.11] Mo	tor numb	er of pole	s				Define	es the num	ber of moto	or poles	3			

Pr 0.42 {5.11} Motor number of poles

The motor number of poles parameter defines the number of electrical revolutions in one whole mechanical revolution of the motor. This parameter must be set correctly for the control algorithms to operate correctly. When Pr 0.42 is set to "Auto" the number of poles is 6.

Pr 0.40 {5.12} Autotune

There are five autotune tests available in servo mode, a short low speed test, a normal low speed test, an inertia measurement test, a stationary test to set up current controller gains and a minimal movement phasing test. A normal low speed should be done where possible as the drive measures the stator resistance and inductance of the motor, and from these calculates the current loop gains. An inertia measurement test should be performed separately to a short low speed or normal low speed autotune.

- A short low speed test will rotate the motor by 2 electrical revolutions (i.e. up to 2 mechanical revolutions) in the direction selected. The drive applies rated current to the motor during the test and measures the encoder phase angle (Pr 3.25). The phase angle measurement is taken when the motor has stopped at the end of the test, therefore there must be no load on the motor when it is at rest for the correct angle to be measured. This test takes approximately 2 seconds to complete and can only be used where the rotor settles to a stable position in a short time. To perform a short low speed autotune, set Pr 0.40 to 1, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27). A normal low speed test will rotate the motor by 2 electrical revolutions (i.e. up to 2 mechanical revolutions) in the direction selected. The drive applies
- rated current to the motor during the test and measures the encoder phase angle (Pr 3.25). The phase angle measurement is taken when the motor has stopped at the end of the test, therefore there must be no load on the motor when it is at rest for the correct angle to be measured. The motor resistance (Pr 5.17) and inductance (Pr 5.24) are then measured, and the values are used to set up the current loop gains (Pr 0.38 {4.13} and Pr 0.39 (4.14)). The whole test takes approximately 20 seconds and can be used with motors that take time to settle after the rotor has moved. During the motor inductance measurement the drive applies current pulses to the motor that produces flux that opposes the flux produced by the magnets. The maximum current applied is a quarter of rated current (Pr 0.46). This current is unlikely to affect the motor magnets, however, if this level of current could permanently de-magnetise the magnets the rated current should be set to a lower level for the tests to avoid this. To perform a normal low speed autotune, set Pr 0.40 to 2, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).

The inertia measurement test can measure the total inertia of the load and the motor. This is used to set the speed loop gains (see Speed loop gains) and to provide torque feed-forwards when required during acceleration.

During the inertia measurement test the drive attempts to accelerate the motor in the direction selected up to 3/4 x rated load rpm and then back to standstill. The drive uses rated torque/16, but if the motor cannot be accelerated to the required speed the drive then increases the torque progressively to x¹/₈, x¹/₄, x¹/₂ and x1 rated torque. If the required speed is not achieved on the final attempt the test is aborted and a tunE1 trip is initiated. If the test is successful the acceleration and deceleration times are used to calculate the motor and load inertia which is then written to Pr 3.18. The value of the value of motor torque per amp in Pr 5.32 and the motor rated speed in Pr 5.08 must be set up correctly before performing an inertia measurement test. To perform an Inertia measurement autotune, set Pr 0.40 to 3, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).

- The stationary test to set up current controller gains measures the stator resistance and the transient inductance of the motor, calculates the current loop gains and updates the current loop gain parameters. This test does not measure the encoder phase angle. This test should only be performed when the correct phasing angle has been set in Pr 0.43. If the phasing angle is not correct the motor may move and the results may be incorrect. To perform a stationary test to set up current controller gains, set Pr 0.40 to 4, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).
- A minimal movement phasing test can measure the encoder phase offset by moving the motor through a small angle. Short current pulses are applied to the motor to produce a small movement and then to move the motor back to the original position. The size and length of the pulses are gradually increased (up to a maximum of motor rated current) until the movement is approximately at the level defined by Pr 5.38 electrical degrees. The resulting movements are used to estimate the phase angle. To perform a minimal movement phasing test, set Pr 0.40 to 5, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).

Following the completion of an autotune test the drive will go into the inhibit state. The drive must be placed into a controlled disable condition before the drive can be made to run at the required reference. The drive can be put in to a controlled disable condition by removing the SAFE TORQUE OFF (SECURE DISABLE) signal from terminal 31, setting the drive enable parameter Pr 6.15 to OFF (0) or disabling the drive via the control word (Pr 6.42 & Pr 6.43).

Current loop gains (Pr 0.38 {4.13} / Pr 0.39 {4.14})

The current loop gains proportional (Kp) and integral (Ki) gains control the response of the current loop to a change in current (torque) demand. The default values give satisfactory operation with most motors. However, for optimal performance in dynamic applications it may be necessary to change the gains to improve the performance. The proportional gain (Pr 4.13) is the most critical value in controlling the performance. The values for the current loop gains can be calculated by one of the following:

- During a stationary or rotating autotune (see Autotune Pr 0.40, earlier in this table) the drive measures the stator resistance (Pr 5.17) and transient inductance (Pr 5.24) of the motor and calculates the current loop gains.
- By setting Pr 0.40 to 6 the drive will calculate the current loop gains from the values of stator resistance (Pr 5.17) and transient inductance (Pr 5.24) set in the drive.

This will give a step response with minimum overshoot after a step change of current reference. The proportional gain can be increased by a factor of 1.5 giving a similar increase in bandwidth; however, this gives a step response with approximately 12.5% overshoot. The equation for the integral gain gives a conservative value. In some applications where it is necessary for the reference frame used by the drive to dynamically follow the flux very closely (i.e. high speed closed-loop induction motor applications) the integral gain may need to have a significantly higher value.

Safety		Product	System	Mechanical	Electrical	Getting	Basic	Runnina		SMARTCARD	Onboard	Advanced	Technical		UL Listina
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

Speed loop gains (Pr 0.07 {3.10}, Pr 0.08 {3.11}, Pr 0.09 {3.12})

The speed loop gains control the response of the speed controller to a change in speed demand. The speed controller includes proportional (Kp) and integral (Ki) feed forward terms, and a differential (Kd) feedback term. The drive holds two sets of these gains and either set may be selected for use by the speed controller with Pr 3.16. If Pr 3.16 = 0, gains Kp1, Ki1 and Kd1 (Pr 0.07 to Pr 0.09) are used, and if Pr 3.16 = 1, gains Kp2, Ki2 and Kd2 (Pr 3.13 to Pr 3.15) are used. Pr 3.16 may be changed when the drive is enabled or disabled. If the load is predominantly a constant inertia and constant torque, the drive can calculate the required Kp and Ki gains to give a required compliance angle or bandwidth dependant on the setting of Pr 3.17.

Proportional gain (Kp), Pr 0.07 {3.10} and Pr 3.13

If the proportional gain has a value and the integral gain is set to zero the controller will only have a proportional term, and there must be a speed error to produce a torque reference. Therefore as the motor load increases there will be a difference between the reference and actual speeds. This effect, called regulation, depends on the level of the proportional gain, the higher the gain the smaller the speed error for a given load. If the proportional gain is too high either the acoustic noise produced by speed feedback quantization becomes unacceptable, or the closed-loop stability limit is reached.

Integral gain (Ki), Pr 0.08 {3.11} and Pr 3.14

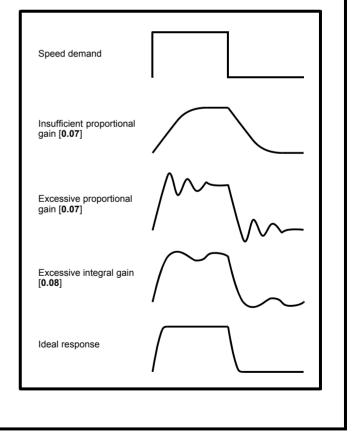
The integral gain is provided to prevent speed regulation. The error is accumulated over a period of time and used to produce the necessary torque demand without any speed error. Increasing the integral gain reduces the time taken for the speed to reach the correct level and increases the stiffness of the system, i.e. it reduces the positional displacement produced by applying a load torque to the motor. Unfortunately increasing the integral gain also reduces the system damping giving overshoot after a transient. For a given integral gain the damping can be improved by increasing the proportional gain. A compromise must be reached where the system response, stiffness and damping are all adequate for the application.

Differential gain (Kd), Pr 0.09 {3.12} and Pr 3.15

The differential gain is provided in the feedback of the speed controller to give additional damping. The differential term is implemented in a way that does not introduce excessive noise normally associated with this type of function. Increasing the differential term reduces the overshoot produced by under-damping, however, for most applications the proportional and integral gains alone are sufficient.

There are three methods of tuning the speed loop gains dependant on the setting of Pr 3.17:

1. Pr 3.17 = 0. User set-up.


This involves the connecting of an oscilloscope to analog output 1 to monitor the speed feedback. Give the drive a step change in speed reference and monitor the response of the drive on the oscilloscope. The proportional gain (Kp) should be set up initially. The value should be increased up to the point where the speed overshoots and then reduced slightly. The integral gain (Ki) should then be increased up to the point where the speed becomes unstable and then reduced slightly. It may now be possible to increase the proportional gain to a higher value and the process should be repeated until the system response matches the ideal response as shown. The diagram shows the effect of incorrect P and I gain settings as well as the ideal response.

- 2. Pr 3.17 = 1. Bandwidth set-up
 - If bandwidth based set-up is required, the drive can calculate Kp and Ki if the following parameters are set up correctly:
 - Pr 3.20 Required bandwidth,
 - Pr 3.21 Required damping factor,
 - Pr 5.32 Motor torque per amp (Kt).

Pr 3.18 - Motor and load inertia. The drive can be made to measure the motor and load inertia by performing an inertia measurement autotune (see Autotune Pr 0.40, earlier in this table).

- 3. Pr 3.17 = 2, Compliance angle set-up
- If compliance angle based set-up is required, the drive can calculate Kp and Ki if the following parameters are set up correctly:
 - Pr 3.19 Required compliance angle,
 - Pr 3.21 Required damping factor.
 - Pr 5.32 Motor torque per amp (Kt).

Pr 3.18 - Motor and load inertia The drive can be made to measure the motor and load inertia by performing an inertia measurement autotune (see Autotune Pr 0.40, earlier in this table).

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation		Advanced parameters		Diagnostics	UL Listing Information
mormation		intornation	configuration	mstanation	installation	Starteu	parameters			operation	1 LO	parameters	Dala		mormation

10.2 Maximum motor rated current

The maximum motor rated current allowed by the drive is greater than the maximum Heavy Duty current rating in Pr **11.32**. The ratio between the Normal Duty rating and the Heavy Duty rating (Pr **11.32**) varies between drive sizes. The values for the Normal and Heavy Duty rating can be found in section 3.2 *Operating modes* on page 17.

If the motor rated current (Pr **0.46**) is set above the maximum Heavy Duty current rating (Pr **11.32**), the current limits and the motor thermal protection scheme are modified (see section 10.3 *Current limits* and section 10.4 *Motor thermal protection*, for more information).

10.3 Current limits

The default settings for the current limit parameters for Unidrive SPMA/D are:

- 138.1% x motor rated current for open loop mode
- 165.7% x motor rated current for closed loop vector mode
- 150% x motor rated current for servo mode

There are three parameters which control the current limits:

- · Motoring current limit: power flowing from the drive to the motor
- Regen current limit: power flowing from the motor to the drive
- Symmetrical current limit: current limit for both motoring and regen
 operation

The lowest of either the motoring and regen current limit, or the symmetrical current limit applies.

The maximum setting of these parameters depends on the values of motor rated current, drive rated current and the power factor.

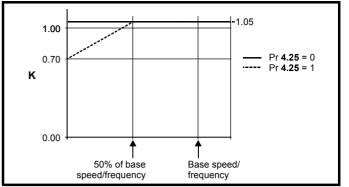
Increasing the motor rated current (Pr **0.46/5.07**) above the Heavy Duty rating (default value), will automatically reduce the current limits in Pr **4.05** to Pr **4.07**. If the motor rated current is then set to or below the Heavy Duty rating, the current limits will be left at their reduced values.

The drive can be oversized to permit a higher current limit setting to provide higher accelerating torque as required up to a maximum of 1000%.

10.4 Motor thermal protection

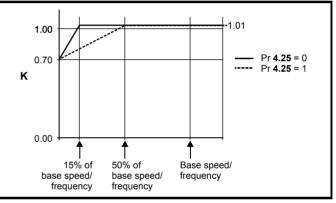
The drive models the temperature of the motor using the motor rated current (Pr **5.07**), the thermal time constant (Pr **4.15**), whether low speed thermal protection mode has been enabled (Pr **4.25**) and the actual current flowing at any point in time. Pr **4.19** gives the estimated motor temperature as a percentage of maximum temperature.

The temperature of the motor (Pr **4.19**) as a percentage of maximum temperature, with a constant current magnitude of I, constant value of K and constant value of Motor rated current (Pr **5.07**) after time t is given by:


Percentage motor temperature (Pr **4.19**) = $[I^2 / (K \times Motor rated current)^2] (1 - e^{-t/\tau}) \times 100\%$

This assumes that the maximum allowed motor temperature is produced by K x Motor rated current and that τ is the thermal time constant of the point in the motor that reaches its maximum allowed temperature first. τ is defined by Pr **4.15**. If Pr **4.15** has a value between 0.0 and 1.0 the thermal time constant is taken as 1.0.


The value of K is defined as shown in Figure 10-1 and Figure 10-2.


For both Heavy and Normal duty ratings, Pr **4.25** can be used to select two alternative protection characteristics.

If Pr **4.25** is 0 the characteristic is for a motor which can operate at rated current over the whole speed range. Induction motors with this type of characteristic normally have forced cooling. If Pr **4.25** is 1 the characteristic is intended for motors where the cooling effect of motor fan reduces with reduced motor speed below 50% of base speed/ frequency. The maximum value for K is 1.05, so that above the knee of the characteristics the motor can operate continuously up to 105% current.

Both settings of Pr **4.25** are intended for motors where the cooling effect of the motor fan reduces with reduced motor speed, but with different speeds below which the cooling effect is reduced. If Pr **4.25** is 0 the characteristic is intended for motors where the cooling effect reduces with motor speed below 15% of base speed/frequency. If Pr **4.25** is 1 the characteristic is intended for motors where the cooling effect reduces with motor speed below 50% of base speed/frequency. The maximum value for K is 1.01, so that above the knee of the characteristics the motor can operate continuously up to 101% current.

When the estimated temperature in Pr **4.19** reaches 100% the drive takes some action depending on the setting of Pr **4.16**. If Pr **4.16** is 0, the drive trips when Pr **4.19** reaches 100%. If Pr **4.16** is 1, the current limit is reduced to (K - 0.05) x 100% when Pr **4.19** reaches 100%. The current limit is set back to the user defined level when Pr **4.19** falls below 95%. The thermal model temperature accumulator is reset to zero at power-up and accumulates the temperature of the motor while the drive remains powered-up. If the rated current defined by Pr **5.07** is altered, the accumulator is reset to zero.

The default setting of the thermal time constant (Pr **4.15**) is 89s for an induction motor (open loop and closed loop vector), which is equivalent to an overload of 150% for 60s from cold. The default value for a servo motor is 20s, which is equivalent to an overload of 175% for 9s from cold.

The time for the drive to trip from cold with constant motor current is given by:

T_{trip} = -(Pr 4.15) x ln(1 - (K x Pr 5.07 / Pr 4.01)²)

Safet	y Introducti	Product	System	Mechanical	Electrical	Getting		Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	tion	" Information	configuration	Installation	Installation	Started	parameters	the motor	optimization	operation	PLC	parameters	Data	Diagnootioo	Information

Alternatively the thermal time constant can be calculated from the trip time with a given current from:

Pr **4.15** = $-T_{trip} / \ln(1 - (K / Overload)^2)$

The maximum value for the thermal time constant can be increased up to a maximum value of 3000s to allow an increased overload if the motor thermal characteristics permit.

For applications using CT Dynamics Unimotors the thermal time constants can be found in the Unimotor manual.

10.5 Switching frequency

The default switching frequency is 3kHz (6kHz in Servo mode), however this can be increased up to a maximum of 16kHz by Pr **5.18** (dependent on drive size). The available switching frequencies are shown below.

Table 10-1 Available switching frequencies

Drive size	Voltage rating	3kHz	4kHz	6kHz
SPMA and SPMD	All	\checkmark	\checkmark	~

If switching frequency is increased from 3kHz the following apply:

- Increased heat loss in the drive, which means that derating to the output current must be applied.
 See the derating tables for switching frequency and ambient temperature in section 14.1.1 *Power and current ratings (Derating*)
- for switching frequency and temperature) on page 263.
- 2. Reduced heating of the motor due to improved output waveform quality.
- 3. Reduced acoustic noise generated by the motor.
- Increased sample rate on the speed and current controllers. A trade off must be made between motor heating, drive heating and the demands of the application with respect to the sample time required.

Table 10-2 Sample rates for various control tasks at each switching frequency

	3, 6, 12 kHz	4, 8, 16 kHz	Open loop	Closed loop vector and Servo			
Level 1	3kHz = 167μs 6kHz = 83μs 12kHz = 83μs	125µs	Peak limit	Current controllers			
Level 2	250µs	;	Current limit and ramps	Speed controller and ramps			
Level 3	1ms		Voltage	e controller			
Level 4	4ms		Time critical user interface				
Background			Non-time criti	cal user interface			

10.6 High speed operation

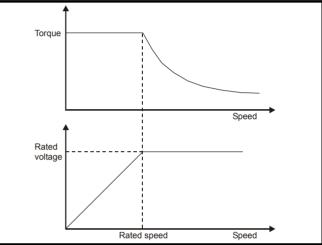
10.6.1 Encoder feedback limits

The maximum encoder frequency should be prevented from exceeding 500kHz (or 410kHz for software V01.06.00 and earlier). In closed loop and servo modes the maximum speed that can be entered in to the speed reference clamps (Pr **1.06** and Pr **1.07**) can be limited by the drive. This is defined by the following (subject to an absolute maximum of 40,000rpm):

Maximum speed limit (rpm) = $\frac{500 \text{kHz x } 60}{\text{ELPR}}$ = $\frac{3.0 \times 10^7}{\text{ELPR}}$

Where:

ELPR is the equivalent encoder lines per revolution and is the number of lines that would be produced by a guadrature encoder.


- Quadrature encoder ELPR = number of lines per revolution
- F and D encoder ELPR = number of lines per revolution / 2
- SINCOS encoder ELPR = number of sine waves per revolution

This maximum speed limit is defined by the device selected with the speed feedback selector (Pr **3.26**), and the ELPR set for the position feedback device. In closed-loop vector mode it is possible to disable this limit via Pr **3.24**, so that the drive can be switched between operation with and without feedback when the speed becomes too high for the feedback device. The maximum speed limit is defined as above when Pr **3.24** = 0 or 1, and is 40,000rpm when Pr **3.24** = 2 or 3.

10.6.2 Field weakening (constant power) operation (Open loop and closed loop vector mode only)

The drive can be used to run an induction machine above synchronous speed into the constant power region. The speed continues to increase and the available shaft torque reduces. The characteristics below show the torque and output voltage characteristics as the speed is increased above the rated value.

Figure 10-3 Torque and rated voltage against speed

Care must be taken to ensure the torque available above base speed is sufficient for the application to run satisfactorily.

The saturation breakpoint parameters (Pr **5.29** and Pr **5.30**) found during the autotune in closed loop vector mode ensure the magnetising current is reduced in the correct proportion for the specific motor. (In open loop mode the magnetising current is not actively controlled.)

10.6.3 Servo high speed operation

High speed servo mode is enabled by setting Pr **5.22** =1. Care must be taken when using this mode with servo motors to avoid damaging the drive. The voltage produced by the servo motor magnets is proportional to speed. For high speed operation the drive must apply currents to the motor to counter-act the flux produced by the magnets. It is possible to operate the motor at very high speeds that would give a very high motor terminal voltage, but this voltage is prevented by the action of the drive. If however, the drive is disabled (or tripped) when the motor voltages would be higher than the rating of the drive without the currents to counter-act the flux from the magnets, it is possible to damage the drive. If high speed mode is enabled the motor speed must be limited to the levels given in the table below unless an additional hardware protection system is used to limit the voltages applied to the drive output terminals to a safe level.

Drive voltage rating	Maximum motor speed (rpm)	Maximum safe line to line voltage at the motor terminals (V rms)
200	400 x 1000 / (Ke x √2)	400 / √2
400	800 x 1000 / (Ke x √2)	800 / √2
690	1145 x 1000 / (Ke x √2)	1145 / √2

Ke is the ratio between r.m.s. line to line voltage produced by the motor and the speed in V/1000rpm. Care must also be taken not to demagnetize the motor. The motor manufacturer should always be consulted before using this mode.

							-								
Safety		Product	Svstem	Mechanical	Electrical	Getting	Basic	Runnina		SMARTCARD	Onboard	Advanced	Technical		III Listing
Salety	Introduction	TTOULUCE	System	Mechanica	Liecuicai	Getting	Dasic	rturning	Ontimization	SIMANTCAND	Onboaru	Auvanceu			UL LISting
Information	Introduction		configuration	Installation	Installation	Ctortod	noromotoro	the motor	Optimization	oporation	PLC	narametere	Data		Information
Information		Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	-	Information
			•									•			

10.6.4 Switching frequency

With a default switching frequency of 3 kHz the maximum output frequency should be limited to 250 Hz. Ideally a minimum ratio of 12:1 should be maintained between the output frequency and the switching frequency. This ensures the number of switchings per cycle is sufficient to ensure the output waveform quality is maintained at a minimum level. If this is not possible, quasi-square switching should be enabled (Pr **5.20** =1). The output waveform will be quasi square above base speed ensuring a symmetrical output waveform, which results in a better quality output than would otherwise result.

10.6.5 Maximum speed / frequency

In open loop mode the maximum frequency is 3,000 Hz.

In closed loop vector mode the maximum output frequency is 600 Hz.

In servo mode the maximum output frequency is 1250Hz, however the speed is limited by the voltage constant (Ke) of the motor. Ke is a specific constant for the servo motor being used. It can normally be found on the motor data sheet in V/krpm (volts per 1,000rpm).

10.6.6 Quasi-Square wave (open-loop only)

The maximum output voltage level of the drive is normally limited to an equivalent of the drive input voltage minus voltage drops within the drive (the drive will also retain a few percent of the voltage in order to maintain current control). If the motor rated voltage is set at the same level as the supply voltage, some pulse deletion will occur as the drive output voltage approaches the rated voltage level. If Pr **5.20** (Quasi-square wave enable) is set to 1 the modulator will allow over modulation, so that as the output frequency increases beyond the rated frequency the voltage continues to increase above the rated voltage. The modulation depth will increase beyond unity; first producing trapezoidal and then quasi-square waveforms.

This can be used for example:

- To obtain high output frequencies with a low switching frequency which would not be possible with space vector modulation limited to unity modulation depth,
- or
- In order to maintain a higher output voltage with a low supply voltage.

The disadvantage is that the machine current will be distorted as the modulation depth increases above unity, and will contain a significant amount of low order odd harmonics of the fundamental output frequency. The additional low order harmonics cause increased losses and heating in the motor.

Safety	Introduction	Product	- ,	Mechanical		Getting		Running	Optimization	SMARTCARD	PI C	Advanced	Technical	Diagnostics	UL Listing
Information		Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	3	Information

11 SMARTCARD operation

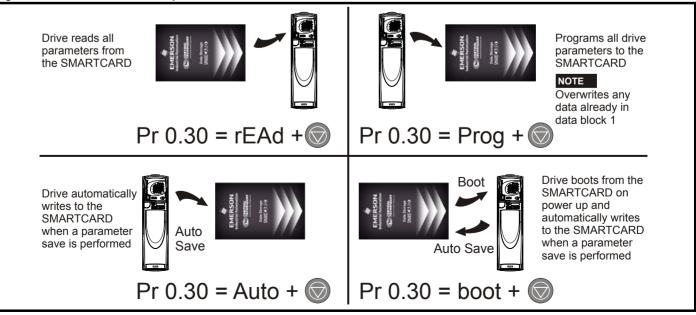
11.1 Introduction

This is a standard feature that enables simple configuration of parameters in a variety of ways. The SMARTCARD can be used for:

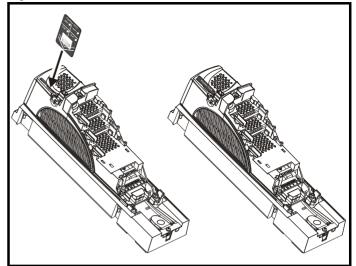
- Parameter copying between drives
- · Saving whole drive parameter sets
- · Saving 'differences from default' parameter sets
- Storing Onboard PLC programs
- Automatically saving all user parameter changes for maintenance purposes
- Loading complete motor map parameters

The SMARTCARD is located at the top of the module under the drive display (if installed) on the left-hand side. Ensure the SMARTCARD is inserted with the SP1-9 arrow pointing upwards.

The drive only communicates with the SMARTCARD when commanded to read or write, meaning the card may be "hot swapped".


Encoder phase angle (servo mode only)

With drive software version V01.08.00 onwards, the encoder phase angles in Pr **3.25** and Pr **21.20** are copied to the SMARTCARD when using any of the SMARTCARD transfer methods.


With drive software version V01.05.00 to V01.07.01, the encoder phase angles in Pr **3.25** and Pr **21.20** are only copied to the SMARTCARD when using either Pr **0.30** set to Prog (2) or Pr **xx.00** set to 3yyy.

This is useful when the SMARTCARD is used to back-up the parameter set of a drive but caution should be used if the SMARTCARD is used to transfer parameter sets between drives Unless the encoder phase angle of the servo motor connected to the destination drive is known to be the same as the servo motor connected to the source drive, an autotune should be performed or the encoder phase angle should be entered manually into Pr 3.25 (or Pr 21.20). If the encoder phase angle is incorrect the drive may lose control of the motor resulting in an O.SPd or Enc10 trip when the drive is enabled. With drive software version V01.04.00 and earlier, or when using software version V01.05.00 to V01.07.01 and Pr xx.00 set to 4yyy is used, then the encoder phase angles in Pr 3.25 and Pr 21.20 are not copied to the SMARTCARD. Therefore, Pr 3.25 and Pr 21.20 in the destination would not be changed during a transfer of this data block from the SMARTCARD

Easy saving and reading Figure 11-2 Basic SMARTCARD operation

Figure 11-1 Installation of the SMARTCARD

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started		Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
mormation		mormation	configuration	motaliation	motanation	Otaricu	parameters			operation	I LO	parameters	Data		intornation

The SMARTCARD has 999 individual data block locations. Each individual location from 1 to 499 can be used to store data until the capacity of the SMARTCARD is used. With software V01.07.00 and later the drive can support SMARTCARDs with a capacity of between 4kB and 512kB. With software V01.06.02 and earlier the drive can support SMARTCARDs with a capacity of 4kB.

The data block locations of the SMARTCARD are arranged to have the following usage:

Table 11-1 SMARTCARD data blocks

Data Block	Туре	Example Use
1 to 499	Read / Write	Application set ups
500 to 999	Read Only	Macros

'Differences from default' parameter sets will be much smaller than whole parameter sets and thus take up a lot less memory as most applications only require a few parameters to be changed from the default setting.

The whole card may be protected from writing or erasing by setting the read-only flag as detailed section 11.2.9 *9888 / 9777 - Setting and clearing the SMARTCARD read only flag* on page 151.

Data transfer to or from the SMARTCARD is indicated by one the following:

- SM-Keypad: The decimal point after the fourth digit in the upper display will flash.
- SM-Keypad Plus: The symbol 'CC' will appear in the lower left hand corner of the display

The card should not be removed during data transfer, as the drive will produce a trip. If this occurs then either the transfer should be reattempted or in the case of a card to drive transfer, default parameters should be loaded.

11.2 Transferring data

Data transfer, erasing and protecting the information is performed by entering a code in Pr **xx.00** and then resetting the drive as shown in Table 11-2.

Code	Action
2001	Transfer drive parameters as difference from defaults to a bootable SMARTCARD block in data block number 001
Зууу	Transfer drive parameters to a SMARTCARD block number yyy
4ууу	Transfer drive data as difference from defaults to SMARTCARD block number yyy
5ууу	Transfer drive Onboard PLC program to SMARTCARD block number yyy
бууу	Transfer SMARTCARD data block yyy to the drive
7ууу	Erase SMARTCARD data block yyy
8ууу	Compare drive parameters with block yyy
9555	Clear SMARTCARD warning suppression flag (V01.07.00 and later)
9666	Set SMARTCARD warning suppression flag (V01.07.00 and later)
9777	Clear SMARTCARD read-only flag
9888	Set SMARTCARD read-only flag
9999	Erase SMARTCARD

Where yyy indicates the block number 001 to 999. See Table 11-1 for restrictions on block numbers.

NOTE

If the read only flag is set then only codes 6yyy or 9777 are effective.

11.2.1 Writing to the SMARTCARD 3yyy - Transfer data to the SMARTCARD

The data block contains the complete parameter data from the drive, i.e. all user save (US) parameters except parameters with the NC coding bit set. Power-down save (PS) parameters are not transferred to the SMARTCARD.

With software V01.06.02 and earlier, a save must have been performed on the drive to transfer the parameters from the drive RAM to the EEPROM before the transfer to the SMARTCARD is carried out.

4yyy - Write default differences to a SMARTCARD

The data block only contains the parameter differences from the last time default settings were loaded.

Six bytes are required for each parameter difference. The data density is not as high as when using the 3yyy transfer method as described in the previous section, but in most cases the number of differences from default is small and the data blocks are therefore smaller. This method can be used for creating drive macros. Power-down save (PS) parameters are not transferred to the SMARTCARD.

The data block format is different depending on the software version. The data block holds the following parameters:

Software V01.06.02 and earlier

All user save (US) parameters, except those with the NC (Not copied) coding bit set or those that do not have a default value, can be transferred to the SMARTCARD.

Software V01.07.xx

All user save (US) parameters, except those with the NC (Not copied) coding bit set or those that do not have a default value, can be transferred to the SMARTCARD. In addition to these parameters all menu 20 parameters (except Pr **20.00**), can be transferred to the SMARTCARD even though they are not user save parameters and have the NC coding bit set.

Software V01.08.00 onwards

All user save (US) parameters including those that do not have a default value (i.e. Pr **3.25** or Pr **21.20** *Encoder phase angle*), but not including those with the NC (Not copied) coding bit set can be transferred to the SMARTCARD. In addition to these parameters all menu 20 parameters (except Pr **20.00**), can be transferred to the SMARTCARD even though they are not user save parameters and have the NC coding bit set.

It is possible to transfer parameters between drives with each of the different formats, however, the data block compare function does not work with data produced by different formats.

Writing a parameter set to the SMARTCARD (Pr 11.42 = Prog (2))

Setting Pr **11.42** to Prog (2) and resetting the drive will save the parameters to the SMARTCARD, i.e. this is equivalent to writing 3001 to Pr **xx.00**. All SMARTCARD trips apply except 'C.Chg'. If the data block already exists it is automatically overwritten. When the action is complete this parameter is automatically reset to nonE (0).

11.2.2 Reading from the SMARTCARD

6yyy - Read default differences from a SMARTCARD When the data is transferred back to a drive, using 6yyy in Pr **xx.00**, it is transferred to the drive RAM and the drive EEPROM. A parameter save is not required to retain the data after power-down. Set up data for any Solutions Modules installed are stored on the card and are transferred to the destination drive. If the Solutions Modules are different between the source and destination drive, the menus for the slots where the Solutions Module categories are different are not updated from the card and will contain their default values after the copying action. The drive will produce a 'C.Optn' trip if the Solutions Modules installed to the source and destination drive are different or are in different slots. If the data is being transferred to a drive of a different voltage or current rating a 'C.rtg' trip will occur.

The following drive rating dependant parameters (RA coding bit set) will not be transferred to the destination drive by a SMARTCARD when the rating of the destination drive is different from the source drive and the file is a parameter file (i.e. created using the 3yyy transfer method).

Table 11-2	SMARTCARD codes
Codo	

0.6.1		Draduat				0	. .	D .					T 1 1 1		III Linking
Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	Onboard	Advanced	lechnical	Diagnostico	UL LIStina
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information
innonnation		Information	oorniguruuorr	motaliation	motanation	otartea	parametero			oporation	120	parametero	Dula		intornation

However, with software V01.09.00 and later drive rating dependent parameters will be transferred if only the current rating is different and the file is a differences from default type file (i.e. created using the 4yyy transfer method). If drive rating dependant parameters are not transferred to the destination drive they will contain their default values.

- Pr 2.08 Standard ramp voltage
- Pr 4.05 to Pr 4.07 and Pr 21.27 to Pr 21.29 Current limits
- Pr 4.24, User current maximum scaling
- Pr 5.07, Pr 21.07 Motor rated current
- Pr 5.09, Pr 21.09 Motor rated voltage
- Pr 5.10, Pr 21.10 Rated power factor
- Pr 5.17, Pr 21.12 Stator resistance
- Pr 5.18 Switching frequency
- Pr 5.23, Pr 21.13 Voltage offset
- Pr 5.24, Pr 21.14 Transient inductance
- Pr 5.25, Pr 21.24 Stator inductance
- Pr 6.06 DC injection braking current
- Pr 6.48 Line power supply loss ride through detection level

Reading a parameter set from the SMARTCARD (Pr 11.42 = rEAd (1))

Setting Pr **11.42** to rEAd (1) and resetting the drive will transfer the parameters from the card into the drive parameter set and the drive EEPROM, i.e. this is equivalent to writing 6001 to Pr **xx.00**. All SMARTCARD trips apply. Once the parameters are successfully copied this parameter is automatically reset to nonE (0). Parameters are saved to the drive EEPROM after this action is complete.

NOTE

This operation is only performed if data block 1 on the card is a full parameter set (3yyy transfer) and not a default difference file (4yyy transfer). If block 1 does not exist a 'C.dAt' trip occurs.

11.2.3 Auto saving parameter changes (Pr 11.42 = Auto (3))

This setting causes the drive to automatically save any changes made to menu 0 parameters on the drive to the SMARTCARD. The latest menu 0 parameter set in the drive is therefore always backed up on the SMARTCARD. Changing Pr **11.42** to Auto (3) and resetting the drive will immediately save the complete parameter set from the drive to the card, i.e. all user save (US) parameters except parameters with the NC coding bit set. Once the whole parameter set is stored only the individual modified menu 0 parameter setting is updated.

Advanced parameter changes are only saved to the card when $\Pr{xx.00}$ is set to a 1000 and the drive reset.

All SMARTCARD trips apply, except 'C.Chg'. If the data block already contains information it is automatically overwritten.

If the card is removed when Pr 11.42 is set to 3 Pr 11.42 is then automatically set to nonE (0).

When a new SMARTCARD is installed Pr **11.42** must be set back to Auto (3) by the user and the drive reset so the complete parameter set is rewritten to the new SMARTCARD if auto mode is still required.

When Pr **11.42** is set to Auto (3) and the parameters in the drive are saved, the SMARTCARD is also updated, therefore the SMARTCARD becomes a copy of the drives stored configuration.

At power up, if Pr **11.42** is set to Auto (3), the drive will save the complete parameter set to the SMARTCARD. The drive will display 'cArd' during this operation. This is done to ensure that if a user puts a new SMARTCARD in during power down the new SMARTCARD will have the correct data.

NOTE

When Pr **11.42** is set to Auto (3) the setting of Pr **11.42** itself is saved to the drive EEPROM but NOT to the SMARTCARD.

11.2.4 Booting up from the SMARTCARD on every power up (Pr 11.42 = boot (4))

When Pr **11.42** is set to boot (4) the drive operates the same as Auto mode except when the drive is powered-up. The parameters on the SMARTCARD will be automatically transferred to the drive at power up if the following are true:

- A card is inserted in the drive
- · Parameter data block 1 exists on the card
- The data in block 1 is type 1 to 5 (as defined in Pr 11.38)
- Pr 11.42 on the card set to boot (4)

The drive will display 'boot' during this operation. If the drive mode is different from that on the card, the drive gives a 'C.Typ'. trip and the data is not transferred.

If 'boot' mode is stored on the copying SMARTCARD this makes the copying SMARTCARD the master device. This provides a very fast and efficient way of re-programming a number of drives.

If data block 1 contains a bootable parameter set and data block 2 contains an Onboard PLC program (type 17 as defined in Pr **11.38**), then if the drive software version is V01.07.00 and later, the onboard PLC program will be transferred to the drive at power up along with the parameter set in data block 1.

NOTE

'Boot' mode is saved to the card, but when the card is read, the value of Pr **11.42** is not transferred to the drive.

11.2.5 Booting up from the SMARTCARD on every power up (Pr xx.00 = 2001), software V01.08.00 and later

It is possible to create a difference from default bootable file by setting Pr **xx.00** to 2001 and resetting the drive. This type of file causes the drive to behave in the same way at power-up as a file created with boot mode set up with Pr **11.42**. The difference from the default file is that it has the added advantage of including menu 20 parameters.

Setting Pr **xx.00** to 2001 will overwrite data block 1 on the card if it already exists.

If a data block 2 exists and contains an Onboard PLC program (type 17 as defined in Pr 11.38), this will also be loaded after the parameters have been transferred

A bootable difference from default file can only be created in one operation and parameters cannot be added as they are saved via menu 0.

11.2.6 8yyy - Comparing the drive full parameter set with the SMARTCARD values

Setting 8yyy in Pr **xx.00**, will compare the SMARTCARD file with the data in the drive. If the compare is successful Pr **xx.00** is simply set to 0. If the compare fails a 'C.cpr' trip is initiated.

11.2.7 7yyy / 9999 - Erasing data from the SMARTCARD

Data can be erased from the SMARTCARD either one block at a time or all blocks in one go.

- Setting 7yyy in Pr xx.00 will erase SMARTCARD data block yyy.
- Setting 9999 in Pr xx.00 will erase all SMARTCARD data blocks

11.2.8 9666 / 9555 - Setting and clearing the SMARTCARD warning suppression flag (V01.07.00 and later)

If the Solutions Modules installed to the source and destination drive are different or are in different slots the drive will produce a 'C.Optn' trip. If the data is being transferred to a drive of a different voltage or current rating a 'C.rtg' trip will occur. It is possible to suppress these trips by setting the warning suppression flag. If this flag is set the drive will not trip if the Solutions Module(s) or drive ratings are different between the source and destination drives. The Solutions Module or rating dependent parameters will not be transferred.

- Setting 9666 in Pr xx.00 will set the warning suppression flag
- Setting 9555 in Pr xx.00 will clear the warning suppression flag

11.2.9 9888 / 9777 - Setting and clearing the SMARTCARD read only flag

The SMART CARD may be protected from writing or erasing by setting the read only flag. If an attempt is made to write or erase a data block when the read only flag is set, a 'C.rdo' trip is initiated. When the read only flag is set only codes 6yyy or 9777 are effective.

- Setting 9888 in Pr xx.00 will set the read only flag
- Setting 9777 in Pr xx.00 will clear the read only flag.

Safety Introduction Product System Mechanical Electrical Getting Basic Running Optimization SMARTCARD Onboard Advanced Technical Diagnostics UL Li	Safety Information	Introduction	Product Information	Oystoni				Basic parameters	Running the motor	Optimization		PLC	Auvanceu			
--	-----------------------	--------------	------------------------	---------	--	--	--	---------------------	-------------------	--------------	--	-----	----------	--	--	--

11.3 Data block header information

Each data block stored on a SMARTCARD has header information detailing the following:

- A number which identifies the block (Pr 11.37)
- The type of data stored in the block (Pr 11.38)
- The drive mode if the data is parameter data (Pr 11.38)
- The version number (Pr 11.39)
- The checksum (Pr 11.40)
- The read-only flag
- The warning suppression flag (V01.07.00 and later)

The header information for each data block which has been used can be viewed in Pr **11.38** to Pr **11.40** by increasing or decreasing the data block number set in Pr **11.37**.

Software V01.07.00 and later

If Pr **11.37** is set to 1000 the checksum parameter (Pr **11.40**) shows the number of 16 byte pages left on the card.

If Pr **11.37** is set to 1001 the checksum parameter (Pr **11.40**) shows the total capacity of the card in 16 byte pages. Therefore, for a 4kB card this parameter would show 254.

If Pr **11.37** is set to 1002 the checksum parameter (Pr **11.40**) shows the state of the read-only (bit 0) and warning suppression flags (bit 1).

Software version V01.11.00 and later: If Pr **11.37** is set to 1003, the checksum parameter (Pr **11.40**) shows the product identifier (255 = Unidrive SP, 1 = Commander GP20, 2 = Digitax ST, 3 = Affinity).

If there is no data on the card Pr **11.37** can only have values of 0 or 1000 to 1003.

Software V01.06.02 and earlier

If Pr **11.37** is set to 1000 the checksum parameter (Pr **11.40**) shows the number of bytes left on the card. If there is no data on the card Pr **11.37** can only have values of 0 or 1000.

The version number is intended to be used when data blocks are used as drive macros. If a version number is to be stored with a data block, Pr **11.39** should be set to the required version number before the data is transferred. Each time Pr **11.37** is changed by the user the drive puts the version number of the currently viewed data block in Pr **11.39**.

If the destination drive has a different drive mode to the parameters on the card, the drive mode will be changed by the action of transferring parameters from the card to the drive.

The actions of erasing a card, erasing a file, changing a menu 0 parameter, or inserting a new card will effectively set Pr **11.37** to 0 or the lowest file number in the card.

11.4 SMARTCARD parameters

Table 11-3 Key to parameter table coding

RW	Read / Write	RO	Read only	Uni	Unipolar
Bi	Bi-polar	Bit	Bit parameter	Txt	Text string
FI	Filtered	DE	Destination	NC	Not copied
RA	Rating dependent	PT	Protected	US	User save
PS	Power down save				

11.	36	{0.29}	SMAR	TCAR	D parar	net	er d	lata pre	eviousl	y loade	əd
R	О	Uni						NC	PT	US	
Û			0 to 9	99		⇒			0		

This parameter shows the number of the data block last transferred from a SMARTCARD to the drive.

	11.	37	SMAR	TCAR	D data	nur	nbe	r		
R١	N	Uni						NC		
ţ	0 to 1003								0	

This parameter should have the data block number entered for which the user would like information displayed in Pr **11.38**, Pr **11.39** and Pr **11.40**.

	11.	38	SMAR	TCAR	D data	type	/m	ode			
R	0	Txt		NC PT							
Û			0 to 1	18		₽					

Gives the type/mode of the data block selected with Pr 11.37:

Pr 11.38	String	Type/mode	Data stored
0	FrEE	Value when Pr 11.37 = 0, 1000 to 1003	
1		Reserved	
2	30pEn.LP	Open-loop mode parameters	
3	3CL.VECt	Closed-loop vector mode parameters	
4	3SErVO	Servo mode parameters	
5	3rEgEn	Regen mode parameters	Data from
6 to 8	3Un	Unused	EEPROM
9		Reserved	
10	40pEn.LP	Open-loop mode parameters	
11	4CL.VECt	Closed-loop vector mode parameters	
12	4SErVO	Servo mode parameters	Defaults last
13	4rEgEn	Regen mode parameters	loaded and
14 to 16	4Un	Unused	differences
17	LAddEr	Onboard PLC program	
18	Option	A Solutions Module file	

	11.	39	SMAR	TCAR	D data	vers	sior	ו		
R۷	N	Uni						NC		
€			0 to 9,999						0	

Gives the version number of the data block selected in Pr 11.37.

11	.40	SMAR	TCAR	D data	che	cks	um		
R0	Uni						NC	PT	
$\hat{\mathbb{Q}}$		0 to 65,	335		合				

Gives the checksum of the data block selected in Pr 11.37.

11.	42 {	[0.30}	Param	eter c	opying					
R۱	N	Txt					NC		US*	
Û			0 to -	4		Û		nonE	(0)	

NOTE

If Pr **11.42** is equal to 1 or 2, this value is not transferred to the drive or saved to the EEPROM. If Pr **11.42** is set to a 3 or 4 the value is transferred.

nonE (0) = Inactive

rEAd (1) = Read parameter set from the SMARTCARD

Prog (2) = Programming a parameter set to the SMARTCARD

Auto (3) = Auto save

boot (4) = Boot mode

Safety Information	Introduction	Product Information		Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD	Onboard	Advanced	Technical Data	Diagnostics	UL Listing
Information		Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	U U	Information

11.5 SMARTCARD trips

After an attempt to read, write or erase data to or from a SMARTCARD a trip may occur if there has been a problem with the command. The following trips indicate various problems as detailed in Table 11-4.

Table 11-4 Trip conditions

Trip	Diagnosis
C.Acc	SMARTCARD trip: SMARTCARD Read / Write fail
185	Check SMARTCARD is installed / located correctly Ensure SMARTCARD is not writing data to data location 500 to 999 Replace SMARTCARD
C.boot	SMARTCARD trip: The menu 0 parameter modification cannot be saved to the SMARTCARD because the necessary file has not been created on the SMARTCARD
177	A write to a menu 0 parameter has been initiated via the keypad with Pr 11.42 set to auto(3) or boot(4), but the necessary file on the SMARTCARD has not been created Ensure that Pr 11.42 is correctly set and reset the drive to create the necessary file on the SMARTCARD Re-attempt the parameter write to the menu 0 parameter
C.bUSY	SMARTCARD trip: SMARTCARD can not perform the required function as it is being accessed by a Solutions Module
178	Wait for the Solutions Module to finish accessing the SMARTCARD and then re-attempt the required function
C.Chg	SMARTCARD trip: Data location already contains data
179	Erase data in data location Write data to an alternative data location
C.Cpr	SMARTCARD trip: The values stored in the drive and the values in the data block on the SMARTCARD are different
188	Press the red 💿 reset button
C.dat	SMARTCARD trip: Data location specified does not contain any data
183	Ensure data block number is correct
C.Err	SMARTCARD trip: SMARTCARD data is corrupted
182	Ensure the card is located correctly Erase data and retry Replace SMARTCARD
C.Full	SMARTCARD trip: SMARTCARD full
184	Delete a data block or use a different SMARTCARD
C.Optn	SMARTCARD trip: Solutions Modules installed are different between source drive and destination drive
180	Ensure correct Solutions Modules are installed Ensure Solutions Modules are in the same Solutions Module slot Press the red 💿 reset button
C.Prod	SMARTCARD trip: The data blocks on the SMARTCARD are not compatible with this product
175	Erase all data on the SMARTCARD by setting Pr xx.00 to 9999 and pressing the red reset button Replace SMARTCARD
C.rdo	SMARTCARD trip: SMARTCARD has the Read only bit set
181	Enter 9777 in Pr xx.00 to allow SMARTCARD Read / Write access Ensure the drive is not writing to data locations 500 to 999 on the card

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation		Advanced parameters		Diagnostics	UL Listing Information
internation			sonngaration	motanation	motanation	0101100	paramotoro			oporation	. 20	paramotoro	2010		

Trip		Diagnosis	
C.rtg	SMARTCARD trip: The vo	Itage and/or current rating of the source and destination	drives are different
	different voltage and current when the rating of the desti	tton	I to the destination drive by SMARTCARE parameter file. However, with software
	Parameter	Function	
	2.08	Standard ramp voltage	
	4.05/6/7, 21.27/8/9	Current limits	
186	4.24	User current maximum scaling	
186	5.07, 21.07	Motor rated current	
	5.09, 21.09	Motor rated voltage	
	5.10, 21.10	Rated power factor	
	5.17, 21.12	Stator resistance	
	5.18	Switching frequency	
	5.23, 21.13	Voltage offset	
	5.24, 21.14	Transient inductance	
	5.25, 21.24	Stator inductance	
	6.06	DC injection braking current	
	6.48	Line power supply loss ride through detection level	
	The above parameters will	be set to their default values.	
С.Тур	SMARTCARD trip: SMAR	FCARD parameter set not compatible with drive	
187	Press the red 🔘 reset but	tton	

Table 11-5 SMARTCARD status indications

Lower display	Description	Lower display	Description
	A parameter set is being transferred from the	cArd	The drive is writing a parameter set to the SMARTCARD
	SMARTCARD to the drive during power-up. For further		during power-up.
	information, please refer to section 11.2.4 Booting up		For further information, please refer to section
	from the SMARTCARD on every power up (Pr 11.42 =		11.2.3 Auto saving parameter changes (Pr 11.42 = Auto
	boot (4)) .		(3)) .

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD			Technical	Diagnostics	UL Listing
Information			configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data		Information

12 Onboard PLC

12.1 Onboard PLC and SYPTLite

The drive has the ability to store and execute a 4KB Onboard PLC ladder logic program without the need for additional hardware in the form of a Solutions Module.

The ladder logic program is written using SYPTLite, a Windows™ based ladder diagram editor allowing the development of programs for execution in Unidrive SP or SM-Applications Lite.

SYPTLite is designed to be easy to use and to make program development as simple as possible. The features provided are a sub-set of those in the SYPT program editor. SYPTLite programs are developed using ladder logic, a graphical language widely used to program PLCs (IEC61131-3). SYPTLite allows the user to "draw" a ladder diagram representing a program.

SYPTLite provides a complete environment for the development of ladder diagrams. Ladder diagrams can be created, compiled into user programs and downloaded to a Unidrive SP or SM-Applications Lite for execution, via the RJ45 serial communications port on the front of the drive. The run-time operation of the compiled ladder diagram on the target can also be monitored using SYPTLite and facilities are provided to interact with the program on the target by setting new values for target parameters.

SYPTLite is available on the CD which is supplied with the drive.

12.2 Benefits

The combination of the Onboard PLC and SYPTLite, means that the drive can replace nano and some micro PLCs in many applications. The Onboard PLC programs can consist of up to a maximum of 50 ladder logic rungs (up to 7 function blocks and 10 contacts per rung). The Onboard PLC program can also be transferred to and from a SMARTCARD for backup or quick commissioning/start-up

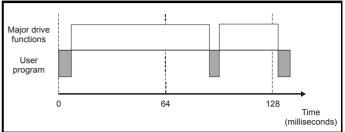
In addition to the basic ladder symbols, SYPTLite contains a sub-set of the function from the full version of SYPT. These include,

- Arithmetic blocks
- Comparison blocks
- Timers
- Counters
- Multiplexers
- Latches
- Bit manipulation

Typical applications for the Onboard PLC include,

- Ancillary pumps
- Fans and control valves
- Interlocking logic
- Sequences routines
- Custom control words.

12.3 Limitations

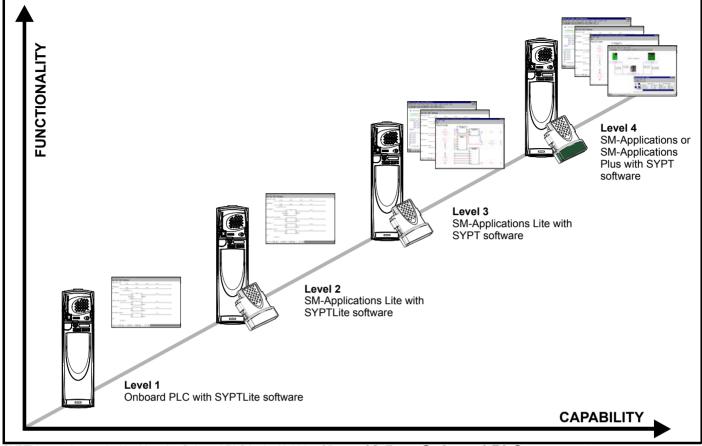

Compared with the Applications Modules (SM-Applications, SM-Applications Lite and SM-Applications Plus) when programmed with SYPT, the Onboard PLC program has the following limitations:

- The maximum program size is 4032 bytes including header and optional source code.
- The drive is rated for 100 program downloads. This limitation is imposed by the flash memory used to store the program within the drive.
- The user cannot create user variables. The user is only able to
 manipulate the drive parameter set.
- The program cannot be downloaded or monitored over CTNet. The program is only accessible via the drives RJ45 serial communications port.
- There are no real-time tasks, i.e. the scheduling rate of the program cannot be guaranteed. Applications Modules tasks such as Clock, Event, Pos0 or Speed are not available. The Onboard PLC should

not be used for time-critical applications. For time-critical applications Unidrive SP and an SM-Applications Plus, SM-Applications or SM-Applications Lite should be used.

 The program runs at a low priority. The drive provides a single background task in which to run a ladder diagram. The drive is prioritised to perform its major functions first, e.g. motor control, and will use any remaining processing time to execute the ladder diagram as a background activity. As the drive's processor becomes more heavily loaded. less time is spent executing the program.

Figure 12-1 Onboard PLC program scheduling


The user program is scheduled for a short period approximately once every 64ms. The time for which the program is scheduled will vary between 0.2ms and 2ms depending on the loading of the drive's processor.

When scheduled, several scans of the user program may be performed. Some scans may execute in microseconds. However, when the main drive functions are scheduled there will be a pause in the execution of the program causing some scans to take many milliseconds. SYPTLite displays the average execution time calculated over the last 10 scans of the user program.

Safety Introduction Product System Mechanical Electrical Getting Basic Running Optimization SMARTCARD Ontopard Advanced Technical Diagnostics. ULL	Safety Information	Introduction	Product Information	System configuration			Octung		5	Optimization	OWARTOARD				Diagnostics	UL Listing
--	-----------------------	--------------	------------------------	-------------------------	--	--	--------	--	---	--------------	-----------	--	--	--	-------------	------------

The Onboard PLC and SYPTLite form the first level of functionality in a range of programmable options for Unidrive SP.

Figure 12-2 Programming options for Unidrive SP

SYPTLite can be used with either the Onboard PLC in the Unidrive SP or with SM-Applications Lite to create ladder logic programs.

SYPT can be used with any of the Applications Modules to create fully flexible programs using ladder logic, function blocks or DPL script.

12.4 Getting started

SYPTLite can be found on the CD which is supplied with the drive.

SYPTLite system requirements

- Windows 2000/XP. Windows 95/98/98SE/Me/NT4 are not supported
- · Pentium III 500MHz or better recommended
- 128MB RAM
- Minimum of 800x600 screen resolution. 1024x768 is recommended
- Adobe Acrobat 5.10 or later (for viewing User Guides)
- Microsoft Internet Explorer V5.0 or later
- RS232 to RS485, RJ45 communications lead to connect the PC to the drive
- Administrator rights under Windows 2000/XP are required to install the software

To install SYPTLite, insert the CD and the auto-run facility should start up the front-end screen, from which SYPTLite can be selected.

See the SYPTLite help file for more information regarding using SYPTLite, creating ladder diagrams and the available function blocks.

12.5 Onboard PLC parameters

The following parameters are associated with the Onboard PLC program.

	11.	47	Drive	Onboa	rd PLC	; pr	ogr	am ena	ble		
R\	Ν	Uni								US	
ţ			0 to 2	2		合			2		

This parameter is used to start and stop the drive Onboard PLC program.

Value	Description
0	Halt the drive Onboard PLC program.
1	Run the drive Onboard PLC program (if installed). Any out-of- range parameter writes attempted will be clipped to the maximum / minimum values valid for that parameter before being written.
2	Run the drive Onboard PLC program (if installed). Any out-of- range parameter writes attempted will cause a 'UP ovr' trip.

	11.4	18	Drive	Onboa	rd PLC	; pro	ogra	am stat	us	
R	0	Bi						NC	PT	
Û		-'	128 to -	+127		₽				

The drive Onboard PLC program status parameter indicates to the user the actual state of the drive Onboard PLC program.

	Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	-----------------------	--------------	------------------------	-------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Value	Description
-n	Onboard PLC program caused a drive trip due to an error condition while running rung n. Note that the rung number is shown on the display as a negative number.
0	Onboard PLC program is not installed.
1	Onboard PLC program is installed but stopped.
2	Onboard PLC program is installed and running.

When an Onboard PLC program is installed and running, the lower display of the drive flashes 'PLC' once every 10s.

	11.49 Drive Onboard PLC programming events											
R	0	Uni						NC	PT		PS	
\hat{U}		(0 to 65,	535		Û						

The drive Onboard PLC programming events parameter holds the number of times an Onboard PLC program download has taken place and is 0 on dispatch from the factory. The drive is rated for one hundred ladder program downloads. This parameter is not altered when defaults are loaded.

	11.50 Drive Onboard PLC							am ave	rage s	can tim	ne
R	С	Uni						NC	PT		
$\hat{\mathbf{r}}$	0 to 65,535 ms					₽					

This parameter is updated once per second or once per Onboard PLC program scan whichever is the longest. If more than one program scan occurs within the one second update period the parameter shows the average scan time. If the program scan time is longer than one second the parameter shows the time for the last program scan.

11.51 Drive Onboard PLC program first run											
R	0	Bit NC PT									
ţ	OFF (0) or On (1)					₽					

The Drive Onboard PLC program first run parameter is set for the duration of program scan from the stopped state. This enables the user to perform any required initialisation every time the program is run. This parameter is set every time the program is stopped.

12.6 Onboard PLC trips

The following trips are associated with the Onboard PLC program.

Trip	Diagnosis
UP ACC	Onboard PLC program: Cannot access Onboard PLC program file on drive
98	Disable drive - write access is not allowed when the drive is enabled. Another source is already accessing Onboard PLC program - retry once the other action is complete.
UP div0	Onboard PLC program attempted divide by zero
90	Check program
UP OFL	Onboard PLC program variables and function block calls using more than the allowed RAM space (stack overflow)
95	Check program
UP ovr	Onboard PLC program attempted out of range parameter write
94	Check program
UP PAr	Onboard PLC program attempted access to a non- existent parameter
91	Check program
UP ro	Onboard PLC program attempted write to a read- only parameter
92	Check program
UP So	Onboard PLC program attempted read of a write- only parameter
93	Check program
UP udF	Onboard PLC program undefined trip
97	Check program
UP uSEr	Onboard PLC program requested a trip
96	Check program

12.7 Onboard PLC and the SMARTCARD

The Onboard PLC program in a drive may be transferred from the drive to a SMARTCARD and vice versa.

- To transfer an Onboard PLC program from the drive to a SMARTCARD, set Pr xx.00 to 5yyy and reset the drive
- To transfer an Onboard PLC program from the SMARTCARD to a drive, set Pr **xx.00** to 6yyy and reset the drive.

(Where yyy is the data block location, see Table 11-1 *SMARTCARD data blocks* on page 150 for restrictions on block numbers).

If an attempt is made to transfer an Onboard PLC program from a drive to the SMARTCARD when the drive contains no program, the block is still created on the SMARTCARD but it will contain no data. If this data block is then transferred to a drive, the destination drive will then have no Onboard PLC program.

The smallest SMARTCARD compatible with Unidrive SP has a capacity of 4064 bytes and each block can be up to 4064 bytes in size. The maximum size of a user program is 4032 bytes so it is guaranteed that any Onboard PLC program downloaded to a Unidrive SP will fit on to an empty SMARTCARD. A SMARTCARD can contain a number of Onboard PLC programs until the capacity of the card is used.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

13 Advanced parameters

This is a quick reference to all parameters in the drive showing units, ranges limits etc, with block diagrams to illustrate their function. Full descriptions of the parameters can be found in the *Advanced User Guide* on the supplied CD ROM.

These advanced parameters are listed for reference purposes only. The lists in this chapter do not include sufficient information for adjusting these parameters. Incorrect adjustment can affect the safety of the system, and damage the drive and or external equipment. Before attempting to adjust any of these parameters, refer to the *Advanced User Guide*.

Table 13-1 Menu descriptions

Menu number	Description
0	Commonly used basic set up parameters for quick / easy
ů	programming
1	Frequency / speed reference
2	Ramps
3	Frequency slaving, speed feedback and speed control
4	Torque and current control
5	Motor control
6	Sequencer and clock
7	Analog I/O
8	Digital I/O
9	Programmable logic, motorized pot and binary sum
10	Status and trips
11	General drive set-up
12	Threshold detectors and variable selectors
13	Position control
14	User PID controller
15, 16, 17	Solutions Module slots
18	Application menu 1
19	Application menu 2
20	Application menu 3
21	Second motor parameters
22	Additional Menu 0 set-up

Operation mode abbreviations:

- OL> Open loop
- CL> Closed loop (which incorporates closed loop vector and servo mode)
- VT> Closed loop vector mode
- SV> Servo

Default abbreviations:

- EUR> European default value (50Hz AC supply frequency)
- USA> USA default value (60Hz AC supply frequency)

NOTE

Parameter numbers shown in brackets {...} are the equivalent Menu 0 parameters. Some Menu 0 parameters appear twice since their function depends on the operating mode.

The Range - CL column applies to both Closed-loop Vector and Closedloop Servo. For some parameters, this column applies only to one of these modes; this is indicated accordingly in the Default columns.

In some cases, the function or range of a parameter is affected by the setting of another parameter; the information in the lists relates to the default condition of such parameters.

Table 13-2 Key to parameter table coding

Coding	Attribute
RW	Read/write: can be written by the user
RO	Read only: can only be read by the user
Bit	1 bit parameter. 'On' or 'OFF' on the display
Bi	Bipolar parameter
Uni	Unipolar parameter
Txt	Text: the parameter uses text strings instead of numbers.
FI	Filtered: some parameters which can have rapidly changing values are filtered when displayed on the drive keypad for easy viewing.
DE	Destination: This parameter selects the destination of an input or logic function.
RA	Rating dependent: this parameter is likely to have different values and ranges with drives of different voltage and current ratings. Parameters with this attribute will not be transferred to the destination drive by SMARTCARDs when the rating of the destination drive is different from the source drive and the file is a parameter file. However, with software V01.09.00 and later the value will be transferred if only the current rating is different and the file is a differences from default type file.
NC	Not copied: not transferred to or from SMARTCARDs during copying.
PT	Protected: cannot be used as a destination.
US	User save: parameter saved in drive EEPROM when the user initiates a parameter save.
PS	Power-down save: parameter automatically saved in drive EEPROM when the under volts (UV) trip occurs.With software version V01.08.00 and later, power-down save parameters are also saved in the drive when the user initiates a parameter save.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information			configuration	Installation	Installation	Started	parameters	the motor	optimization	operation	PLC	parameters	Data	Diagnostics	Information

Table 13-3 Feature look-up table

Feature						Related	parame	ters (Pr)					
Acceleration rates	2.10	2.11 t	0 2 19	2.32	2.33	2.34	2.02	···· (· · ·)		r			1
Analog speed reference 1	1.36	7.10	7.01	7.07	7.08	7.09	7.25	7.26	7.30	-			-
Analog speed reference 2	1.37	7.10	1.41	7.02	7.00	7.12	7.13	7.28	7.31				
Analog I/O	Menu 7	7.14	1.41	1.02	7.11	1.12	7.15	1.20	7.01				
Analog input 1	7.01	7.07	7.08	7.09	7.10	7.25	7.26	7.30					
Analog input 2	7.01	7.11	7.00	7.09	7.10	7.23	7.31	7.30					
Analog input 3	7.02		7.12	7.13	7.14	7.20	7.31						
		7.15			1.10	1.29	1.32						
Analog output 1	7.19	7.20	7.21	7.33									
Analog output 2	7.22	7.23	7.24	. 10	Maria								
Application menu	Men			iu 19	Men								
At speed indicator bit	3.06	3.07	3.09	10.06	10.05	10.07							
Auto reset	10.34	10.35	10.36	10.01									
Autotune	5.12	5.16	5.17	5.23	5.24	5.25	5.10	5.29	5.30				
Binary sum	9.29	9.30	9.31	9.32	9.33	9.34							
Bipolar speed	1.10												
Brake control		o 12.49											
Braking	10.11	10.10	10.30	10.31	6.01	2.04	2.02	10.12	10.39	10.40			
Catch a spinning motor	6.09	5.40						Ι		Ι			
Coast to stop	6.01												
Comms	11.23 t	o 11.26											
Copying	11.42	11.36 t	o 11.40	1	1	1	1	t	1	t	1	1	
Cost - per kWh electricity	6.16	6.17	6.24	6.25	6.26	6.40	1	1		1			
Current controller	4.13	4.14											
Current feedback	4.01	4.02	4.17	4.04	4.12	4.20	4.23	4.24	4.26	10.08	10.09	10.17	
Current limits	4.05	4.06	4.07	4.18	4.15	4.19	4.16	5.07	5.10	10.08	10.09	10.17	
DC bus voltage	5.05	2.08											
DC injection braking	6.06	6.07	6.01										
Deceleration rates	2.20	2.21 t		2.04	2.35 t	0 2 37	2.02	2.04	2.08	6.01	10.30	10.31	10.39
Defaults	11.43	11.46	0 2.20	2.01	2.00 (0 2.07	2.02	2.01	2.00	0.01	10.00	10.01	10.00
Digital I/O	Menu 8	11.40											
Digital I/O read word	8.20												
Digital I/O T24	8.01	8.11	8.21	8.31									-
Digital I/O T25	8.01	8.12	8.22	8.32									
								-		-			-
Digital I/O T26	8.03	8.13	8.23	8.33									
Digital input T27	8.04	8.14	8.24	0.00									
Digital input T28	8.05	8.15	8.25	8.39									
Digital input T29	8.06	8.16	8.26	8.39									
Digital lock	13.10		o 13.09	13.11	13.12	13.16	3.22	3.23	13.19 t	o 13.23			
Digital output T22	8.08	8.18	8.28										
Direction	10.13	6.30	6.31	1.03	10.14	2.01	3.02	8.03	8.04	10.40			
Display timeout	11.41												
Drive active	10.02	10.40						Ι		Ι			
Drive derivative	11.28												
Drive OK	10.01	8.27	8.07	8.17	10.36	10.40							
Dynamic performance	5.26							1		1			
Dynamic V/F	5.13							İ		İ			
Electronic nameplate	3.49	1	1	1	1	1	1	t	1	t	1	1	
Enable	6.15	8.09	8.10										
Encoder reference	3.43	3.44	3.45	3.46									
Encoder set up	3.33		o 3.42	3.47	3.48								
External trip	10.32	8.10	8.07		-			1		1			
Fan speed	6.45												
Fast disable	6.29												
Field weakening - induction motor		5.30	1.06	5.28									
Field weakening - servo	5.23	1.06		5.20									
Filter change	6.19	6.18											
Frequency reference selection	1.14	1.15											
	3.01		3.14	3.15	3.16	2 17	3.18						
Frequency slaving		3.13	3.14	3.15	3.10	3.17	J. 10						
Hard speed reference	3.22	3.23											
Heavy duty rating	5.07	11.32											
High stability space vector	5.19												
modulation		6.30	6.31	6.32	0.00	0.01	0.10	0.10	0.11	ļ			
I/O sequencer	6.04			622	6.33	6.34	6.42	6.43	6.41	1	1	1	

Safety Information Introduction Product Syste			ctrical Gett Illation Star					/ARTCARD		Advanced parameters	Technical Data	Diagnostics	UL Listing Information
Feature						Related	param	eters (Pr)					
Inertia compensation	2.38	5.12	4.22	3.18	l				l	1		1	1
Jog reference	1.05	2.19	2.29										
Ke	5.33												
Keypad reference	1.17	1.14	1.43	1.51	6.12	6.13							1
Kt	5.32												
Limit switches	6.35	6.36											
Line power supply loss	6.03	10.15	10.16	5.05									
Local position reference	13.20 to	o 13.23											
Logic function 1	9.01	9.04	9.05	9.06	9.07	9.08	9.09	9.10					
Logic function 2	9.02	9.14	9.15	9.16	9.17	9.18	9.19	9.20					
Low voltage supply	6.44	6.46											
Marker pulse	3.32	3.31											
Maximum speed	1.06												
Menu 0 set up	11.01 to		Men	u 22									
Minimum speed	1.07	10.04											
Modules - number of	11.35	- ^-			- 10								
Motor map	5.06	5.07	5.08	5.09	5.10	5.11						-	
Motor map 2	Men		11.45	0.04	0.05	0.00	0.0-	0.00				_	──
Motorized potentiometer	9.21	9.22	9.23	9.24	9.25	9.26	9.27	9.28					
Offset speed reference	1.04	1.38	1.09					_					
Onboard PLC Open collector digital outputs	11.47 to 8.30	16.110										_	+
Open loop vector mode	8.30 5.14	5 17	5.23										+
Operating mode	5.14 0.48	5.17 11.31	5.23 3.24	5.14									+
Orientation	13.10	13.13 t		J.14				-		-	-		
Output	5.01	5.02	5.03	5.04				-		-		-	
Overspeed threshold	3.08	5.02	5.05	5.04									-
Phase angle	3.25	5.12											
PID controller	Men							-		-	-		
Position feedback - drive	3.28	3.29	3.30	3.50				-		-	-		
Positive logic	8.29	0.20	0.00	0.00									+
Power up parameter	11.22	11.21											+
Precision reference	1.18	1.19	1.20	1.44									-
Preset speeds	1.15	1.21 t		1.16	1.14	1.42	1.45	to 1.48	1.50				-
Programmable logic	Menu 9												
Quasi square operation	5.20												
Ramp (accel / decel) mode	2.04	2.08	6.01	2.02	2.03	10.30	10.31	10.39					
Rated speed autotune	5.16	5.08											
Regenerating	10.10	10.11	10.30	10.31	6.01	2.04	2.02	10.12	10.39	10.40			
Relative jog		o 13.19											
Relay output	8.07	8.17	8.27										
Reset	10.33	8.02	8.22	10.34	10.35	10.36	10.01						
RFC mode (encoder less CLV	3.24	3.42	4.12	5.40									
mode)			7.12	0.40									<u> </u>
S ramp	2.06	2.07											
Sample rates	5.18												
SAFE TORQUE OFF (SECURE	8.09	8.10											
DISABLE) input											<u> </u>		
Security code	11.30	11.44									 		
Serial comms		o 11.26	1.04	1.00	1.00	1.0.4	4 05	-				_	───
Skip speeds	1.29	1.30	1.31	1.32	1.33	1.34	1.35	_			-	_	<u> </u>
Slip compensation SMARTCARD	5.27 11.36 to	5.08	11.42										<u> </u>
SMARTCARD Software version	11.36 to	11.34	11.42										+
Speed controller	3.10 to		3.19	3.20	3.21			+				-	+
Speed feedback	3.02	3.03	3.19	J.20	J.Z I			-					+
Speed feedback - drive	3.02	3.03	3.04	3.29	3.30	3.31	3.42	-					+
Speed reference selection	1.14	1.15	1.49	1.50	1.01	0.01	J.4Z						+
Status word	10.40	1.10	1.73	1.00	1.01								+
Supply	6.44	5.05	6.46										+
Switching frequency	5.18	5.35	7.34	7.35				+			+	-	+
Thermal protection - drive	5.18	5.35	7.04	7.05	7.06	7.32	7.35	10.18			+	-	+
Thermal protection - motor	4.15	5.07	4.19	4.16	4.25	7.15							+
Thermistor input	7.15	7.03											+
Threshold detector 1	12.01	12.03 t	o 12.07					-			1	1	+
				1	1	1	1	1	1	1	1	1	1

Safety Information Introduction Product Syste Information configur	em Mecharation Instal	anical Electronical Electronical Electronical Electronic Electroni	ctrical Get Illation Star	ting Basi ted parame	eters the mo	otor Optimiz	ation SMA	ARTCARD peration	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
Feature						Related	parame	ters (Pr)					
Threshold detector 2	12.02	12.23 t	o 12.27										
Time - filter change	6.19	6.18											
Time - powered up log	6.20	6.21	6.28										
Time - run log	6.22	6.23	6.28										
Torque	4.03	4.26	5.32										
Torque mode	4.08	4.11	4.09	4.10									
Trip detection	10.37	10.38	10.20 t	o 10.29									
Trip log	10.20 to	o 10.29	10.41 t	o 10.51	6.28								
Under voltage	5.05	10.16	10.15										
V/F mode	5.15	5.14											
Variable selector 1	12.08 to	o 12.15											
Variable selector 2	12.28 to	o 12.35											
Velocity feed forward	1.39	1.40											
Voltage controller	5.31												
Voltage mode	5.14	5.17	5.23	5.15									
Voltage rating	11.33	5.09	5.05					1				1	
Voltage supply	6.44	6.46	5.05										
Warning	10.19	10.12	10.17	10.18	10.40			1				1	
Zero speed indicator bit	3.05	10.03											

Saf Inform	ety	Introduction	Product Information	System configuration	Mechanical Installation	 Getting Started		Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
				-			-			-					

Parameter ranges and variable maximums:

The two values provided define the minimum and maximum values for the given parameter. In some cases the parameter range is variable and dependant on either:

- other parameters
- the drive rating
- drive mode
- or a combination of these

The values given in Table 13-4 are the variable maximums used in the drive.

Maximum	Definition
SPEED_FREQ_MAX [Open-loop 3000.0Hz, Closed-loop vector and Servo 40000.0rpm]	Maximum speed (closed-loop mode) reference or frequency (open-loop mode) reference If Pr 1.08 = 0: SPEED_FREQ_MAX = Pr 1.06 If Pr 1.08 = 1: SPEED_FREQ_MAX is Pr 1.06 or – Pr 1.07 whichever is the largest (If the second motor map is selected Pr 21.01 is used instead of Pr 1.06 and Pr 21.02 instead of Pr 1.07)
SPEED_LIMIT_MAX [40000.0rpm]	Maximum applied to speed reference limits A maximum limit may be applied to the speed reference to prevent the nominal encoder frequency from exceeding 500kHz (410kHz for software version V01.06.00 and earlier). The maximum is defined by SPEED_LIMIT_MAX (in rpm) = 500kHz x 60 / ELPR = 3.0 x 10 ⁷ / ELPR subject to an absolute maximum of 40,000 rpm. ELPR is equivalent encoder lines per revolution and is the number of lines that would be produced by a quadrature encoder. Quadrature encoder ELPR = number of lines per revolution F and D encoder ELPR = number of lines per revolution / 2 Resolver ELPR = resolution / 4 SINCOS encoder ELPR = number of sine waves per revolution Serial comms encoder ELPR = resolution / 4 This maximum is defined by the device selected with the speed feedback selector (Pr 3.26) and the ELPR set for the position feedback device. In closed-loop vector RFC mode SPEED_LIMIT_MAX = 40,000rpm.
SPEED_MAX [40000.0rpm]	Maximum speed This maximum is used for some speed related parameters in menu 3. To allow headroom for overshoot etc. the maximum speed is twice the maximum speed reference. SPEED_MAX = 2 x SPEED_FREQ_MAX
RATED_CURRENT_MAX [9999.99A]	Maximum motor rated currentRATED_CURRENT_MAX = 1.36 x K_C.The motor rated current can be increased above K_C up to a level not exceeding 1.36 x K_C). (Maximum motorrated current is the maximum normal duty current rating.)The actual level varies from one drive size to another, refer to Table 13-5.
DRIVE_CURRENT_MAX [9999.99A]	Maximum drive current The maximum drive current is the current at the over current trip level and is given by: DRIVE_CURRENT_MAX = K _C / 0.45
AC_VOLTAGE_SET_MAX [690V]	Maximum output voltage set-point Defines the maximum motor voltage that can be selected. 200V drives: 240V, 400V drives: 480V 575V drives: 575V, 690V drives: 690V
AC_VOLTAGE_MAX [930V]	Maximum AC output voltage This maximum has been chosen to allow for maximum AC voltage that can be produced by the drive including quasi-square wave operation as follows: AC_VOLTAGE_MAX = 0.78 x DC_VOLTAGE_MAX 200V drives: 325V, 400V drives: 650V, 575V drives: 780V, 690V drives: 930V
DC_VOLTAGE_SET_MAX [1150V]	Maximum DC voltage set-point 200V rating drive: 0 to 400V, 400V rating drive: 0 to 800V 575V rating drive: 0 to 955V, 690V rating drive: 0 to 1150V
DC_VOLTAGE_MAX [1190V]	Maximum DC bus voltage The maximum measurable DC bus voltage. 200V drives: 415V, 400V drives: 830V, 575V drives: 990V, 690V drives: 1190V

Safety Information Introduction Product System Information configuration	Mechanical Electrical Getting Basic Running Installation Installation Started parameters the motor Optimization Optization Optization Optimization Optimization Optimization O
Maximum	Definition
	Maximum current limit settings for motor map 1 This maximum current limit setting is the maximum applied to the current limit parameters in motor map 1. Open Loop
	$\begin{array}{l} \text{Maximum} \\ \text{current limit} \end{array} = \sqrt{\left[\left[\frac{\text{Maximum current}}{\text{Motor rated current}}\right]^{2}} + \text{PF}^{2} - 1\right]_{x \ 100\%} \end{array}$
	Where: The Maximum current is either (1.5 x K _C) when the motor rated current set in Pr 5.07 is less than or equal to the maximum Heavy Duty current rating given by Pr 11.32 , otherwise it is (1.1 x Normal Duty rating).
	Motor rated current is given by Pr 5.07
	PF is motor rated power factor given by Pr 5.10
MOTOR1_CURRENT_LIMIT_MAX [1000.0%]	Closed Loop vector Maximum current limit = $\sqrt{\left[\left[\frac{\text{Maximum current}}{\text{Motor rated current}}\right]^{2} + \cos(\varphi_{1})^{2} - 1\right]_{x \ 100\%}}$
[]	Where: The Maximum current is either $(1.75 \times K_C)$ when the motor rated current set in Pr 5.07 is less than or equal to the maximum Heavy Duty current rating given by Pr 11.32 , otherwise it is $(1.1 \times N)$ normal Duty rating).
	Motor rated current is given by Pr 5.07
	ϕ_1 = cos-1(PF) - ϕ_2 . This is measured by the drive during an autotune. See Menu 4 in the Advanced User Guide for more information regarding ϕ_2 .
	PF is motor rated power factor given by Pr 5.10
	Servo Maximum current limit = $\left[\frac{\text{Maximum current}}{\text{Motor rated current}}\right] \times 100\%$
	Where: The Maximum current is either (1.75 x K _C) when the motor rated current set in Pr 5.07 is less than or equal to the maximum Heavy Duty current rating given by Pr 11.32 , otherwise it is (1.1 x Normal Duty rating). Motor rated current is given by Pr 5.07
	Maximum current limit settings for motor map 2
MOTOR2_CURRENT_LIMIT_MAX [1000.0%]	This maximum current limit setting is the maximum applied to the current limit parameters in motor map 2. The formulae for MOTOR2_CURRENT_LIMIT_MAX are the same for MOTOR1_CURRENT_LIMIT_MAX except that Pr 5.07 is replaced with Pr 21.07 and Pr 5.10 is replaced with Pr 21.10 .
TORQUE_PROD_CURRENT_MAX [1000.0%]	Maximum torque producing current This is used as a maximum for torque and torque producing current parameters. It is MOTOR1_CURRENT_LIMIT_MAX or MOTOR2_CURRENT_LIMIT_MAX depending on which motor map is currently active.
USER_CURRENT_MAX [1000.0%]	Current parameter limit selected by the user The user can select a maximum for Pr 4.08 (torque reference) and Pr 4.20 (percentage load) to give suitable scaling for analog I/O with Pr 4.24. This maximum is subject to a limit of MOTOR1_CURRENT_LIMIT_MAX. or MOTOR2_CURRENT_LIMIT_MAX depending on which motor map is currently active. USER_CURRENT_MAX = Pr 4.24
POWER_MAX [9999.99kW]	Maximum power in kW The maximum power has been chosen to allow for the maximum power that can be output by the drive with maximum AC output voltage, maximum controlled current and unity power factor. Therefore: Software V01.07.01 and earlier: POWER_MAX = √3 x AC_VOLTAGE_MAX x RATED_CURRENT x 1.75 Software V01.08.00 and later: POWER_MAX = √3 x AC_VOLTAGE_MAX x DRIVE_CURRENT_MAX

The values given in square brackets indicate the absolute maximum value allowed for the variable maximum.

Safety		Product	Svstem	Mechanical	Electrical	Getting	Basic	Runnina		SMARTCARD	Onboard	Advanced	Technical	D: //	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

Table 13-5 Maximum motor rated current

Model	К _С	Maximum Heavy Duty current rating (Pr 11.32) A	Maximum Normal Duty current rating A
SPMD12X1	133.7	156	192
SPMD12X2	164.5	192	248
SPMD12X3	214.2	250	312
SPMD12X4	248.5	290	350
SPMA14X1	154.2	180	202
SPMA14X2	180.0	210	236
SPMD14X1	154.2	180	202
SPMD14X2	180.0	210	236
SPMD14X3	205.7	240	290
SPMD14X4	248.5	290	330
SPMA16X1	85.7	100	125
SPMA16X2	107.1	125	144
SPMD16X1	85.7	100	125
SPMD16X2	107.1	125	144
SPMD16X3	123.4	144	168
SPMD16X4	144.0	168	192

Up to 10 SPMAXXXX or SPMDXXXX drive modules can be connected in parallel to make a larger drive, provided all power modules are of the same type, and have the same voltage and current ratings. The currents are then defined as follows:

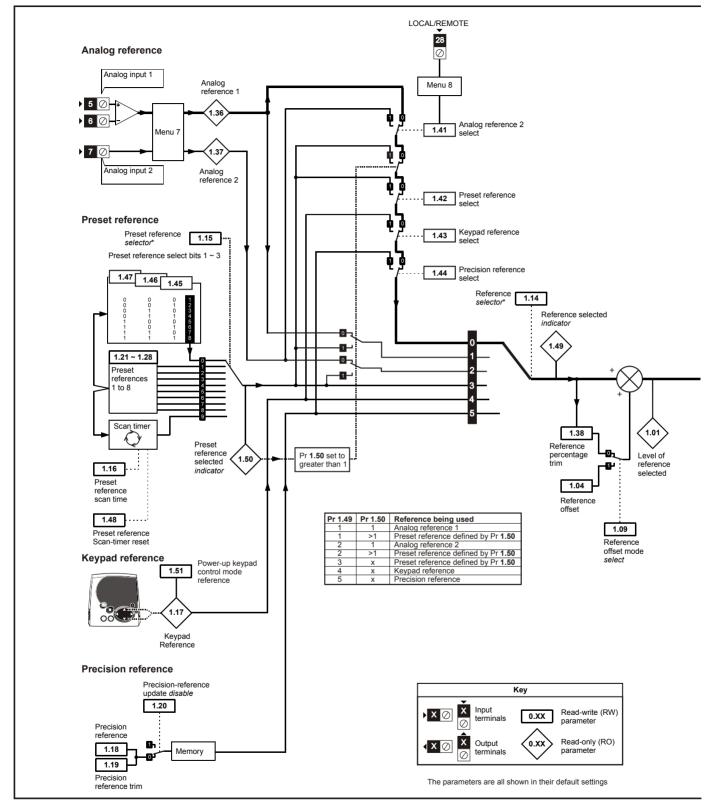
Current scaling (K_c)

 K_c is the sum of K_c for all the modules.

Maximum Heavy Duty current rating

Maximum Heavy Duty current rating = 0.95 x the sum of maximum Heavy Duty current rating for all the modules.

Maximum Normal Duty rated current


Maximum Normal Duty rated current = 0.95 x the sum of maximum Normal Duty rated current for all the modules.

	-					_								-	
Safety		Product	Svstem	Mechanical	Electrical	Gettina	Basic	Runnina		SMARTCARD	Onboard	Advanced	Technical		UL Listina
ounory	Introduction	TTOQUOL	Gyotom	meenamoar	Licothour	Cotting	Duolo	rtanning	Optimization		onbourd	Auvanoou		Diagnostics	
Information	maoaaoaon	Information	configuration	Installation	Installation	Started	parameters	the motor	optimization	operation	PLC	parameters	Data	Diagnootioo	Information
			oomgaraaon	motanation	motanation	0101100	paramotoro			oporation	. 20	paramotoro	Data		

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started		Running the motor	Optimization	SMARTCARD operation	Onboard	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
mormation	l	iniornation	configuration	Installation	Installation	Starteu	parameters	the motor		operation	PLC	parameters	Dala	-	mormation

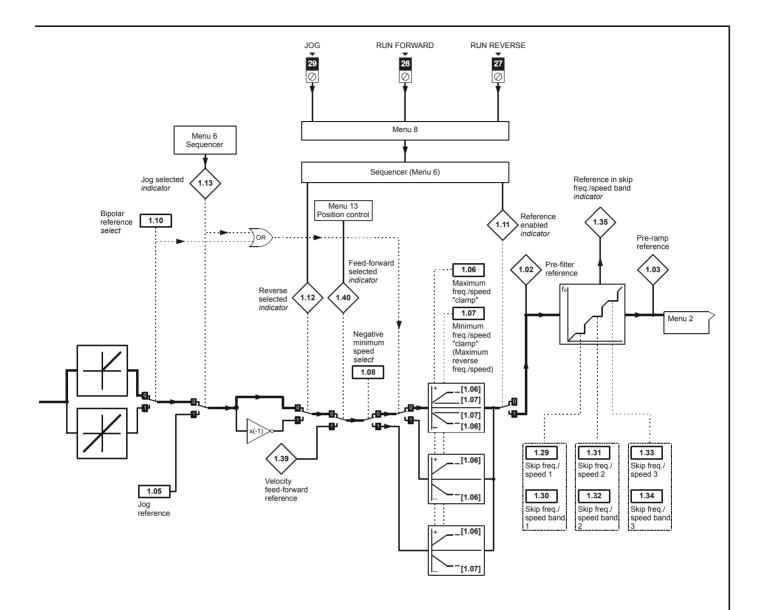

13.1 Menu 1: Frequency / speed reference

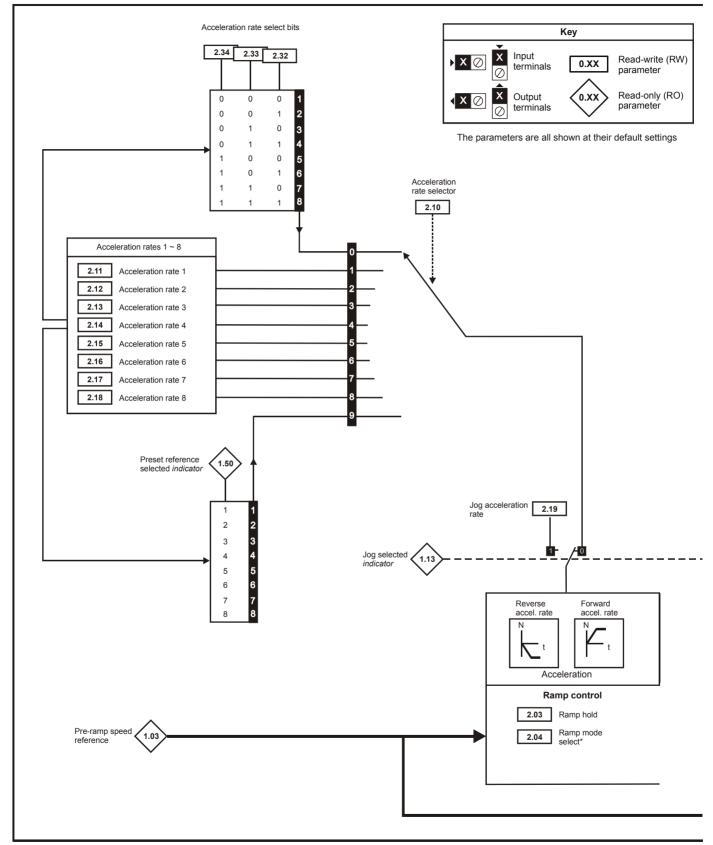
Figure 13-1 Menu 1 logic diagram

*For more information, refer to section 13.21.1 Reference modes on page 254

Safety	Introduction	Product		Mechanical		Getting		Running	Optimization	SMARTCARD		Advanced	Technical	Diagnostics	UL Listing
Information	interoduction	Information	configuration	Installation	Installation	Started	parameters	the motor	optimization	operation	PLC	parameters	Data	Blaghoodoo	Information

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
mormation		Information	configuration	matanation	motaliation	otaricu	parameters			operation	I LO	parameters	Data		iniornation

			Ran	ge(≎)	<u> </u>	Default(⇔)		Г		_			
	Parameter		OL	CL	OL	VT	sv			Тур)e		
1.01	Frequency / speed reference selected		±SPEED_FRE	EQ_MAX Hz/rpm				RO	Bi		NC	PT	
1.02	Pre-skip filter reference		+SPEED FRE	EQ MAX Hz/rpm				RO	Bi		NC	PT	
1.02	Pre-ramp reference		_	EQ_MAX Hz/rpm				RO	Bi		NC		
1.04	Reference offset		±3,000.0Hz	±40,000.0 rpm		0.0		RW	Bi				US
1.05	Jog reference	{0.23 }	0 to 400.0 Hz	0 to 4,000.0 rpm		0.0		RW	Uni				US
1.06	Maximum reference clamp	{0.02}	0 to 3,000.0 Hz	SPEED_LIMIT_MAX		EUR> 1,500.0	3.000.0	RW	Uni				US
1.07	Minimum reference clamp	{0.01}	±3,000.0 Hz	rpm ±SPEED_LIMIT_MAX	USA> 60.0	USA> 1,800.0 0.0	-,	RW	Bi			PT	US
	Negative minimum reference	10.017	,	rpm				-				• •	
1.08	clamp enable		.,	or On (1)		OFF (0)		RW	Bit				US
1.09	Reference offset select	(0.00)		or On (1)		OFF (0) OFF (0)		RW	Bit				US US
1.10 1.11	Bipolar reference enable	{0.22 }	()	or On (1) or On (1)		0FF (0)		RW RO	Bit Bit		NC	DT	05
1.11	Reference enabled indicator Reverse selected indicator				-			RO			NC		
				or On (1)	-				Bit				
1.13	Jog selected indicator			or On (1) 2.Pr (2), Pr (3), PAd (4),				RO	Bit		NC	٢١	
1.14	Reference selector	{0.05 }	Pr	c (5)		A1.A2 (0)		RW	Txt				US
1.15	Preset reference selector		0	to 9		0		RW	Uni				US
1.16	Preset reference selector timer		0 to -	400.0s		10.0		RW	Uni				US
1.17	Keypad control mode reference		±SPEED_FRE	EQ_MAX Hz/rpm		0.0		RO	Bi		NC	PT	PS
1.18	Precision reference coarse		±SPEED FRE	EQ MAX Hz/rpm		0.0		RW	Bi				US
1.19	Precision reference fine		 0.000 to 0.099 Hz	0.000 to 0.099 rpm		0.000		RW	Uni				US
1.20	Precision reference update disable		OFF (0)	or On (1)		OFF (0)		RW	Bit		NC		
1.21	Preset reference 1	{0.24 }	+SPEED_ERE	EQ MAX Hz/rpm		0.0		RW	Bi				US
1.22	Preset reference 2	{0.25}	_	EQ_MAX Hz/rpm		0.0		RW	Bi				US
1.23	Preset reference 3	{0.26}	-	EQ_MAX Hz/rpm		0.0		RW	Bi				US
1.24	Preset reference 4	{0.27}		EQ_MAX Hz/rpm		0.0		RW	Bi				US
1.25	Preset reference 5	(-)	_	EQ_MAX Hz/rpm		0.0		RW	Bi				US
1.26	Preset reference 6		-	EQ_MAX Hz/rpm		0.0		RW	Bi				US
1.27	Preset reference 7		-	EQ_MAX Hz/rpm		0.0		RW	Bi				US
1.28	Preset reference 8		±SPEED_FRE	EQ_MAX Hz/rpm		0.0		RW	Bi				US
1.29	Skip reference 1		0.0 to 3,000.0 Hz	0 to 40,000 rpm	0.0	0	1	RW	Uni				US
1.30	Skip reference band 1		0.0 to 25.0 Hz	0 to 250 rpm	0.5	5		RW	Uni				US
1.31	Skip reference 2		0.0 to 3,000.0 Hz	0 to 40,000 rpm	0.0	0	1	RW	Uni				US
1.32	Skip reference band 2		0.0 to 25.0 Hz	0 to 250 rpm	0.5	5		RW	Uni				US
1.33	Skip reference 3		0.0 to 3,000.0 Hz	0 to 40,000 rpm	0.0	0		RW	Uni				US
1.34	Skip reference band 3		0.0 to 25.0Hz	0 to 250 rpm	0.5	5		RW	Uni				US
1.35	Reference in rejection zone		OFF (0)	or On (1)				RO	Bit		NC	PT	
1.36	Analog reference 1		±SPEED_FRE	EQ_MAX Hz/rpm				RO	Bi		NC		
1.37	Analog reference 2		±SPEED_FRE	EQ_MAX Hz/rpm				RO	Bi		NC		
1.38	Percentage trim		±10	0.00%		0.00		RW	Bi		NC		
1.39	Velocity feed-forward		±3,000.0 Hz	±40,000.0 rpm				RO	Bi		NC	PT	
1.40	Velocity feed-forward select		OFF (0)) or On (1)				RO	Bit		NC	PT	
1.41	Analog reference 2 select		OFF (0)) or On (1)		OFF (0)			Bit		NC		
1.42	Preset reference select		OFF (0)) or On (1)		OFF (0)		RW	Bit		NC		
1.43	Keypad reference select		OFF (0)) or On (1)		OFF (0)		RW	Bit		NC		
1.44	Precision reference select) or On (1)		OFF (0)		RW	Bit		NC		
1.45	Preset reference 1 select		OFF (0)) or On (1)		OFF (0)			Bit		NC		
1.46	Preset reference 2 select) or On (1)		OFF (0)		RW	Bit		NC		
1.47	Preset reference 3 select		()) or On (1)		OFF (0)		RW	Bit		NC		
1.48	Reference timer reset flag		()) or On (1)		OFF (0)			Bit		NC		
1.49	Reference selected indicator Preset reference selected			to 5				-			NC	-	
1.50	indicator		1	to 8				RO	Uni		NC	PT	
1.51	Power-up keyboard control mode reference		rESEt (0), LA	St (1), PrS1 (2)		rESEt (0)		RW	Txt				US


RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

	-					_								-	
Safety		Product	Svstem	Mechanical	Electrical	Gettina	Basic	Runnina		SMARTCARD	Onboard	Advanced	Technical		UL Listina
ounory	Introduction	TTOQUOL	Gyotom	meenamoar	Licothour	Cotting	Duolo	rtanning	Optimization		onbourd	Aavanooa		Diagnostics	
Information	maoaaoaon	Information	configuration	Installation	Installation	Started	parameters	the motor	optimization	operation	PLC	parameters	Data	Diagnootioo	Information
			oomgaraaon	motanation	motanation	0101100	paramotoro			oporation	. 20	paramotoro	Data		

Safety Introduction Product System Mechanical Electrical Getting Basic Running Optimization Information Information configuration Installation Installation Started parameters the motor Optimization	SMARTCARD Onboard Advanced Technical Diagnostics UL Listing PLC parameters Data
---	---

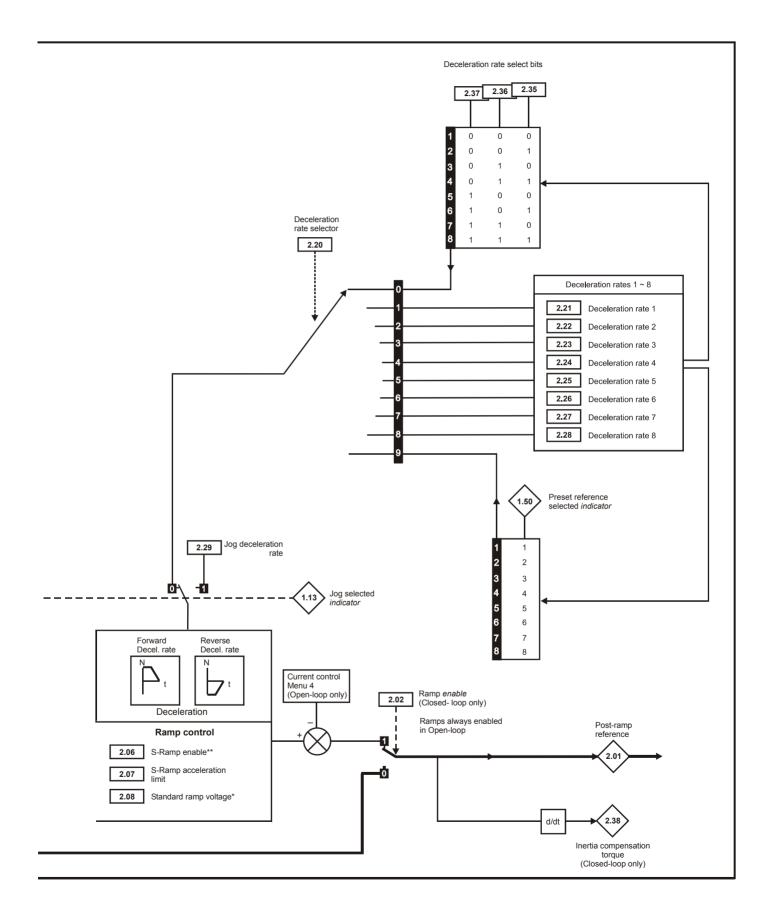
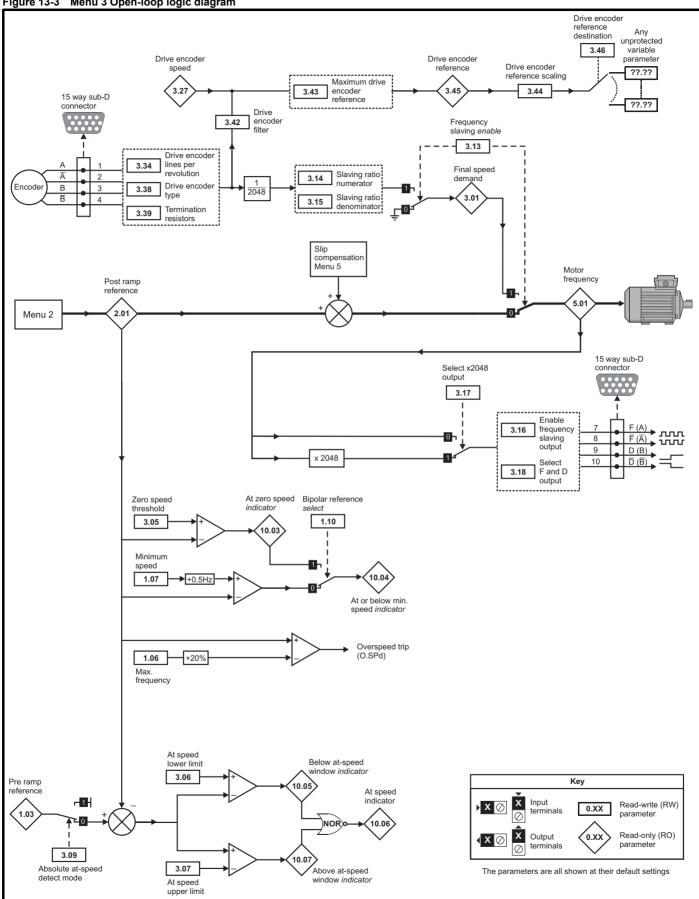

13.2 Menu 2: Ramps

Figure 13-2 Menu 2 logic diagram

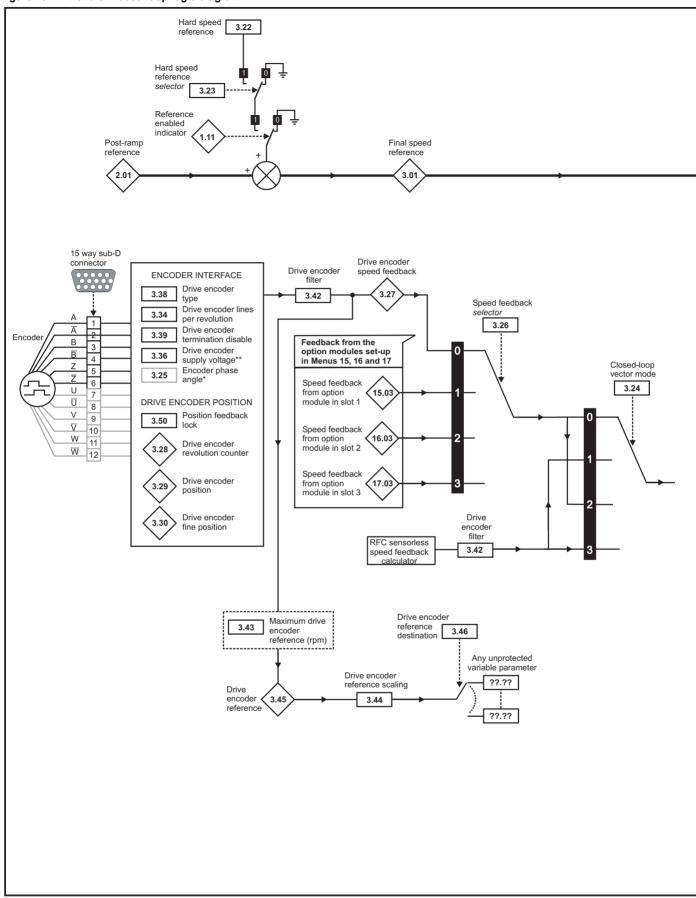
*For more information, refer to section 13.21.2 *Braking Modes* on page 255. **For more information, refer to section 13.21.3 *S ramps* on page 255.

Safety		Product	Svstem	Mechanical	Electrical	Getting	Basic	Runnina		SMARTCARD	Onboard	Advanced	Technical		UL Listing
Information	Introduction	Information	-)		Installation	Started	parameters	the motor	Optimization	operation		parameters		Diagnostics	


Safety Information	Introduction	Product Information	System	Mechanical	Electrical	Getting	Basic parameters	Running	Optimization	SMARTCARD operation	Onboard	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
Information		information	configuration	Installation	Installation	Started	parameters	the motor	•	operation	PLC	parameters	Data	Ū.	information

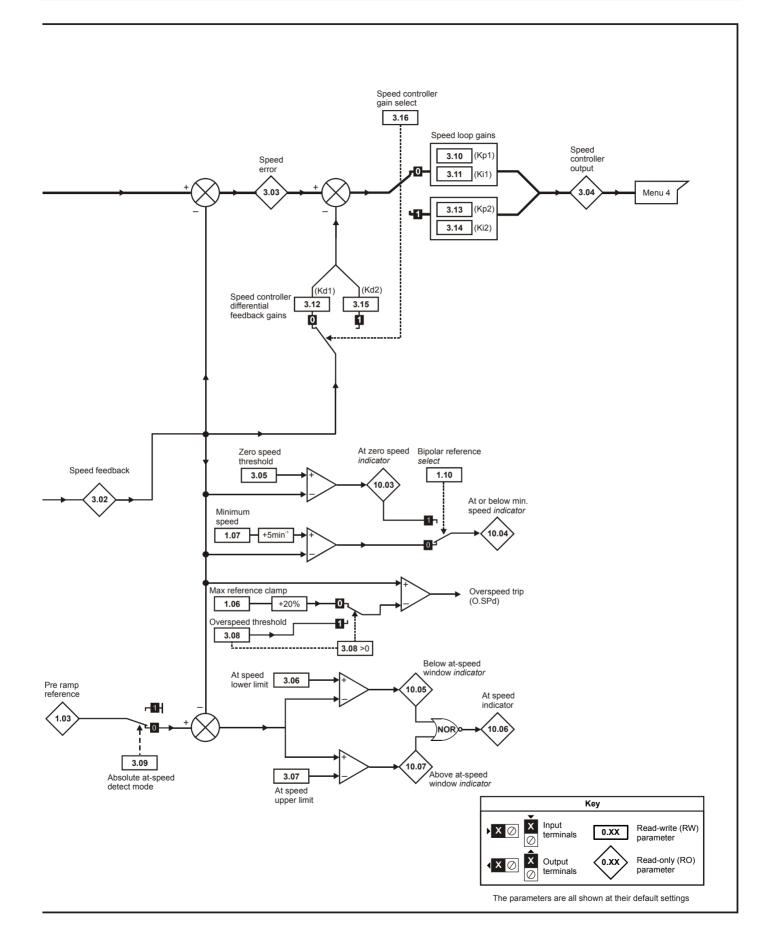
	D (Ran	ge(û)		Default(⇔)				-		
	Parameter		OL	CL	OL	VT	SV			Туре		
2.01	Post ramp reference		±SPEED_FRE	Q_MAX Hz/rpm				RO	Bi	N	C PT	1
2.02	Ramp enable {	[0.16]		OFF (0) or On (1)		On	ı (1)	RW	Bit			US
2.03	Ramp hold		OFF (0)	or On (1)		OFF (0)		RW	Bit			US
2.04	Ramp mode select {	[0.15}	FASt (0) Std (1) Std.hV (2)	FASt (0) Std (1)		Std (1)		RW	Txt			US
2.06	S ramp enable		OFF (0)	or On (1)		OFF (0)		RW	Bit			US
2.07	S ramp acceleration limit		0.0 to 300.0 s ² /100Hz	0.000 to 100.000 s ² /1000rpm	3.1	1.500	0.030	RW	Uni			US
2.08	Standard ramp voltage		0 to DC_VOLTA	GE_SET_MAX V	400	200V drive: 37 V drive: EUR> USA> 575V drive: 89 690V drive: 107	750 775 5	RW	Uni	R	4	US
2.10	Acceleration rate selector		0	to 9		0		RW	Uni			US
2.11	Acceleration rate 1 {	[0.03}	0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni			US
2.12	Acceleration rate 2		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni			US
2.13	Acceleration rate 3		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni			US
2.14	Acceleration rate 4		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni			US
2.15	Acceleration rate 5		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni			US
2.16	Acceleration rate 6		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni			US
2.17	Acceleration rate 7		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni			US
2.18	Acceleration rate 8		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni			US
2.19	Jog acceleration rate		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	0.2	0.0	000	RW	Uni			US
2.20	Deceleration rate selector		0	to 9		0		RW	Uni			US
2.21	Deceleration rate 1 {	[0.04]	0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni			US
2.22	Deceleration rate 2		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni			US
2.23	Deceleration rate 3		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni			US
2.24	Deceleration rate 4		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni			US
2.25	Deceleration rate 5		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni			US
2.26	Deceleration rate 6		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni			US
2.27	Deceleration rate 7		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni			US
2.28	Deceleration rate 8		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni			US
2.29	Jog deceleration rate		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	0.2	0.0	000	RW	Uni			US
2.32	Acceleration select bit 0			or On (1)		OFF (0)			Bit	N	2	
2.33	Acceleration select bit 1		OFF (0)	or On (1)		OFF (0)		RW	Bit	N		
2.34	Acceleration select bit 2		OFF (0)	or On (1)		OFF (0)		RW	Bit	N		
2.35	Deceleration select bit 0		,	or On (1)		OFF (0)		RW	Bit	N		
2.36	Deceleration select bit 1			or On (1)		OFF (0)			Bit	N		
2.37	Deceleration select bit 2		OFF (0)	or On (1)		OFF (0)		RW	Bit	N		
2.38	Inertia compensation torque			± 1,000.0 %				RO	Bi	N	C PT	

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save


								-							
Safety	مرم تلمر برام معلما	Product	System	Mechanical	Electrical	Getting	Basic	Running	Ontinuination	SMARICARD	Onboard	Advanced	lechnical	Diagnostics	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information
intornation		inionnation	configuration	motanation	motanation	Otaricu	parameters			operation	I LO	parameters	Data		mormation

13.3 Menu 3: Frequency slaving, speed feedback and speed control Figure 13-3 Menu 3 Open-loop logic diagram

Safety	SMARTCARD Onboard	d Advanced Technical Diagnosti	CS UL Listing
Information Introduction Information Configuration Installation Installation Installation Started parameters the motor Optimization S	operation PLC		Information


Figure 13-4 Menu 3 Closed loop logic diagram

**If output voltage from the encoder is >5V, then the termination resistors must be disabled Pr 3.39 to 0.

NOTE

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	 Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
1														

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
mormation		intornation	configuration	mataliation	motaliation	otarteu	parameters	the motor	operation	TEO	parameters	Data		mormation

		Bar	nge(‡)		Default(⇔	•)	r					
	Parameter	OL	lge(↔) CL	OL	Delauli(→) SV			Ту	ре		
	OL> Frequency slaving demand	±1,000.0 Hz	UL	UL	VI	54	RO	Bi	FI	NC	PT	1
3.01	CL> Final speed reference		±SPEED_MAX rpm				RO	Bi	FI		PT	
3.02	Speed feedback {0.10}		±SPEED_MAX rpm				RO	Bi	FI	NC	PT	
3.03	Speed error		±SPEED_MAX rpm				RO	Bi	FI	NC	PT	
3.04	Speed controller output		±Torque_prod_ current_max %				RO	Bi	FI	NC	PT	
3.05	Zero speed threshold	0.0 to 20.0 Hz	 0 to 200 rpm	1.0	[5	RW	Uni				US
3.06	At speed lower limit	0.0 to 3,000.0 Hz	0 to 40,000 rpm	1.0		5	RW	Uni				US
3.07	At speed upper limit	0.0 to 3,000.0 Hz	0 to 40,000 rpm	1.0		5	RW	Uni		1		US
3.08	Overspeed threshold {0.26}		0 to 40,000 rpm			0	RW	Uni				US
3.09	Absolute 'at speed' detect	OFF (0) or On (1)		OFF (0)		RW	Bit				US
3.10	Speed controller proportional gain (Kp1) {0.07}		0.0000 to 6.5535 1/rad s ⁻¹		0.0300	0.0100	RW	Uni				US
3.11	Speed controller integral gain (Ki1) {0.08}		0.00 to 655.35 s/rad s ⁻¹		0.10	1.00	RW	Uni				US
3.12	Speed controller differential feedback gain {0.09}		0.00000 to 0.65535 s ⁻¹ /rad s ⁻¹		0.0	0000	RW	Uni				US
	OL> Enable frequency slaving	OFF (0) or On (1)		OFF (0)			RW	Bit				US
3.13	CL> Speed controller proportional gain (Kp2)		0.0000 to 6.5535 1/rad s ⁻¹		0.0300	0.0100	RW	Uni				US
	OL> Slaving ratio numerator	0.000 to 1.000		1.000			RW	Uni		<u> </u>		US
3.14	CL> Speed controller integral gain (Ki2)		0.00 to 655.35 1/rad		0.10	1.00	RW	Uni				US
	OL> Slaving ratio denominator	0.001 to 1.000		1.000			RW	Uni				US
3.15	CL> Speed controller differential feedback gain (Kd2)		0.00000 to 0.65535 s		0.0	0000	RW	Uni				US
3.16	OL> Enable frequency slaving output	OFF (0) or On (1)		OFF (0)			RW	Bit		1		US
3.16	CL> Speed controller gain select		OFF (0) or On (1)		OF	F (0)	RW	Bit				US
3.17	OL> Select x2048 output	OFF (0) or On (1)		On (1)			RW	Bit				US
5.17	CL> Speed controller set-up method		0 to 3			0	RW	Uni				US
2 4 0	OL> Select F and D frequency slaving output	OFF (0) or On (1)		OFF (0)			RW	Bit				US
3.18	CL> Motor and load inertia		0.00010 to 90.00000 kg m ²		0.0	0000	RW	Uni				US
3.19	Compliance angle		0.0 to 359.9 °		4	1.0	RW	Uni				US
3.20	Bandwidth		0 to 255 Hz		ŕ	10	RW	Uni				US
3.21	Damping factor		0.0 to 10.0		1	.0	RW	Uni				US
3.22	Hard speed reference		±SPEED_FREQ_ MAX rpm		C	0.0	RW	Bi				US
3.23	Hard speed reference selector		OFF (0) or On (1)		OF	F (0)	RW	Bit				US
3.24	Closed-loop vector mode		VT> 0 to 3		0		RW	Uni				US
3.25	Encoder phase angle* {0.43}		SV> 0.0 to 359.9 °			0.0	RW	Uni				US
3.26	Speed feedback selector		drv (0), SLot1 (1), SLot2 (2), SLot3 (3)		drv	v (0)	RW	Txt				US
3.27	Drive encoder speed feedback	· · · · · · · · · · · · · · · · · · ·	00.0 rpm				RO	Bi	FI	NC		
3.28	Drive encoder revolution counter		35 revolutions				RO	Uni	FI	NC		
3.29	Drive encoder position {0.11}	0 to 65,535 1/2 ¹	¹⁶ ths of a revolution				RO	Uni	FI	NC	PT	
3.30	Drive encoder fine position	0 to 65,535 1/2 ³	² nds of a revolution				RO	Uni	FI	NC	PT	
3.31	Drive encoder marker position reset disable) or On (1)		OFF (0)		RW	Bit				US
3.32	Drive encoder marker flag	OFF (0) or On (1)		OFF (0)		RW	Bit		NC		
3.33	Drive encoder turn bits / Linear encoder comms to sine wave ratio	0 1	to 255		16		RW	Uni				US
3.34	Drive encoder lines per revolution {0.27}	0 to	50,000	10)24	4096	RW	Uni	L			US
3.35	Drive encoder single turn comms bits / Linear encoder comms bits / Marker mode	0 to	32 bits		0		RW	Uni				US
3.36	Drive encoder supply voltage**		/ (1), 15V (2)		5V (0)		RW	Txt				US
3.37	Drive encoder comms baud rate	1000 (5), 1500	00 (2), 400 (3), 500 (4), (6), 2000 (7) kBaud		300 (2)		RW	Txt				US
3.38	Drive encoder type	Fd.SErvo (4), F SC.Hiper (7), End	r (2), Ab.SErvo (3), r.SErvo (5), SC (6), IAt (8), SC.EndAt (9), SC.SSI (11)	Ab	(0)	Ab.SErvo (3)	RW	Txt				US
3.39	Drive encoder termination select / Rotary encoder select / Comms only encoder mode		to 2		1		RW	Uni				US
3.40	Drive encoder error detection level	Bit 0 (LSB) = Wire b Bit 1 = Phase error Bit 2 (MSB) = SSI p Value is binary sum	detect ower supply bit monitor	0		1	RW	Uni				US
3.41	Drive encoder auto-configuration / SSI binary format select	OFF (0) or On (1)		OFF (0)		RW	Bit				US

Safet Informa		ical Electrical (ion Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCAF operation	RD Onboard PLC	Advanced parameters	Technic Data	al Di	agnos	stics I	JL Lis	sting nation
	Parameter			Range	(\$)			Default(⊏	>)			ти	20		
	Falameter		OL		CL	-	OL	VT	SV			iy	ре		
3.42	Drive encoder filter	0 (0),	1 (1), 2	2 (2), 4 (3)	, 8 (4), 16	6(5) ms		0		RW	Txt				US
3.43	Maximum drive encoder reference		(0 to 40,00	0 rpm		15	600	3000	RW	Uni				US
3.44	Drive encoder reference scaling			0.000 to 4	.000			1.000	•	RW	Uni				US
3.45	Drive encoder reference			±100.0	%					RO	Bi	FI	NC	PT	
3.46	Drive encoder reference destination		F	Pr 0.00 to	21.50			Pr 0.00		RW	Uni		DE	PT	US
3.47	Re-initialise position feedback		0	0FF (0) or	On (1)			OFF (0)		RW	Bit		NC		
3.48	Position feedback initialised		0	0FF (0) or	On (1)					RO	Bit		NC	PT	
3.49	Full motor object electronic nameplate transfer		0	0FF (0) or	On (1)			OFF (0)		RW	Bit				US
3.50	Position feedback lock		0	0FF (0) or	On (1)			OFF (0)		RW	Bit		NC		

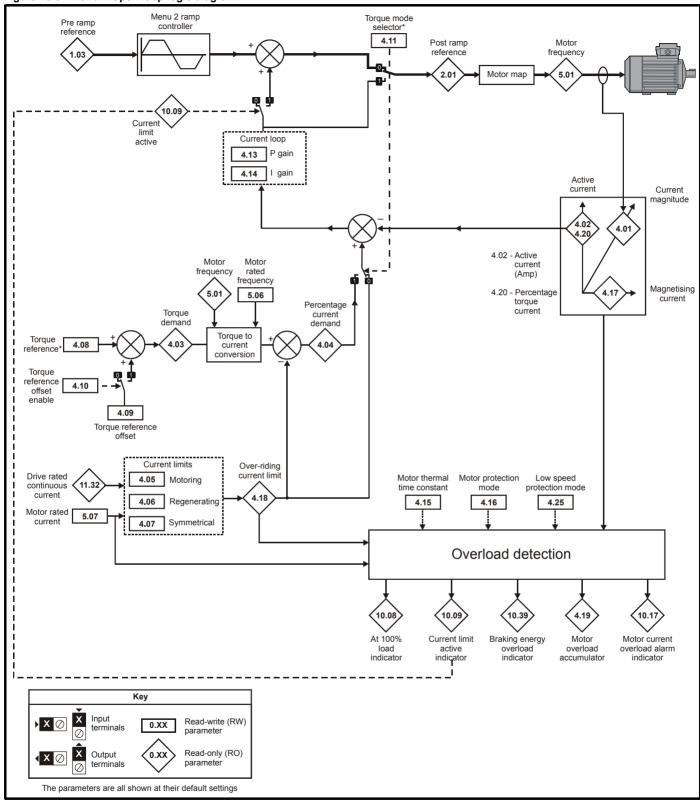
RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

*Encoder phase angle (servo mode only)

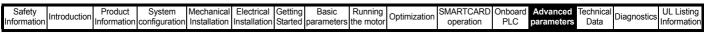
With drive software version V01.08.00 onwards, the encoder phase angles in Pr **3.25** and Pr **21.20** are copied to the SMARTCARD when using any of the SMARTCARD transfer methods.

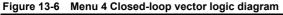
With drive software version V01.05.00 to V01.07.01, the encoder phase angles in Pr **3.25** and Pr **21.20** are only copied to the SMARTCARD when using either Pr **0.30** set to Prog (2) or Pr **xx.00** set to 3yyy.

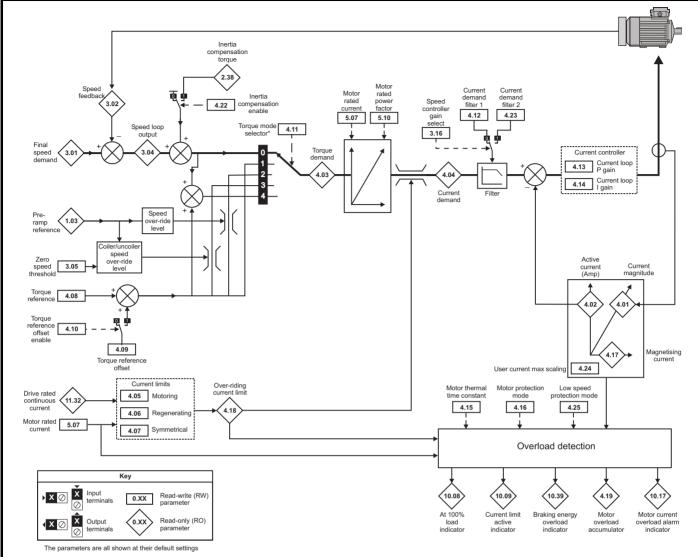
This is useful when the SMARTCARD is used to back-up the parameter set of a drive but caution should be used if the SMARTCARD is used to transfer parameter sets between drives. Unless the encoder phase angle of the servo motor connected to the destination drive is known to be the same as the servo motor connected to the source drive, an autotune should be performed or the encoder phase angle should be entered manually into Pr 3.25 (or Pr 21.20). If the encoder phase angle is incorrect the drive may lose control of the motor resulting in an O.SPd or Enc10 trip when the drive is enabled. With drive software version V01.04.00 and earlier, or when using software version V01.05.00 to V01.07.01 and Pr xx.00 set to 4yyy is used, then the encoder phase angles in Pr 3.25 and Pr 21.20 are not copied to the SMARTCARD. Therefore, Pr 3.25 and Pr 21.20 in the destination would not be changed during a transfer of this data block from the SMARTCARD.

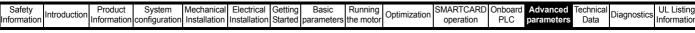

NOTE

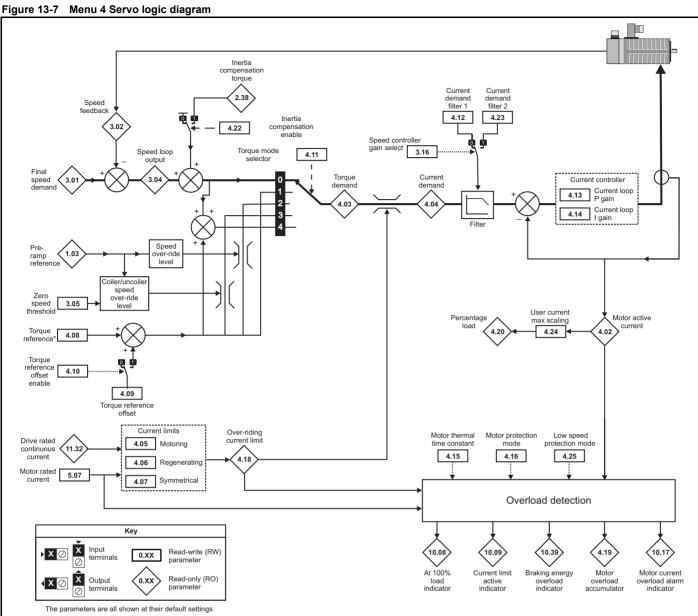
**If output voltage from the encoder is >5V, then the termination resistors must be disabled $\Pr{3.39}$ to 0.


Safety Information	Introduction	System configuration	Mechanical Installation	Electrical Installation	Getting Started	 Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Diagnostics	UL Listing Information
		 j				 						


13.4 Menu 4: Torque and current control


Figure 13-5 Menu 4 Open loop logic diagram

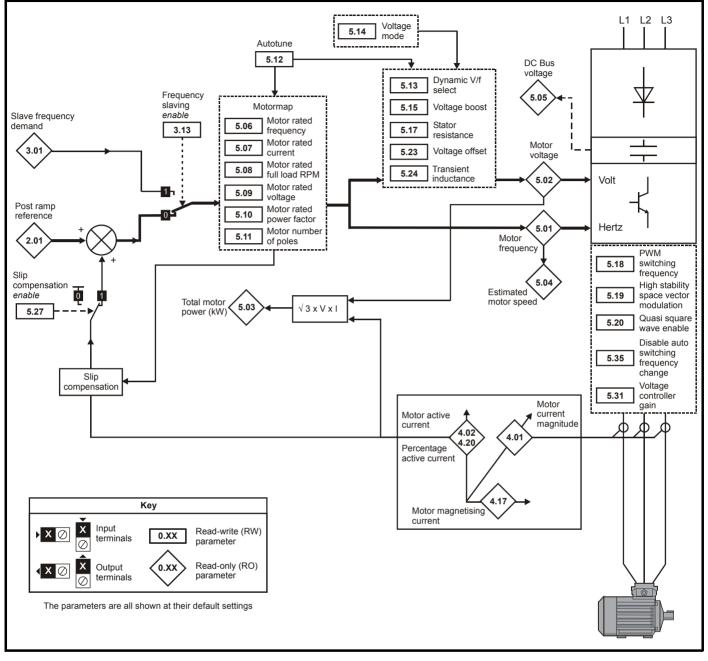

For more information, refer to section 13.21.4 Torque modes on page 256.



*For more information, refer to section 13.21.4 Torque modes on page 256.

*For more information, refer to section 13.21.4 Torque modes on page 256.

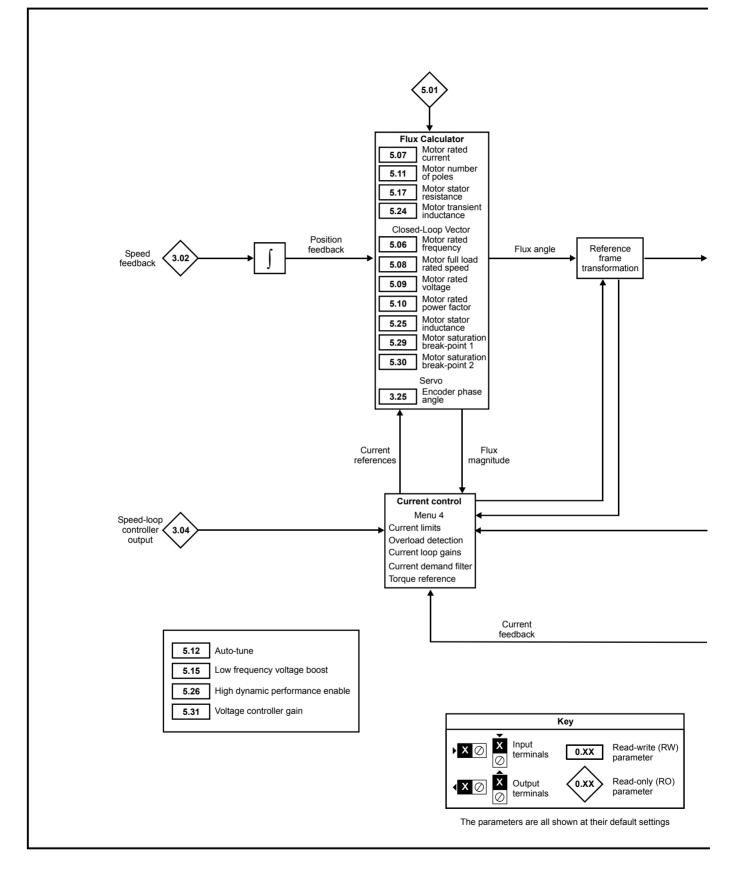
Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	SMARTCARD operation	DIDUGIG	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
1														

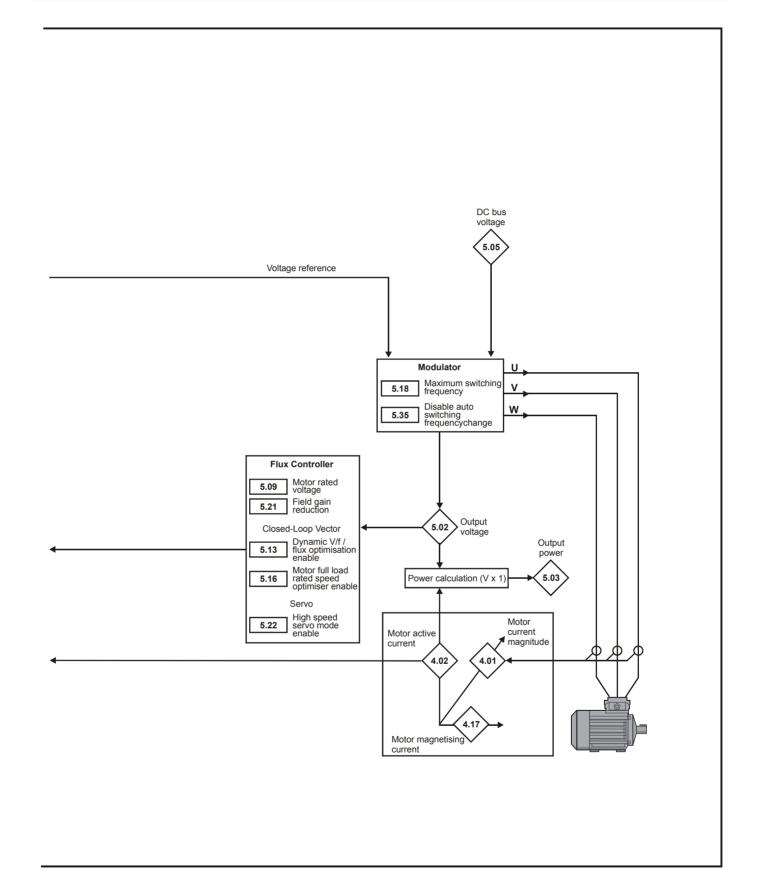

	Parameter		Ran	ge(‡)		Default(⇔)				т.	20		
	Faranieter		OL	CL	OL	VT	SV			Ту	he		
4.01	Current magnitude	{0.12}	0 to DRIVE_CL	JRRENT_MAX A				RO	Uni	FI	NC	PT	
4.02	Active current	{0.13}	±DRIVE_CUF	RRENT_MAX A				RO	Bi	FI	NC	PT	
4.03	Torque demand		±TORQUE_PROD	_CURRENT_MAX %				RO	Bi	FI	NC	PT	
4.04	Current demand		±TORQUE_PROD	_CURRENT_MAX %				RO	Bi	FI	NC	PT	
4.05	Motoring current limit		0 to MOTOR1_CUR	RENT_LIMIT_MAX %	138.1	165.7	150.0	RW	Uni		RA		US
4.06	Regen current limit		0 to MOTOR1_CUR	RENT_LIMIT_MAX %	138.1	165.7	150.0	RW	Uni		RA		US
4.07	Symmetrical current limit	{0.06 }	0 to MOTOR1_CUR	RENT_LIMIT_MAX %	138.1	165.7	150.0	RW	Uni		RA		US
4.08	Torque reference		±USER_CUR	RENT_MAX %		0.00		RW	Bi				US
4.09	Torque offset		±USER_CUR	RENT_MAX %		0.0		RW	Bi	1			US
4.10	Torque offset select		OFF (0)	or On (1)		OFF (0)		RW	Bit				US
4.11	Torque mode selector	{0.14}	0 to 1	0 to 4		0		RW	Uni				US
4.12	Current demand filter 1	{0.17}		0.0 to 25.0 ms		0	0.0	RW	Uni	1			US
4.13	Current controller Kp gain	{0.38 }	0 to 3	30,000	20	400V d 575V d	lrive: 75 rive: 150 rive: 180 rive: 215	RW	Uni				US
4.14	Current controller Ki gain	{0.39 }	0 to 3	30,000	40	400V dr 575V dr	ive: 1000 ive: 2000 ive: 2400 ive: 3000	RW	Uni				US
4.15	Thermal time constant	{0.45 }	0.0 to	3000.0	89.0	89.0	20.0	RW	Uni				US
4.16	Thermal protection mode		0	to 1		0	•	RW	Bit	-			US
4.17	Reactive current		±DRIVE_CUF	RRENT_MAX A				RO	Bi	FI	NC	PT	
4.18	Overriding current limit		±TORQUE_PROD	CURRENT_MAX %				RO	Uni	-	NC	PT	
4.19	Overload accumulator		0 to 1	00.0 %				RO	Uni		NC	PT	
4.20	Percentage load		±USER_CUR	RENT_MAX %				RO	Bi	FI	NC	PT	
4.22	Inertia compensation enable			OFF (0) or On (1)		OF	F (0)	RW	Bit	-			US
4.23	Current demand filter 2			0.0 to 25.0 ms		0	0.0	RW	Uni				US
4.24	User current maximum scaling		0.0 to TORQUE_PRO	D_CURRENT_MAX %	165.0	17	5.0	RW	Uni		RA		US
4.25	Low speed thermal protection mode		OFF (0)	or On (1)		OFF (0)		RW	Bit				US
4.26	Percentage torque		±USER_CURRENT_ MAX %					RO	Bi	FI	NC	PT	

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced		Diagnostics	UL Listing
Informatio	1 Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

13.5 Menu 5: Motor control

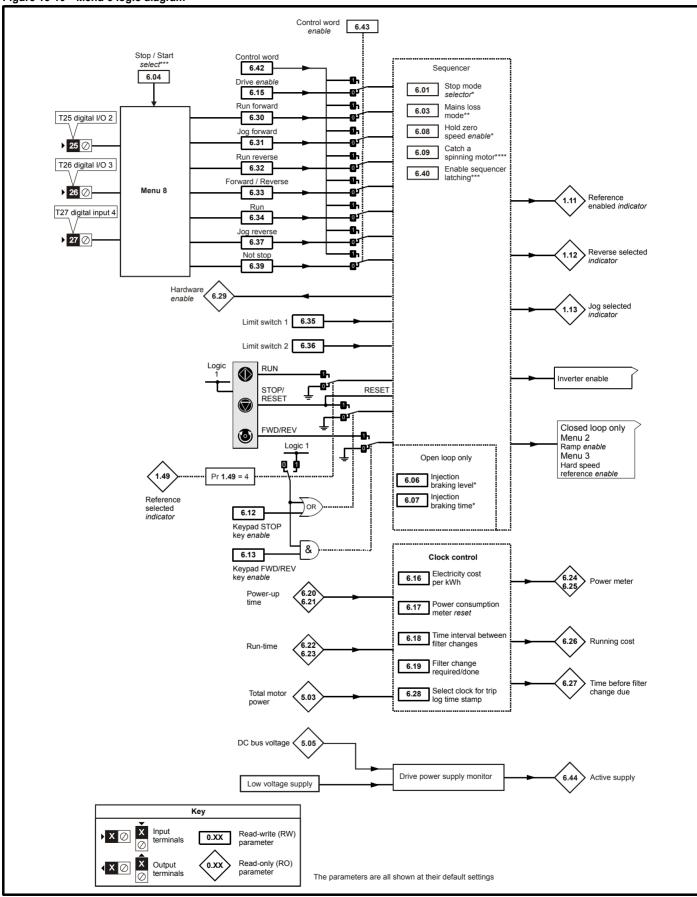

Figure 13-8 Menu 5 Open-loop logic diagram


	-					_								-	
Safety		Product	Svstem	Mechanical	Electrical	Gettina	Basic	Runnina		SMARTCARD	Onboard	Advanced	Technical		UL Listina
ounory	Introduction	TTOQUOL	Gyotom	meenamoar	Licothour	Cotting	Duolo	rtanning	Optimization		onbourd	Auvanoou		Diagnostics	
Information	maoaaoaon	Information	configuration	Installation	Installation	Started	parameters	the motor	optimization	operation	PLC	parameters	Data	Diagnootioo	Information
			oomgaraaon	motanation	motanation	0101100	paramotoro			oporation	. 20	paramotoro	Data		

		Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	--	-----------------------	--------------	------------------------	-------------------------	----------------------------	--------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

Figure 13-9 Menu 5 Closed-loop logic diagram

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
			-				-			-					


Safety Information	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard		Technical Data		UL Listing Information
Information		Information	configuration	Installation	Installation	Started	parameters	the motor	•	operation	PLC	parameters	Data	5	Information

	Deremeter		Ra	ang	e(ŷ)	1		Defa	ult(⇔)				т.,			
	Parameter		OL		CL		OL		VT	SV			Ту	pe		
5.01	Output frequency	{0.11 }	±SPEED_FREQ_ MAX Hz		±1,250.0 Hz						RO	Bi	FI	NC	PT	
5.02	Output voltage			volt	age_max V						RO	Uni	FI	NC	PT	
5.03	Output power			/er_i	max kW						RO	Bi	FI	NC		
5.04	Motor rpm	{0.10 }	±180,000 rpm								RO	Bi	FI		PT	
5.05	D.C bus voltage			_vol	tage_max V	_				-	RO	Uni	FI	NC	PT	
5.06	Rated frequency	{0.47}	0 to 3,000 Hz	_	VT> 0 to 1,250.0 Hz	E	UR> 50.0	,			RW	Uni		.		US
5.07	Motor rated current	{0.46 }	0 to Rated	1_cu	rrent_max A				current [1	1	RW	Uni		RA		US
5.08	Rated load rpm / rated speed	{0.45 }	0 to 180,000 rpm		0.00 to 40,000.00 rpm	USA	R> 1,500 A> 1,800	USA>	1,450.00 1,770.00 rive: 230	3,000.00	RW	Uni				US
5.09	Rated voltage	{0.44 }			E_SET_MAX V	2	(575V d 690V d	R> 400, U rive: 575 rive: 690	SA> 460		Uni		RA		US
5.10	Rated power factor	{0.43 }			000 to 1.000			.850			RW	Uni		RA		US
5.11	Number of motor poles	{0.42 }	Auto to 12	20 P	ole (0 to 60)		Au	to (0)		6 POLE (3)	RW	Txt				US
5.12	Autotune	{0.40}	0 to 2		VT> 0 to 4 SV> 0 to 6				0		RW	Uni		NC		
5.13	Dynamic V/F / flux optimise select	{0.09 }	OFF (0) or On (1)		VT> OFF (0) or On (1)		OF	F (0)			RW	Bit				US
5.14	Voltage mode select	{0.07 }	Ur_S (0), Ur (1), Fd (2), Ur_Auto (3) Ur_I (4), SrE (5)	,		U	r_l (4)				RW	Txt				US
	Action on enable				SV> nonE (0), Ph EnL (1), Ph Init (2)					nonE(0)	RW	Txt				US
5.15	Low frequency voltage boost	{0.08 }	0.0 to 25.0 % c	of me	otor rated voltage			1.0			RW	Uni				US
5.16	Rated rpm autotune	{0.33}			VT> 0 to 2				0		RW	Uni				US
5.17	Stator resistance		0.000 to	65.0	00 x 10 mΩ			C	0.0		RW	Uni		RA		US
5.18	Maximum switching frequency	{0.41 }	3 (0)	, 4 ('	1), 6 (2)		3	(0)		6 (2)	RW	Txt		RA		US
5.19	High stability space vector modulation		OFF (0) or On (1)				FF (0)				RW	Bit				US
5.20	Quasi-square enable		OFF (0) or On (1)	_	055 (0) 0 (1)	0	FF (0)		055	(0)	RW	Bit				US
5.21	Field gain reduction High speed servo mode				OFF (0) or On (1)				OFF	(0)	RW	Bit				US
5.22	enable			-	SV> OFF (0) or On (1)					0	RW	Bit				US
5.23	Voltage offset		0.0 to 25.0 V				0.0				RW	Uni		RA		US
5.24	Transient inductance (σL_s)		0.000 te	o 50	0.000 mH			0.	000		RW	Uni		RA		US
5.25	Stator inductance (L _s)			V	/T> 0.00 to 5,000.00 mH	l		(0.00		RW	Uni		RA		US
5.26	High dynamic performance enable				OFF (0) or On (1)				OFF	(0)	RW	Bit				US
5.27	Enable slip compensation		OFF (0) or On (1)			C	On (1)				RW	Bit				US
5.28	Field weakening compensation disable				VT> OFF (0) or On (1)			OF	F (0)		RW	Bit				US
5.29	Motor saturation breakpoint 1)	/T> 0 to 100% of rated flux				50		RW	Uni				US
5.30	Motor saturation breakpoint 2			١	/T> 0 to 100% of rated flux				75		RW	Uni				US
5.31	Voltage controller gain			0 to	30				1		RW	Uni				US
5.32	Motor torque per amp, K _t				VT> 0.00 to 500.00 N m A ⁻¹						RO	Uni				US
					SV> 0.00 to 500.00 N m A ⁻¹					1.60	RW	Uni				US
5.33	Motor volts per 1,000 rpm, K _e				SV> 0 to 10,000 V					98	RW	Uni				US
5.35	Disable auto switching frequency change		OFF	(0) c	or On (1)			OF	F (0)		RW	Bit				US
5.36	Motor pole pitch				35 mm			0	.00		RW	Uni				US
5.37	Actual switching frequency				2 (4), 16 (5), 6 rEd (6), d (7)						RO	Txt		NC	PT	
5.38	Minimal movement phasing te	st angle			SV> 0.0 to 25.5°					5.0	RW	Uni				US
5.39	Minimal movement phasing test pulse length	-			SV> 0 to 3					0	RW	Uni				US
5.40	Spin start boost		0.0 to 10.0		VT> 0.0 to 10.0			1.0			RW	Uni		L		US
RW F	Read / Write RO Read only	y U	ni Unipolar	Bi	Bi-polar	Bit	Bit parar	neter	Txt	Text string						
FI F	Filtered DE Destination	on N	C Not copied	RA	Rating dependent	PT	Protecte	d	US	User save	F	PS	Powe	er do	wn s	ave

Safety	Introduction	Product	System	Mechanical		Getting		Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	opumization	operation	PLC	parameters	Data	Blaghootioo	Information

13.6 Menu 6: Sequencer and clock

Figure 13-10 Menu 6 logic diagram

Safety Informatio	n Introduction	Product Information	System configuration	Mechanical Installation		Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
monnauc		internation	ooninguration	motanation	motaliation	oluitou	parametero			operation	1 20	paramotoro	Duta		monnation

	_			R	ange	(①)	Т		Defau	ılt(⇔)		Г		_			
	Paramete	er		OL	Ť	CL		OL		т ,	sv	-		Ту	pe		
6.01	Stop mode			COASt (0), rP (1), rP.dcl (2), dcl (3), td.dcl (4), diSAbLE (COASt (0), rP (1), no.rP (2)		-	(1)	_	no.rP (2)	RW	Txt				US
6.03	Line power supply lo	oss mode		diS (0), Sl	toP (1), ridE.th (2)			diS		•	RW					US
6.04	Start / stop logic sel				0 to	4			4	1		RW					US
6.06	Injection braking lev			0 to 150.0%			1	100.0%				RW	Uni		RA		US
6.07	Injection braking tim	ne		0.0 to 25.0s		•		1.0				RW	Uni				US
6.08	Hold zero speed		(0.00)		(0) or	[•] On (1)			- (0)		On (1)	RW	Bit				US
6.09	Catch a spinning mo	otor	{0.33}	0 to 3	(0)	0 to 1		0			1	RW	Uni				US
6.12	Enable stop key	ioroo kou	(0.29)		• •	On (1)			OFF OFF			RW	Bit				US
6.13 6.15	Enable forward / rev Drive enable	verse key	{0.28}			[·] On (1) [·] On (1)			OFF			RW	Bit Bit				US US
6.15	Electricity cost per k	۸۸/h			()	cy units per kWh	_			(1)		RW RW	Uni				US
6.17	Reset energy meter					On (1)			OFF			RW	Bit		NC		03
6.18	Time between filter					00 hrs	_		(. ,		RW	Uni		NO		US
6.19	Filter change require change done				,	On (1)			OFF	-		RW				PT	
6.20	Powered-up time: ye	ears.davs		0 to 9.3	364 ve	ears.days	_					RW	Uni		NC	PT	
6.21	Powered-up time: hours.minutes				,	irs.minutes						RW				PT	
6.22		<i>(</i> 0		0 to 0 (264 14	ears.days	_					RO	Uni		NC	PT	PS
6.22	Run time: years.day Run time: hours.mir					irs.minutes	_					RO	Uni		-		PS
6.23	Energy meter: MWh				99.9 I		_					RO	Bi		NC		PS
6.25	Energy meter: kWh				99.99		_					RO	Bi		-	PT	PS
6.26	Running cost				±32.0							RO	Bi		-	PT	
6.27	Time before filter ch	nange due				00 hrs						RO	Uni		NC		PS
6.28	Select clock for trip sampling	•				On (1)		_	OFF	(0)		RW	Bit		_		US
6.29	Hardware enable			OFF	(0) or	· On (1)						RO	Bit		NC	PT	
6.30	Sequencing bit: Rur	n forward		OFF	(0) or	On (1)			OFF	(0)		RW	Bit		NC		
6.31	Sequencing bit: Jog	forward				⁻ On (1)			OFF	(0)		RW	Bit		NC		
6.32	Sequencing bit: Rur	n reverse		OFF	(0) or	⁻ On (1)			OFF	- (0)		RW	Bit		NC		
6.33	Sequencing bit: For reverse	ward /		OFF	(0) or	On (1)			OFF	- (0)		RW	Bit		NC		
6.34	Sequencing bit: Rur	n		OFF	(0) or	⁻ On (1)			OFF	. ,		RW	Bit		NC		
6.35	Forward limit switch					[.] On (1)			OFF	= (0)		RW	Bit		NC		
6.36	Reverse limit switch				. ,	⁻ On (1)			OFF	. ,		RW	Bit		NC		
6.37	Sequencing bit: Jog				. ,	⁻ On (1)			OFF	()		RW	Bit		NC		
6.39	Sequencing bit: Not					On (1)	_		OFF			RW	Bit		NC		
6.40	Enable sequencer la	atching				On (1)			OFF			RW	Bit				US
6.41	Drive event flags				to 65				(RW	Uni		NC		L
6.42	Control word				to 32)		RW RW			NC		US
6.43 6.44	Control word enable	5				On (1)			OFF	- (U)		RW RO			NC	DΤ	05
6.45	Active supply Force cooling fan to	run at full			. ,	On (1)			OFF	(0)		RW			NC	PI	US
6.46	speed***** Nominal low voltage	e supply			8V to		+		4	.,		RW				PT	
6.47	Disable line power s phase loss detection input rectifier	supply /		OFF	(0) or	On (1)			OFF	- (0)			Bit				US
6.48	Line powersupply lo through detection le			0 to DC_VO	TAG	E_SET_MAX V		200V driv 575V driv	re: 205, /e: 540	400V 0 690V	drive: 410, drive: 540	RW	Uni		RA		US
6.49	Disable multi-modul module number stor	le drive		OFF	(0) or	⁻ On (1)			OFF			RW	Bit				US
6.50	Drive comms state			drv (0), SLot 1(1	I), SL	ot 2 (2), SLot 3 (3)						RO	Txt		NC	PT	
6.51	External rectifier not	t active				On (1)			OFF	(0)			Bit		-	-	
RW F	Read / Write RO	Read only	U	ni Unipolar	Bi	Bi-polar	Bit	Bit parar	neter	Txt	Text string					_	_
1.10		i teau only	0	" Onipolai	וט	Di-polai	טונ	Dicparal	neter	1 / 1	ient sunny						

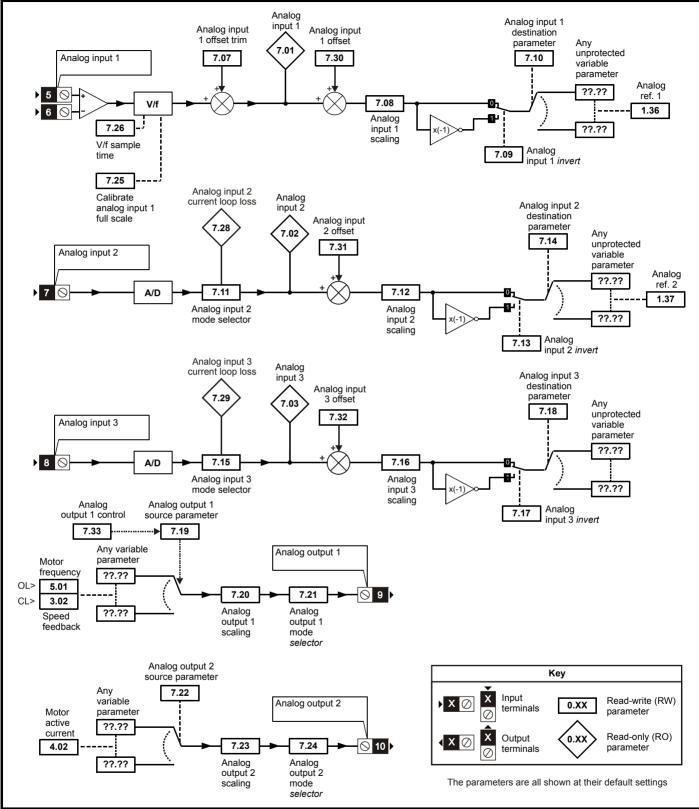
FI Filtered DE Destination NC Not copied RA Rating dependent PT Protected US User save PS Power down save	RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
	FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

*For more information, refer to section 13.21.5 *Stop modes* on page 257.

motor on page 260.

**For more information, refer to section 13.21.6 *Line power supply loss modes* on page 258.

***For more information, refer to section 13.21.7 *Start / stop logic modes* on page 259.


****For more information, refer to section 13.21.8 Catch a spinning

*****The drive thermal model system normally controls the fan speed, however the fan can be forced to operate at full speed if this parameter is set to 1. When this is set to 1 the fan remains at full speed until 10s after this parameter is set to zero. Note that the fan will only run at full speed if the drive is not in a UU condition.

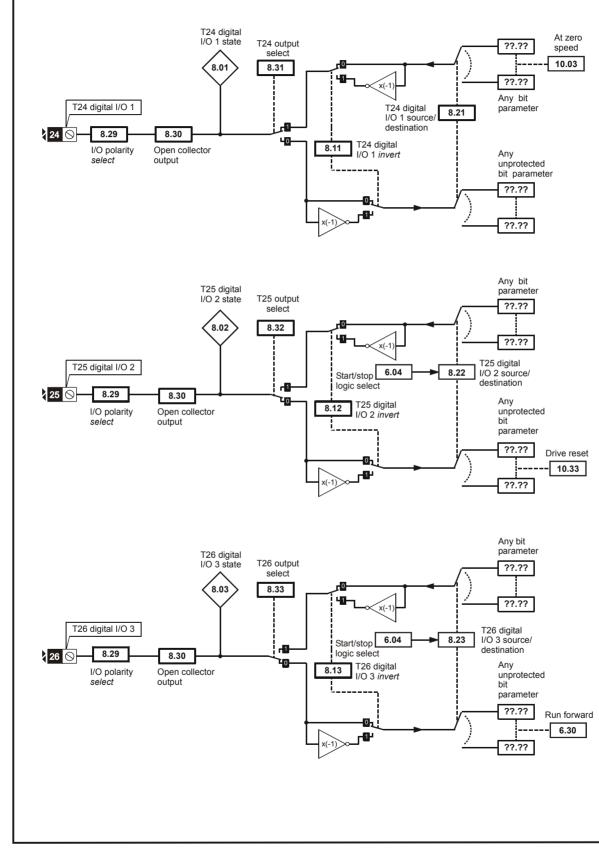
Safety	. Introduction	Product	System	Mechanical	Electrical	Getting		Running	Optimization	SMARTCARD	PLC	Advanced	Technical Data	Diagnostics	
Informat	ion	Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data		Information

13.7 Menu 7: Analog I/O

Figure 13-11 Menu 7 logic diagram

Safety		Product	Svstem	Mechanical	Electrical	Gettina	Basic	Runnina	o	SMARTCARD	Onboard	Advanced	Technical	D : ()	UL Listina
nformation	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information
mormation		mormation	configuration	motaliation	installation	Starteu	parameters			operation	I LO	parameters	Data		mormation

	Parameter	Ran	ge(\$)		Default(⇔)				Ту	-		
	Faranieter	OL	CL	OL	VT	SV			ц	he		
7.01	T5/6 analog input 1 level	±100	0.00 %				RO	Bi		NC	PT	
7.02	T7 analog input 2 level	±10	0.0 %				RO	Bi		NC	PT	
7.03	T8 analog input 3 level	±10	0.0 %				RO	Bi		NC	PT	
7.04	Power circuit temperature 1	-128 to	o 127 °C				RO	Bi		NC	PT	
7.05	Power circuit temperature 2	-128 to	o 127 °C				RO	Bi		NC	PT	
7.06	Control board temperature	-128 to	o 127 °C				RO	Bi		NC	PT	
7.07	T5/6 analog input 1 offset trim {0.13}	±10.	000 %		0.000		RW	Bi				US
7.08	T5/6 analog input 1 scaling	0 to	4.000		1.000		RW	Uni				US
7.09	T5/6 analog input 1 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
7.10	T5/6 analog input 1 destination	Pr 0.00	to 21.51		Pr 1.36		RW	Uni	DE		PT	US
7.11	T7 analog input 2 mode {0.19}	4-20 (4), 20-	I-20.tr (2), 20-4.tr (3), 4 (5), VOLt (6)		VOLt (6)		RW	Txt				US
7.12	T7 analog input 2 scaling		4.000		1.000			Uni				US
7.13	T7 analog input 2 invert		or On (1)		OFF (0)		RW					US
7.14	T7 analog input 2 destination {0.20}		to 21.51		Pr 1.37		RW	Uni	DE		PT	US
7.15	T8 analog input 3 mode {0.21}	4-20 (4), 20-4 (5),	I-20.tr (2), 20-4.tr (3), VOLt (6), th.SC (7), h.diSP (9)		th (8)		RW	Txt				US
7.16	T8 analog input 3 scaling	0 to	4.000		1.000			Uni				US
7.17	T8 analog input 3 invert	,	or On (1)		OFF (0)			Bit				US
7.18	T8 analog input 3 destination	Pr 0.00	to 21.51		Pr 0.00		RW	Uni	DE		PT	US
7.19	T9 analog output 1 source		to 21.51	Pr 5.01		3.02	RW				PT	US
7.20	T9 analog output 1 scaling		to 4.000		1.000		RW	Uni				US
7.21	T9 analog output 1 mode	17. 17.	, 4-20 (2), H.SPd (3)		VOLt (0)		RW	Txt				US
7.22	T10 analog output 2 source		to 21.51		Pr 4.02			Uni			PT	US
7.23	T10 analog output 2 scaling		to 4.000		1.000			Uni				US
7.24	T10 analog output 2 mode	VOLt (0), 0-20 (1),	4-20 (2), H.SPd (3)		VOLt (0)		RW	Txt				US
7.25	Calibrate T5/6 analog input 1 full scale	OFF (0)	or On (1)		OFF (0)		RW	Bit		NC		
7.26	T5/6 analog input 1 sample time	0 to 3	8.0 ms		4.0		RW	Uni				US
7.28	T7 analog input 2 current loop loss	OFF (0)	or On (1)				RO	Bit		NC	PT	
7.29	T8 analog input 3 current loop loss	OFF (0)	or On (1)				RO	Bit		NC	PT	
7.30	T5/6 analog input 1 offset		0.00 %		0.00		RW	Bi				US
7.31	T7 analog input 2 offset		0.0 %		0.0		RW					US
7.32	T8 analog input 3 offset		0.0 %		0.0		RW	Bi				US
7.33	T9 analog output 1 control	1.1	(1), AdV (2)		AdV (2)		RW	Txt				US
7.34	IGBT junction temperature	±20	0° 00				RO	Bi		NC	PT	
7.35	Drive thermal protection accumulator	0 to 1	00.0 %				RO	Uni		NC	PT	
7.36	Power circuit temperature 3	-128 to	o 127 °C				RO	Bi	İ	NC	PT	


RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

	-					_								-	
Safety		Product	Svstem	Mechanical	Electrical	Gettina	Basic	Runnina		SMARTCARD	Onboard	Advanced	Technical		UL Listina
ounory	Introduction	TTOQUOL	Gyotom	meenamoar	Licothour	Cotting	Duolo	rtanning	Optimization		onbourd	Auvanoou		Diagnostics	
Information	maoaaoaon	Information	configuration	Installation	Installation	Started	parameters	the motor	optimization	operation	PLC	parameters	Data	Diagnootioo	Information
			oomgaraaon	motanation	motanation	0101100	paramotoro			oporation	. 20	paramotoro	Data		

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Informati	on	Information	configuration	Installation	Installation	Started		the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

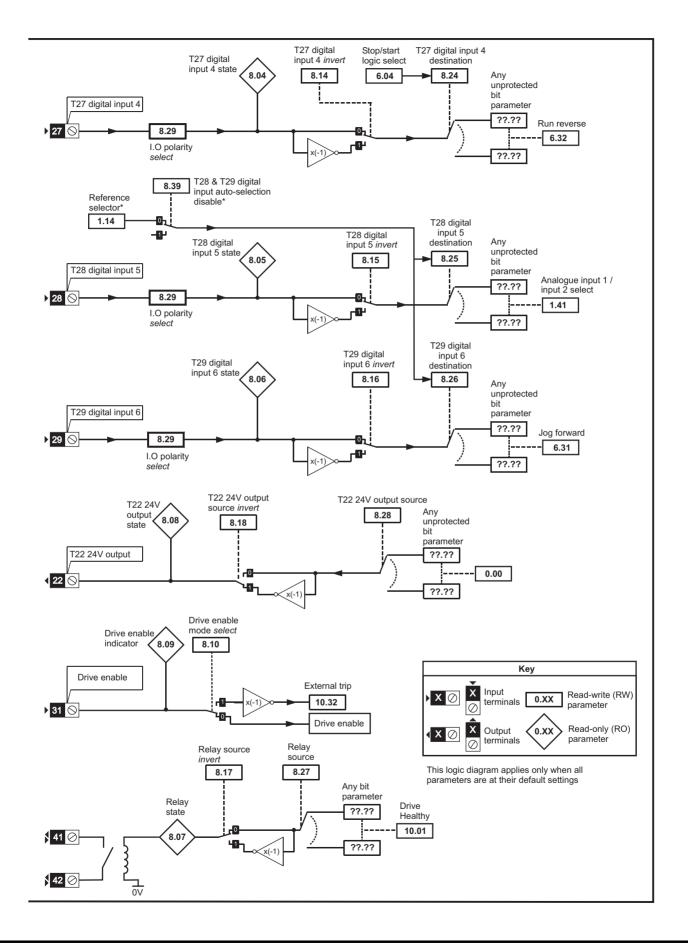
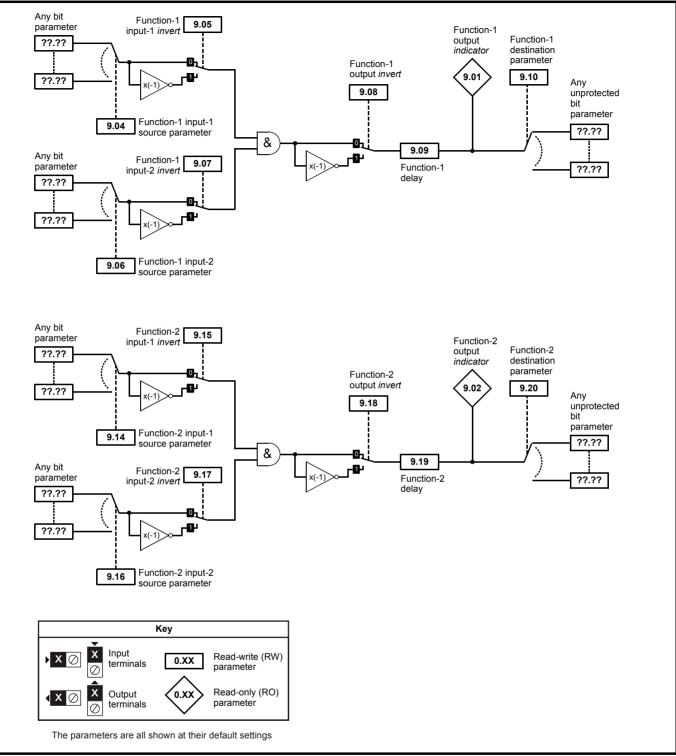

13.8 Menu 8: Digital I/O

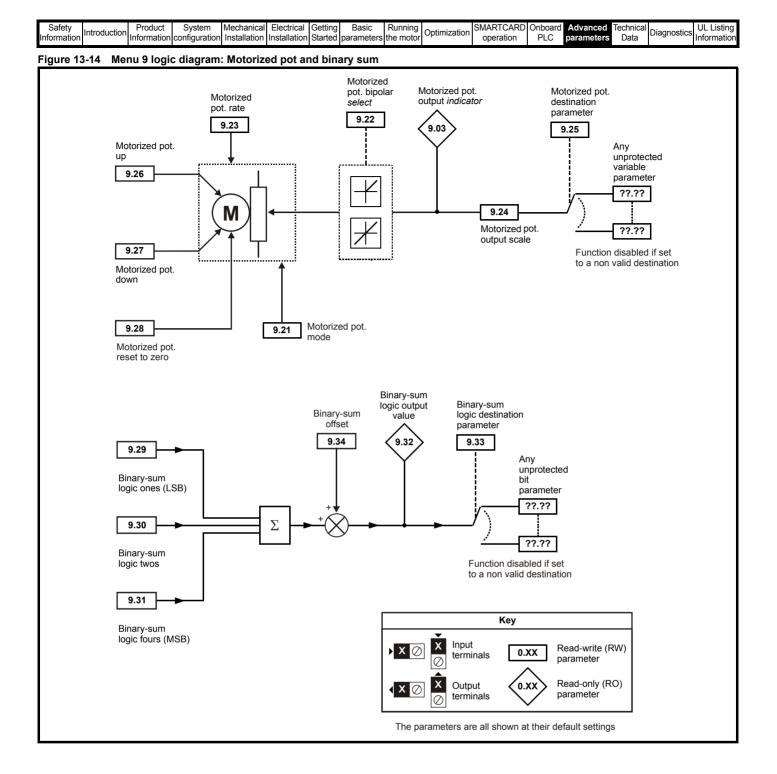
Figure 13-12 Menu 8 logic diagram

*For more information, please refer to 13.21.1 Reference modes on page 254.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	SMARTCARD	onbourd	Advanced	Technical	Diagnostics	UL Listing
Information		Information	configuration	Installation	Installation	Started	parameters	the motor	 operation	PLC	parameters	Data	- J	Information


Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
mormation		Information	configuration	matanation	motaliation	otaricu	parameters			operation	I LO	parameters	Data		iniornation


	Parameter	Ran	ge(\$)		Default(⇔)				Ту	no		
	Farameter	OL	CL	OL	VT	SV			чy	he		
8.01	T24 digital I/O 1 state	OFF (0)	or On (1)				RO	Bit		NC	PT	
8.02	T25 digital I/O 2 state	OFF (0)	or On (1)				RO	Bit		NC	PT	
8.03	T26 digital I/O 3 state	OFF (0)	or On (1)				RO	Bit		NC	PT	
8.04	T27 digital input 4 state	OFF (0)	or On (1)				RO	Bit		NC	PT	
8.05	T28 digital input 5 state	OFF (0)	or On (1)				RO	Bit		NC	PT	
8.06	T29 digital input 6 state	OFF (0)	or On (1)				RO	Bit		NC	PT	
8.07	Relay state	OFF (0)	or On (1)				RO	Bit		NC	PT	
8.08	T22 24V output state	OFF (0)	or On (1)				RO	Bit		-	PT	
8.09	Drive enable indicator	OFF (0)	or On (1)				RO	Bit		NC	PT	
8.10	Drive enable mode select	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
8.11	T24 digital I/O 1 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
8.12	T25 digital I/O 2 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
8.13	T26 digital I/O 3 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
8.14	T27 digital input 4 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
8.15	T28 digital input 5 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
8.16	T29 digital input 6 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
8.17	Relay source invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
8.18	T22 24V output source invert	OFF (0)	or On (1)		On (1)		RW	Bit				US
8.20	Digital I/O read word	0 to	511				RO	Uni		NC	PT	
8.21	T24 digital I/O 1 source/ destination	Pr 0.00	to 21.51		Pr 10.03		RW	Uni	DE		PT	US
8.22	T25 digital I/O 2 source/ destination	Pr 0.00	to 21.51		Pr 10.33		RW	Uni	DE		PT	US
8.23	T26 digital I/O 3 source/ destination	Pr 0.00	to 21.51		Pr 6.30		RW	Uni	DE		PT	US
8.24	T27 digital input 4 destination	Pr 0.00	to 21.51		Pr 6.32		RW	Uni	DE		PT	US
8.25	T28 digital input 5 destination	Pr 0.00	to 21.51		Pr 1.41		RW	Uni	DE		PT	US
8.26	T29 digital input 6 destination {0.17}	Pr 0.00	to 21.51		Pr 6.31		RW	Uni	DE		PT	US
8.27	Relay source	Pr 0.00	to 21.51		Pr 10.01		RW	Uni			PT	US
8.28	T22 24V output source	Pr 0.00	to 21.51		Pr 0.00		RW	Uni			PT	US
8.29	Positive logic select {0.18}	OFF (0)	or On (1)		On (1)		RW	Bit			PT	US
8.30	Open collector output	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
8.31	T24 digital I/O 1 output select	OFF (0)	or On (1)		On (1)		RW	Bit				US
8.32	T25 digital I/O 2 output select	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
8.33	T26 digital I/O 3 output select	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
8.39	T28 & T29 digital input auto- selection disable {0.16}	OFF (0)	or On (1)		OFF (0)		RW	Bit				US


RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

		-				A									
Safety	Later desettant	Product	System	Mechanical	Electrical	Getting	Basic	Running	O Hard and a	SMARTCARD	Onboard	Advanced	lechnical	Discussion	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	narameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information
mornation		inionnation	configuration	Installation	installation	Starteu	parameters			operation	I LO	parameters	Dala		momauon

13.9 Menu 9: Programmable logic, motorized pot, binary sum and timers

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started		Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
intornation		mormation	conliguration	Installation	Installation	Starteu	parameters	the motor		operation	I LO	parameters	Dala		iniomation

	Parameter	Ran	ge(‡)		Default(⇔)				Ту	20		
	Falameter	OL	CL	OL	VT	SV			' y	he		
9.01	Logic function 1 output	OFF (0)	or On (1)				RO	Bit		NC	PT	
9.02	Logic function 2 output	OFF (0)	or On (1)				RO	Bit		NC	PT	
9.03	Motorized pot output	±100	0.00 %				RO	Bi		NC	PT	PS
9.04	Logic function 1 source 1	Pr 0.00) to 21.51		Pr 0.00		RW	Uni			PT	US
9.05	Logic function 1 source 1 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
9.06	Logic function 1 source 2	Pr 0.00	to 21.51		Pr 0.00		RW	Uni			PT	US
9.07	Logic function 1 source 2 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
9.08	Logic function 1 output invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
9.09	Logic function 1 delay	±2	5.0 s		0.0		RW	Bi				US
9.10	Logic function 1 destination	Pr 0.00	to 21.51		Pr 0.00		RW	Uni	DE		PT	US
9.14	Logic function 2 source 1	Pr 0.00	to 21.51		Pr 0.00		RW	Uni			PT	US
9.15	Logic function 2 source 1 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
9.16	Logic function 2 source 2	Pr 0.00) to 21.51		Pr 0.00		RW	Uni			PT	US
9.17	Logic function 2 source 2 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
9.18	Logic function 2 output invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
9.19	Logic function 2 delay	±2	5.0 s		0.0		RW	Bi				US
9.20	Logic function 2 destination	Pr 0.00	to 21.51		Pr 0.00		RW	Uni	DE		PT	US
9.21	Motorized pot mode	0	to 3		2		RW	Uni				US
9.22	Motorized pot bipolar select	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
9.23	Motorized pot rate	0 to	250 s		20		RW	Uni				US
9.24	Motorized pot scale factor	0.000	to 4.000		1.000		RW	Uni				US
9.25	Motorized pot destination	Pr 0.00	to 21.51		Pr 0.00		RW	Uni	DE		PT	US
9.26	Motorized pot up	OFF (0)	or On (1)		OFF (0)		RW	Bit		NC		
9.27	Motorized pot down	OFF (0)	or On (1)		OFF (0)		RW	Bit		NC		
9.28	Motorized pot reset	OFF (0)	or On (1)		OFF (0)		RW	Bit		NC		
9.29	Binary sum ones input		or On (1)		OFF (0)		RW			NC		
9.30	Binary sum twos input	OFF (0)	or On (1)		OFF (0)		RW	Bit	l	NC		
9.31	Binary sum fours input	OFF (0)	or On (1)		OFF (0)		RW	Bit		NC		
9.32	Binary sum output	0 to	o 255				RO	Uni		NC	PT	
9.33	Binary sum destination	Pr 0.00	to 21.51		Pr 0.00		RW	Uni	DE		PT	US
9.34	Binary sum offset	0 to	o 248		0		RW	Uni				US

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

	Safety Information	Introduction	Product Information	System configuration	Mechanical Installation		Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Chiboara	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	-----------------------	--------------	------------------------	-------------------------	----------------------------	--	--------------------	---------------------	-------------------	--------------	---------------------	----------	------------------------	-------------------	-------------	---------------------------

13.10 Menu 10: Status and trips

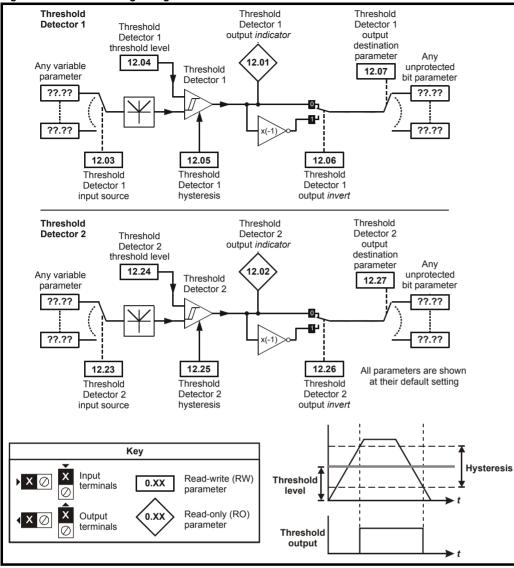
	Devenueter	F	ange	(\$)	T		Defau	ılt(⇔)		Ī		т.,			
	Parameter	OL		CL		OL	V	т	SV			Ту	pe		
10.01	Drive OK	OFF	(0) or	On (1)						RO	Bit		NC	PT	
10.02	Drive active		. ,	On (1)						RO	Bit		NC		
10.03	Zero speed	OFF	[:] (0) or	On (1)						RO	Bit		NC	PT	
10.04	Running at or below minimum speed	OFF	(0) or	On (1)						RO	Bit		NC	PT	
10.05	Below set speed	OFF	[:] (0) or	On (1)						RO	Bit		NC		
10.06	At speed			On (1)						RO	Bit		NC		
10.07	Above set speed			On (1)						RO	Bit		NC		
10.08	Load reached			On (1)						RO	Bit		NC		
10.09	Drive output is at current limit			On (1)						RO	Bit		NC		
10.10	Regenerating			On (1)						RO	Bit		NC		
10.11	5		()	On (1)						RO	Bit		NC		
	Braking resistor alarm			On (1)						RO	Bit		NC		
10.13	Direction commanded			= FWD, 1 = REV]						RO	Bit		NC		
10.14	Direction running	. ,		= FWD, 1 = REV]						RO	Bit		NC		
	Line powersupply loss			On (1)						RO	Bit		NC		
10.16	Under voltage active			On (1)						RO	Bit		NC		L
10.17	Overload alarm			On (1)						RO	Bit		NC		L
10.18	Drive over temperature alarm			On (1)						RO	Bit		NC		L
10.19	Drive warning			On (1)						RO	Bit		NC		D 2
10.20	Trip 0		0 to 23							RO	Txt		NC		
	Trip 1		0 to 23							RO	Txt		NC		PS
10.22	Trip 2		0 to 23							RO	Txt		NC		PS
10.23	Trip 3		0 to 23							RO	Txt		NC		PS
10.24			0 to 23							RO	Txt		NC		PS
10.25	Trip 5		0 to 23							RO	Txt		NC		PS
10.26	Trip 6		0 to 23							RO	Txt		NC		PS
10.27	Trip 7		0 to 23							RO	Txt		NC		PS
10.28	Trip 8		0 to 23							RO	Txt		NC		PS
10.29 10.30	Trip 9		0 to 23 0 to 40					00		R0 RW	Txt Uni		NC	PI	PS US
10.30	Full power braking time		to 150		_		-	.0		RW	Uni				US
	Full power braking period			On (1)	_		OFF	-		_			NIC		05
10.32 10.33	External trip Drive reset		. ,	On (1)	_		OFF	. ,		RW RW	Bit Bit		NC NC		
10.33	No. of auto-reset attempts	OFF	0 to 9	()				. ,		RW	Uni		NC		US
10.34		0				1	-							US	
10.35	Auto-reset delay Hold drive OK until last		0 to 25	On (1)	-		OFF			RW RW	Uni Bit				US
10.07	attempt							. ,			11.2				
10.37	Action on trip detection		0 to 1	-	_)		RW	Uni		NO		US
10.38 10.39	User trip Braking energy overload	0.0	0 to 2				(J		RW RO	Uni Uni		NC NC	PT	
	accumulator														l
			to 32,							RO			NC		
10.41 10.42	Module number for trip 0, or, Trip 0			years.days ours.minutes						RO RO	Uni				PS PS
	time: hours.minutes	0.1- 000	00	ma minuta-											
10.43	Module number for trip 1, or, Trip 1 time			urs.minutes							Uni				PS
10.44	Module number for trip 2, or, Trip 2 time		urs.minutes							Uni		NC			
10.45	Module number for trip 3, or, Trip 3 time		urs.minutes							Uni				PS	
10.46	Module number for trip 4, or, Trip 4 time			urs.minutes						RO		_			PS
10.47	Module number for trip 5, or, Trip 5 time			urs.minutes							Uni				PS PS
10.48 10.49	Module number for trip 6, or, Trip 6 time Module number for trip 7, or, Trip 7 time			urs.minutes urs.minutes						RO RO					PS PS
10.49	Module number for trip 8, or, Trip 8 time			urs.minutes						RO					PS PS
10.50	Module number for trip 8, or, Trip 8 time			urs.minutes						RO					PS PS
10.51		0 10 600	.00 1101	aro.1111110185						κU			NU	ΓΊ	гэ
RW	Read / Write RO Read only I	Jni Unipolar	Bi	Bi-polar	Bit	Bit para	meter	Txt	Text string						
		VC Not copied	RA	Rating dependent	PT	Protecte		US	User save		s	Powe	ar dev	ND C	21/0
			IVA	rating dependent	1.1	TIOLECIE	50	00	USEI Save		5	1 0 1 1 6	Ji UU1	11 3	uve

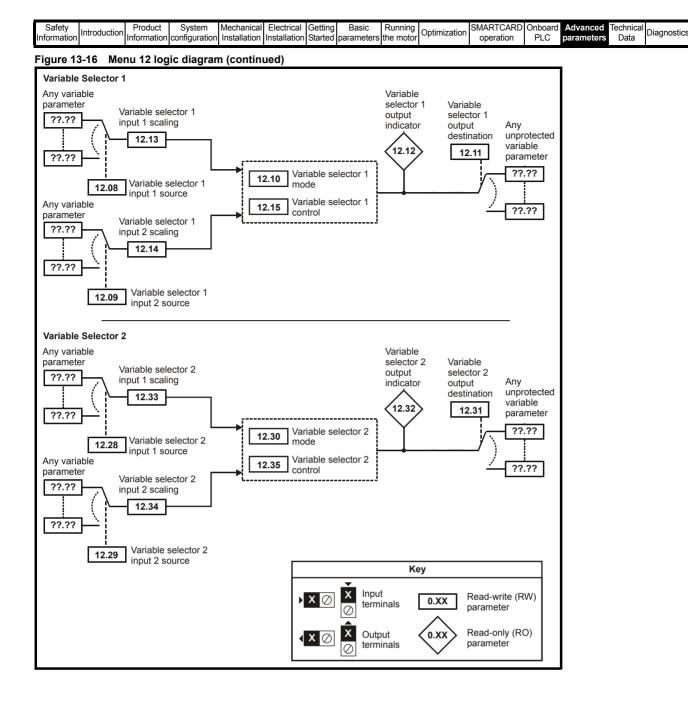
*The value given for the range is that obtained via serial communication. For the text string displayed on the drive, see Chapter 15 *Diagnostics* on page 275.

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started		Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
			•				•								

13.11 Menu 11: General drive set-up

	Parameter	Range(≎)	Default(⇔)		Туре
	Falameter	OL CL	OL VT SV		туре
11.01	Parameter 0.11 set up	Pr 1.00 to Pr 21.51	Pr 5.01 Pr 3.29	RW Uni	PT US
11.02	Parameter 0.12 set up	Pr 1.00 to Pr 21.51	Pr 4.01	RW Uni	PT US
11.03	Parameter 0.13 set up	Pr 1.00 to Pr	Pr 4.02 Pr 7.07	RW Uni	PT US
11.04	Parameter 0.14 set up	Pr 1.00 to Pr	Pr 4.11	RW Uni	PT US
11.05	Parameter 0.15 set up	Pr 1.00 to Pr	Pr 2.04	RW Uni	PT US
11.06	Parameter 0.16 set up	Pr 1.00 to Pr	Pr 8.39 Pr 2.02	RW Uni	PT US
11.07	Parameter 0.17 set up	Pr 1.00 to Pr	Pr 8.26 Pr 4.12	RW Uni	PT US
11.08	Parameter 0.18 set up	Pr 1.00 to Pr	Pr 8.29	RW Uni	PT US
11.09	Parameter 0.19 set up	Pr 1.00 to Pr	Pr 7.11	RW Uni	PT US
11.10	Parameter 0.20 set up	Pr 1.00 to Pr	Pr 7.14	RW Uni	PT US
11.11	Parameter 0.21 set up	Pr 1.00 to Pr	Pr 7.15	RW Uni	PT US
11.12	Parameter 0.22 set up	Pr 1.00 to Pr	Pr 1.10	RW Uni	PT US
11.13	Parameter 0.23 set up	Pr 1.00 to Pr	Pr 1.05	RW Uni	PT US
11.14	Parameter 0.24 set up	Pr 1.00 to Pr	Pr 1.21 Pr 1.22	RW Uni	PT US
11.15	Parameter 0.25 set up	Pr 1.00 to Pr		RW Uni	PT US
11.16 11.17	Parameter 0.26 set up Parameter 0.27 set up	Pr 1.00 to Pr Pr 1.00 to Pr 21.51	Pr 1.23 Pr 3.08 Pr 1.24 Pr 3.34	RW Uni RW Uni	PT US
11.17	Parameter 0.27 set up	Pr 1.00 to Pr 21.51 Pr 1.00 to Pr 21.51	Pr 6.13	RW Uni	PT US
11.10	Parameter 0.28 set up	Pr 1.00 to Pr 21.51 Pr 1.00 to Pr 21.51	Pr 6.13	RW Uni	PT US
11.19	Parameter 0.30 set up	Pr 1.00 to Pr 21.51	Pr 11.42	RW Uni	PT US
11.20	Parameter scaling	0.000 to 9.999	1.000	RW Uni	US
11.22	Parameter displayed at power-up	Pr 0.00 to 00.59	Pr 0.10	RW Uni	PT US
11.22	Serial address {0.37}	0 to 247	1	RW Uni	
11.24	Serial mode {0.35}	AnSI (0), rtU (1), Lcd (2)	rtU (1)	RW Txt	PT US
	Baud rate {0.36}	300 (0), 600 (1), 1200 (2), 2400 (3), 4800 (4), 9600 (5), 19200 (6), 38400 (7), 57600 (8)*, 115200 (9)* *Modbus RTU only	19200 (6)	RW Txt	US
11.26	Minimum comms transmit delay	0 to 250ms	2	RW Uni	US
11.28	Drive derivative	0 to 16		RO Uni	NC PT
11.29	Software version {0.50}	1.00 to 99.99		RO Uni	NC PT
11.30	User security code {0.34}	0 to 999	0	RW Uni	NC PT PS
11.31	User drive mode {0.48}	OPEn LP (1), CL VECt (2), SErVO (3), rEGEn (4)	OPEn LP (1) CL VECt (2) SErVO (3)	RW Txt	NC PT
11.32	Maximum Heavy Duty current {0.32}	0.00 to 9999.99A		RO Uni	NC PT
11.33	Drive voltage rating {0.31}	200 (0), 400 (1), 575 (2), 690 (3)		RO Txt	NC PT
11.34	Software sub-version	0 to 99		RO Uni	NC PT
11.35	Number of modules	0 to 10	0	RW Uni	PT US
11.36	SMARTCARD parameter data previously loaded {0.29}	0 to 999	0	RO Uni	NC PT US
11.37	SMARTCARD data number	0 to 1003	0	RW Uni	NC
11.38	SMARTCARD data type / mode	0 to 18		RO Txt	NC PT
11.39	SMARTCARD data version	0 to 9,999	0	RW Uni	NC
11.40	SMARTCARD data checksum	0 to 65,335		RO Uni	NC PT
11.41	Status mode timeout	0 to 250s	240	RW Uni	US
11.42	Parameter copying {0.30}	nonE (0), rEAd (1), Prog (2), AutO (3), boot (4)	nonE (0)	RW Txt	NC *
11.43	Load defaults	nonE (0), Eur (1), USA (2)	nonE (0)	RW Txt	NC
11.44	Security status {0.49}	L1 (0), L2 (1), Loc (2)		RW Txt	PT US
11.45	Select motor 2 parameters	OFF (0) or On (1)	OFF (0)	RW Bit	US
11.46	Defaults previously loaded	0 to 2000		RO Uni	NC PT US
11.47	Drive Onboard PLC program enable	Halt program (0) Run program: out of range = clip (1) Run program: out of range = trip (2)	Run program: out of range = trip (2)	RW Uni	US
11.48	Drive Onboard PLC program status	-128 to +127		RO Bi	NC PT
11.49	Drive Onboard PLC programming events	0 to 65,535		RO Uni	NC PT PS
11.50	Drive Onboard PLC program average scan time	0 to 65,535 ms		RO Uni	NC PT
11.51	Drive Onboard PLC program first run	OFF (0) or On (1)		RO Bit	NC PT
* Modo	s 1 and 2 are not user saved, Mode	a 0, 2 and 4 are user seved			


 * Modes 1 and 2 are not user saved, Modes 0, 3 and 4 are user saved


RV	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety	lature du cettie a	Product	System	Mechanical	Electrical	Getting	Basic	Running	Ontintination	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

13.12 Menu 12: Threshold detectors, variable selectors and brake control function

Figure 13-15 Menu 12 logic diagram

UL Listing

Informatio

Untroduction Line United and Line				Onboard Advanced recrime	
---	--	--	--	--------------------------	--

The control terminal relay can be selected as an output to release a brake. If a drive is set up in this manner and a drive replacement takes place, prior to programming the drive on initial power up, the brake may be released.

When drive terminals are programmed to non default settings the result of incorrect or delayed programming must be considered. The use of warming a Smartcard in boot mode or an SM-Applications module can ensure drive parameters are immediately programmed to avoid this situation.

Figure 13-17 Open-loop brake function

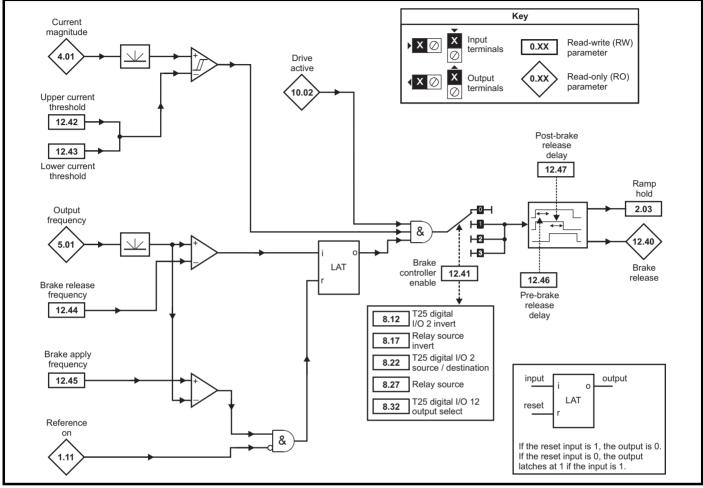
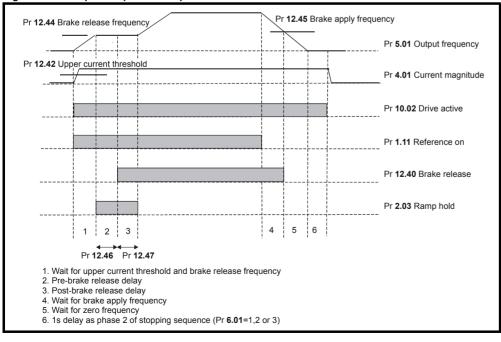
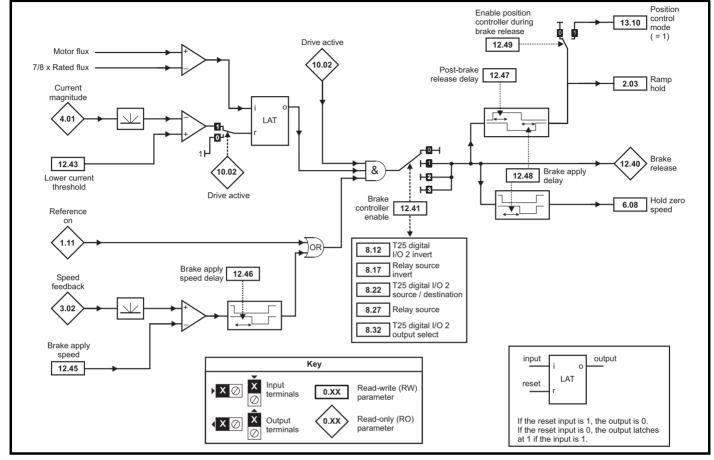
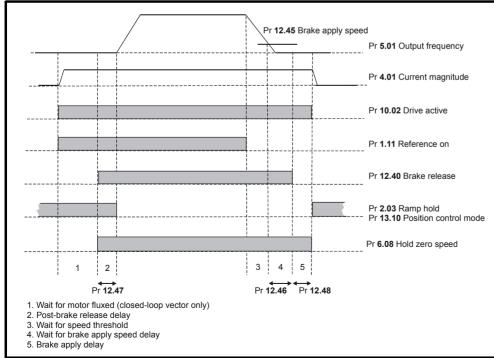



Figure 13-18 Open-loop brake sequence



information installation installation installation statted parameters the motor operation FEC parameters bata information	Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
---	-----------------------	--------------	------------------------	-------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------


The control terminal relay can be selected as an output to release a brake. If a drive is set up in this manner and a drive replacement takes place, prior to programming the drive on initial power up, the brake may be released.

When drive terminals are programmed to non default settings the result of incorrect or delayed programming must be considered. The use of a Smartcard in boot mode or an SM-Applications module can ensure drive parameters are immediately programmed to avoid this situation.

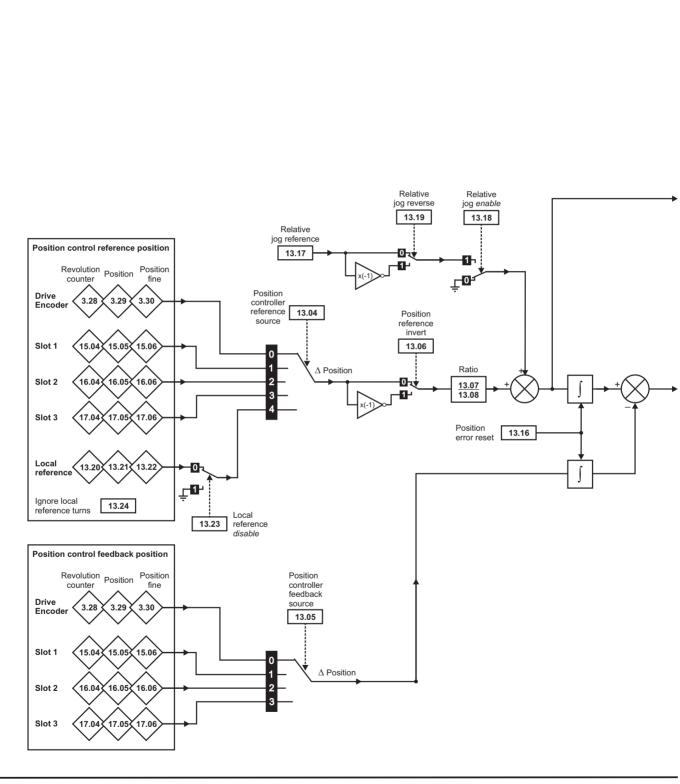
Figure 13-20 Closed-loop brake sequence

Safety Information	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data		UL Listing Information
-----------------------	------------------------	-------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	------------------------	-------------------	--	---------------------------

The control terminal relay can be selected as an output to release a brake. If a drive is set up in this manner and a drive replacement takes place, prior to programming the drive on initial power up, the brake may be released.

When drive terminals are programmed to non default settings the result of incorrect or delayed programming must be considered. The use of warning a Smartcard in boot mode or an SM-Applications module can ensure drive parameters are immediately programmed to avoid this situation.

	Parameter	Rang	Je(\$)		Default(⇔)			Ту	no		
	Farameter	OL	CL	OL	VT SV			ij	he		
12.01	Threshold detector 1 output	.,	or On (1)			RO	Bit		NC		
12.02	Threshold detector 2 output	()	or On (1)			RO	Bit		NC		
12.03	Threshold detector 1 source		to 21.51		Pr 0.00	RW	Uni			PT	
12.04	Threshold detector 1 level	0.00 to 1	00.00 %		0.00	RW	Uni				US
12.05	Threshold detector 1 hysteresis	0.00 to 2	25.00 %		0.00	RW	Uni				US
12.06	Threshold detector 1 output invert	OFF (0)	or On (1)		OFF (0)	RW	Bit				US
12.07	Threshold detector 1 destination	Pr 0.00	to 21.51		Pr 0.00	RW	Uni	DE		PT	US
12.08	Variable selector 1 source 1	Pr 0.00	to 21.51		Pr 0.00	RW	Uni			PT	US
12.09	Variable selector 1 source 2	Pr 0.00	to 21.51		Pr 0.00	RW	Uni			PT	US
12.10	Variable selector 1 mode	subtract (3), multi time constant (6), linea powers (9), secti	ect input 2 (1), add (2), ply (4), divide (5), r ramp (7), modulus (8), onal control (10), er monitor (11)	S	Select input 1 (0)	RW	Uni				US
12.11	Variable selector 1 destination	Pr 0.00	to 21.51		Pr 0.00	RW	Uni	DE		PT	US
12.12	Variable selector 1 output	±100	.00 %			RO	Bi		NC	PT	
12.13	Variable selector 1 source 1 scaling	±4.	000		1.000	RW	Bi				US
12.14	Variable selector 1 source 2 scaling	±4.	000		1.000	RW	Bi				US
12.15	Variable selector 1 control	0.00 to 1	100.00 s		0.00	RW	Uni				US
12.23	Threshold detector 2 source	Pr 0.00	to 21.51		Pr 0.00	RW	Uni			PT	US
12.24	Threshold detector 2 level	0.00 to 1	00.00 %		0.00	RW	Uni				US
12.25	Threshold detector 2 hysteresis	0.00 to 2	25.00 %		0.00	RW	Uni				US
12.26	Threshold detector 2 output invert	OFF (0)	or On (1)		OFF (0)	RW	Bit				US
12.27	Threshold detector 2 destination	Pr 0.00	to 21.51		Pr 0.00	RW	Uni	DE		PT	US
12.28	Variable selector 2 source 1	Pr 0.00	to 21.51		Pr 0.00	RW	Uni			PT	US
12.29	Variable selector 2 source 2	Pr 0.00	to 21.51		Pr 0.00	RW	Uni			PT	US
12.30	Variable selector 2 mode	subtract (3), multi time constant (6), linea powers (9), secti	ect input 2 (1), add (2), ply (4), divide (5), r ramp (7), modulus (8), onal control (10), er monitor (11)	s	Select input 1 (0)	RW	Uni				US
12.31	Variable selector 2 destination	Pr 0.00	to 21.51		Pr 0.00	RW	Uni	DE		PT	US
12.32	Variable selector 2 output	±100	.00 %			RO	Bi		NC	PT	
12.33	Variable selector 2 source 1 scaling	±4.	000		1.000	RW	Bi				US
12.34	Variable selector 2 source 2 scaling		000		1.000	RW	Bi				US
12.35	Variable selector 2 control		100.00 s		0.00		Uni				US
12.40	Brake release indicator	OFF (0)	or On (1)				Bit		NC	PT	
12.41	Brake controller enable	dis (0), rEL (1), d	I IO (2), USEr (3)		dis (0)		Txt				US
12.42	Upper current threshold	0 to 200 %		50		RW	Uni				US
12.43	Lower current threshold	0 to 2	200 %		10	RW	Uni				US
12.44	Brake release frequency	0.0 to 20.0 Hz		1.0		RW	Uni				US
12.45	Brake apply frequency / speed	0.0 to 20.0 Hz	0 to 200 rpm	2.0	5	RW	Bit				US
12.46	OL> Pre-brake release delay CL> Brake apply speed delay	0.0 to	25.0 s		1.0	RW	Uni				US
12.47	Post brake release delay	0.0 to	25.0 s		1.0	RW	Uni	1			US
12.48	Brake apply delay	0.010	0.0 to 25.0 s		1.0		Uni		-		US
	Enable position controller							1	-		
12.49	during brake release		OFF (0) or On (1)		OFF (0)	RW	Bit				US


RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

	-					_								-	
Safety		Product	Svstem	Mechanical	Electrical	Gettina	Basic	Runnina		SMARTCARD	Onboard	Advanced	Technical		UL Listina
ounory	Introduction	TTOQUOL	Gyotom	meenamoar	Licothour	Cotting	Duolo	rtanning	Optimization		onbourd	Aavanooa		Diagnostics	
Information	maoaaoaon	Information	configuration	Installation	Installation	Started	parameters	the motor	optimization	operation	PLC	parameters	Data	Diagnootioo	Information
			oomgaraaon	motanation	motanation	0101100	paramotoro			oporation	. 20	paramotoro	Data		

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical		UL Listing
Informatio	1 IIIII OUUCIIOII	Information	configuration	Installation	Installation	Started		the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

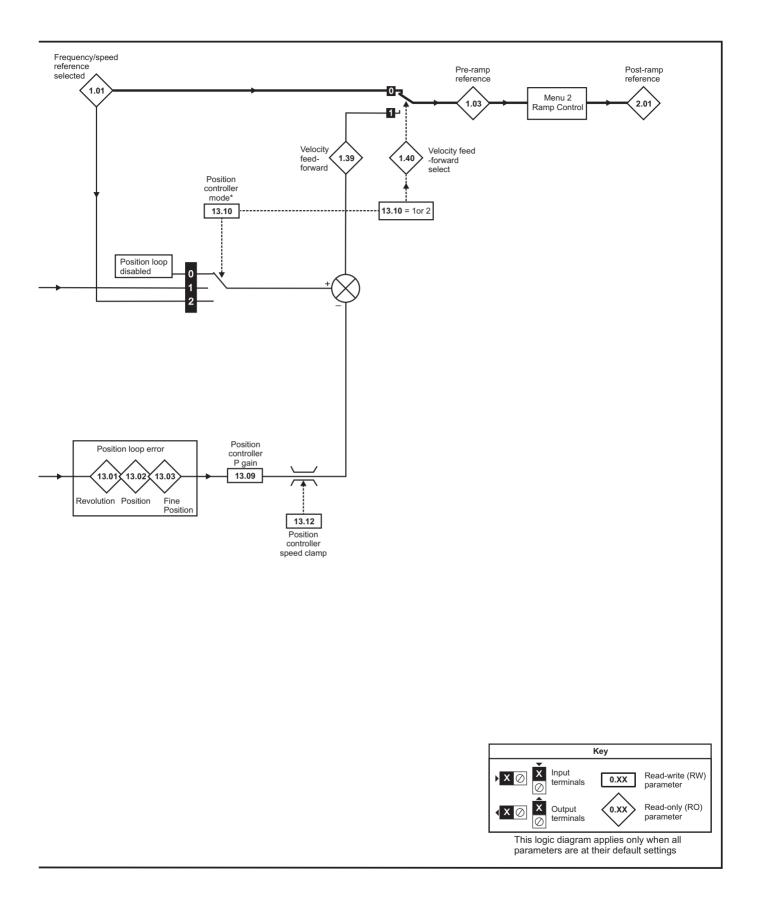
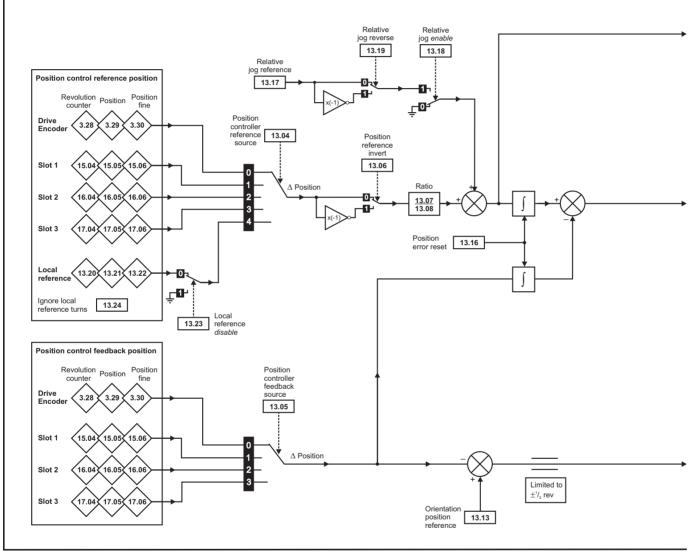

13.13 Menu 13: Position control

Figure 13-21 Menu 13 Open-loop logic diagram


^{*}For more information, refer to section 13.21.9 Position modes on page 261.

Safety Information	Introduction	Product Information		Mechanical Installation	Electrical Installation	Getting Started		Running the motor	Optimization	SMARTCARD operation	DI O	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
intornation		internation	oornigaration	motaliation	inotaliation	otartea	parametero			operation	1 20	paramotoro	Dulu		monnation

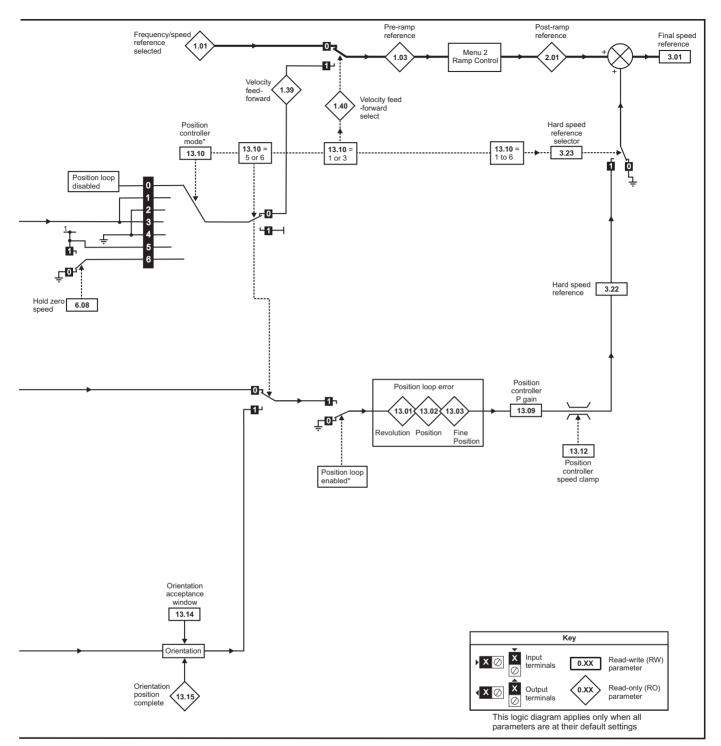

Information Information Information Configuration Installation Installation Started parameters the motor Optimization operation PLC parameters Data Diegnostics Information	Safety Information	tion Product Information	System configuration	Mechanical Installation		Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
---	-----------------------	-----------------------------	-------------------------	----------------------------	--	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

Figure 13-22 Menu 13 Closed-loop logic diagram

*For more information, refer to section 13.21.9 Position modes on page 261.

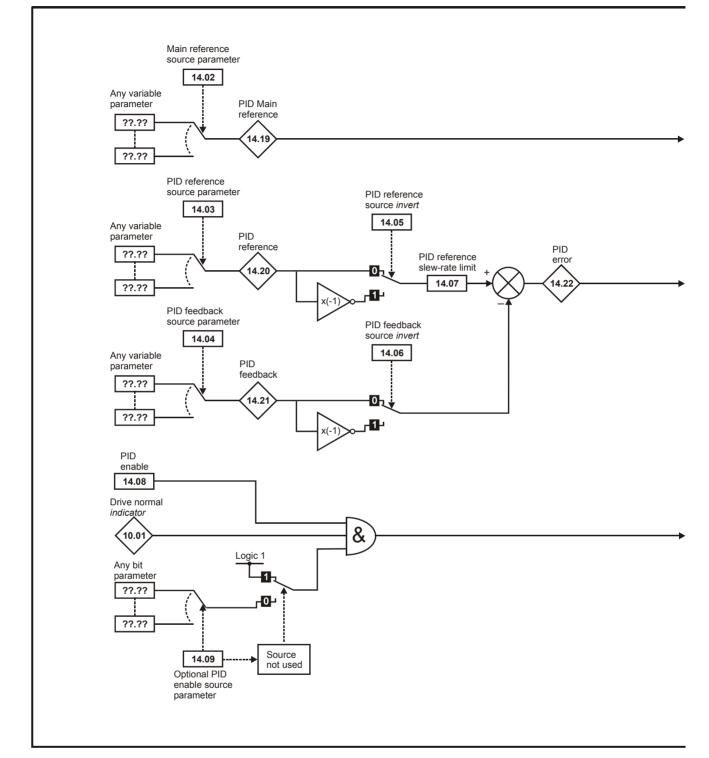
Safety	Introduction	Product	System	Mechanical	Electrical	Getting		Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	optimization	operation	PLC	parameters		Blaghoodoo	Information

* The position controller is disabled and the error integrator is also reset under the following conditions:

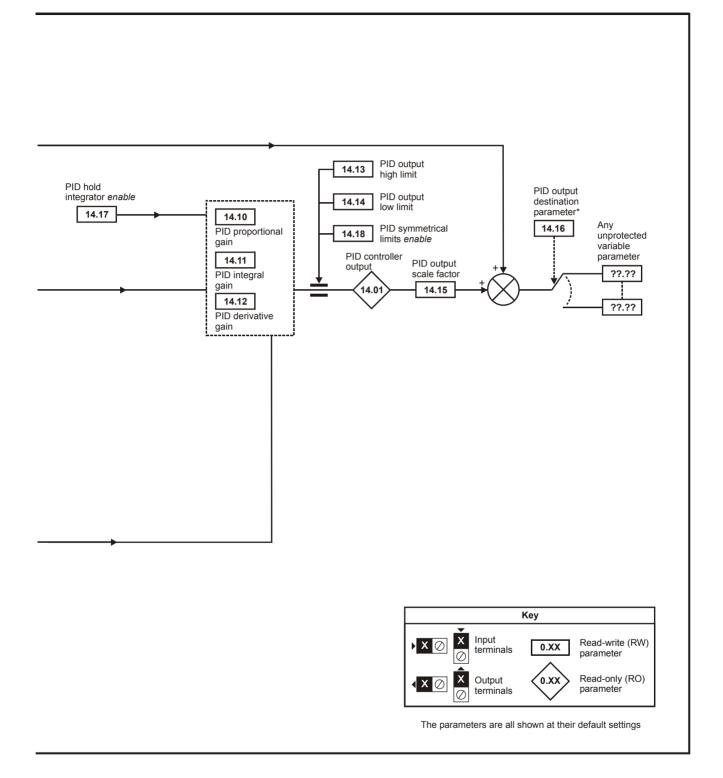
- 1. If the drive is disabled (i.e. inhibited, ready or tripped)
- 2. If the position controller mode (Pr **13.10**) is changed. The position controller is disabled transiently to reset the error integrator.
- 3. The absolute mode parameter (Pr **13.11**) is changed. The position controller is disabled transiently to reset the error integrator.
- 4. One of the position sources is invalid.
- 5. The position feedback initialised parameter (Pr 3.48) is zero.

Safety Informatio	n Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	PLC	Advanced parameters	Data	Diagnostics	UL Listing Information
internatio		internation	ooringaration	motanation	motanation	otartou	parametere			oporadori	. 20	paramotoro	Bata		

	Parameter	Ran	ge(\$)	C)efault(⊏	>)			Тур	.		Π
	Falanielei	OL	CL	OL	VT	SV			тур	Je		
13.01	Revolutions error	-32,768	to +32,767				RO	Bi		NC	PT	_
13.02	Position error	-32,768	to +32,767				RO	Uni		NC	PT	
13.03	Fine position error	-32,768	to +32,767				RO	Uni		NC	PT	
13.04	Position controller reference source	Loc	Slot2 (2), Slot3 (3), AL (4)		drv (0)		RW	Uni				US
13.05	Position controller feedback source	drv (0), Slot1 (1),	Slot2 (2), Slot3 (3)		drv (0)		RW	Uni				US
13.06	Position reference invert	OFF (0) or On (1)		OFF (0)		RW	Bit				US
13.07	Ratio numerator	0.000	to 4.000		1.000		RW	Uni				US
13.08	Ratio denominator	0.000	to 1.000		1.000		RW	Uni				US
13.09	Position controller P gain	0.00 to 100	.00 rad s ⁻¹ / _{rad}		25.00		RW	Uni				US
13.10	Position controller mode	Position controller disabled (0) Rigid position control - feed fwd (1) Rigid position control (2)	Position controller disabled (0) Rigid position control - feed fwd (1) Rigid position control (2) Non-rigid position control - feed fwd (3) Non-rigid position control (4) Orientation on stop (5) Orientation on stop and when drive enabled (6)	Position c	ontroller di	isabled (0)	RW	Uni				US
-	Absolute mode enable	OFF (0) or On (1)		OFF (0)		RW	Bit				US
13.12	Position controller speed clamp	0 t	o 250		150		RW	Uni				US
13.13	Orientation position reference		0 to 65,535		(0	RW	Uni				US
13.14	Orientation acceptance window		0 to 4,096		2	56	RW	Uni				US
13.15	Orientation position complete		OFF (0) or On (1)				RO	Bit		NC	PT	
13.16	Position error reset	OFF (0) or On (1)		OFF (0)		RW	Bit		NC		
13.17	Relative jog reference	0.0 to 4	000.0 rpm		0.0		RW	Uni		NC		
13.18	Relative jog enable	OFF (0)) or On (1)		OFF (0)		RW	Bit		NC		
13.19	Relative jog reverse	OFF (0)) or On (1)		OFF (0)		RW	Bit		NC		
13.20	Local reference turns	0 to	65,535		0		RW	Uni		NC		
13.21	Local reference position	0 to	65,535		0		RW	Uni		NC		
13.22	Local reference fine position	0 to	65,535		0		RW	Uni		NC		
13.23	Local reference disable	OFF (0)) or On (1)		OFF (0)		RW	Bit		NC		
13.24	Ignore local reference turns	OFF (0)) or On (1)		OFF (0)		RW	Bit				US


RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety		Product	System	Mechanical	Electrical	Gettina	Basic	Runnina		SMARTCARD	Onhoard	Advanced	Technical		UL Listina
Information	Introduction	Information	configuration	Installation			parameters		Optimization	operation	PLC	parameters	Data	Diagnostics	Information

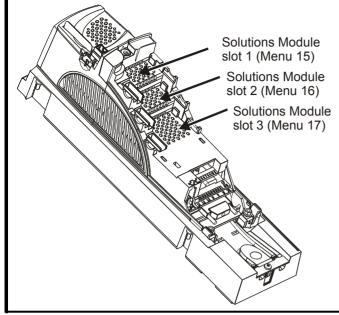

S	Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Info	ormation	muouucion	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

13.14 Menu 14: User PID controller

Figure 13-23 Menu 14 Logic diagram

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started		Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
iniomation		iniomation	conliguration	Installation	Installation	Starteu	parameters	the motor		operation	PLC	parameters	Dala	-	mormation

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
			-				-								


	Parameter	Ran	ge(\$)		Default(⇔)		Туре					
	Falameter	OL	CL	OL	VT	sv			ij	he		
14.01	PID control output	±100	.00 %				RO	Bi		NC	PT	
14.02	PID main reference source	Pr 0.00	to 21.51		Pr 0.00		RW	Uni	1		PT	US
14.03	PID reference source	Pr 0.00	to 21.51		Pr 0.00		RW	Uni	1		PT	US
14.04	PID feedback source	Pr 0.00	to 21.51		Pr 0.00		RW	Uni	1		PT	US
14.05	PID reference source invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
14.06	PID feedback source invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
14.07	PID reference slew-rate limit	0.0 to 3	3,200.0 s		0.0		RW	Uni				US
14.08	PID enable	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
14.09	PID optional enable source	Pr 0.00	to 21.51		Pr 0.00		RW	Uni	1		PT	US
14.10	PID proportional gain	0.000	to 4.000		1.000							US
14.11	PID integral gain	0.000	to 4.000		0.500		RW	Uni	1			US
14.12	PID derivative gain	0.000	to 4.000		0.000		RW	Uni	1			US
14.13	PID upper limit	0.00 to	100.00 %		100.00		RW	Uni				US
14.14	PID lower limit	±100	.00 %		-100.00		RW	Bi				US
14.15	PID output scaling factor	0.000	to 4.000		1.000		RW	Uni	1			US
14.16	PID output destination	Pr 0.00	to 21.51		Pr 0.00		RW	Uni	i DE		PT	US
14.17	PID hold integrator enable	OFF (0)	or On (1)		OFF (0)		RW	Bit		NC		
14.18	PID symmetrical limits enable	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
14.19	PID main reference	±100	.00 %				RO	Bi		NC	PT	
14.20	PID reference	±100	.00 %				RO	Bi		NC	PT	
14.21	PID feedback	±100	.00 %							NC	PT	
14.22	PID error	±100	.00 %				RO	Bi		NC	PT	

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety Information	Introduction	Product Information	-)	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
internation			ooringaraaori	motanation	motanation	otartou	paramotoro			operation	. 20	paramotoro	Data		mondaon

Menus 15, 16 and 17: Solutions Module set-up Location of Solutions Module slots and their corresponding menu numbers 13.15

Figure 13-24

13.15.1 Parameters common to all categories

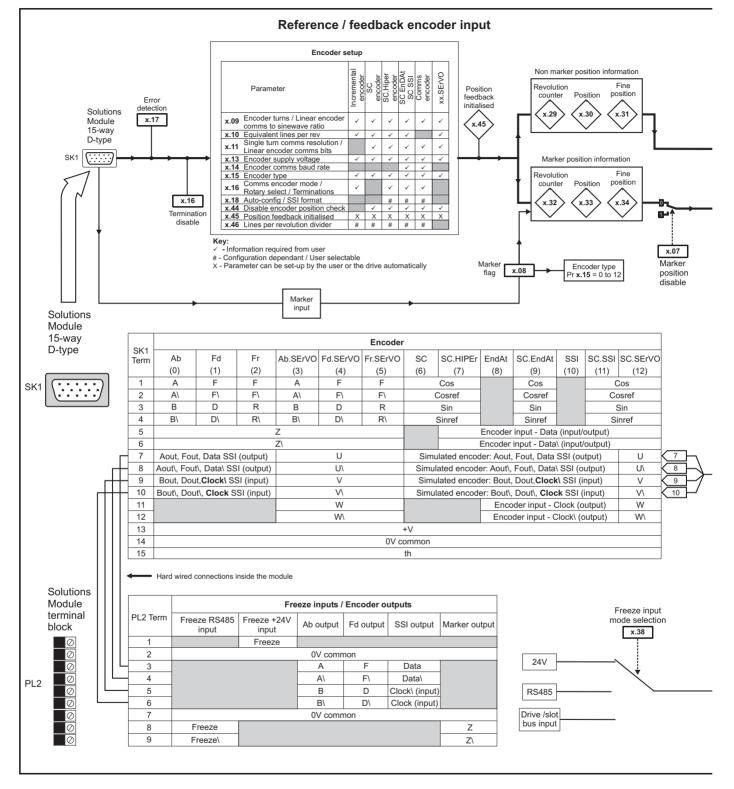
	Parameter	Range(≎)	Default(⇔)		Туре				
x.01	Solutions Module ID	0 to 599		RO	Uni			PT	US
x.02	Solutions Module software version	0.00 to 99.99		RO	Uni		NC	PT	
x.50	Solutions Module error status	0 to 255		RO	Uni		NC	PT	
x.51	Solutions Module software sub-version	0 to 99		RO	Uni		NC	PT	

The Solutions Module ID indicates the type of module that is installed in the corresponding slot.

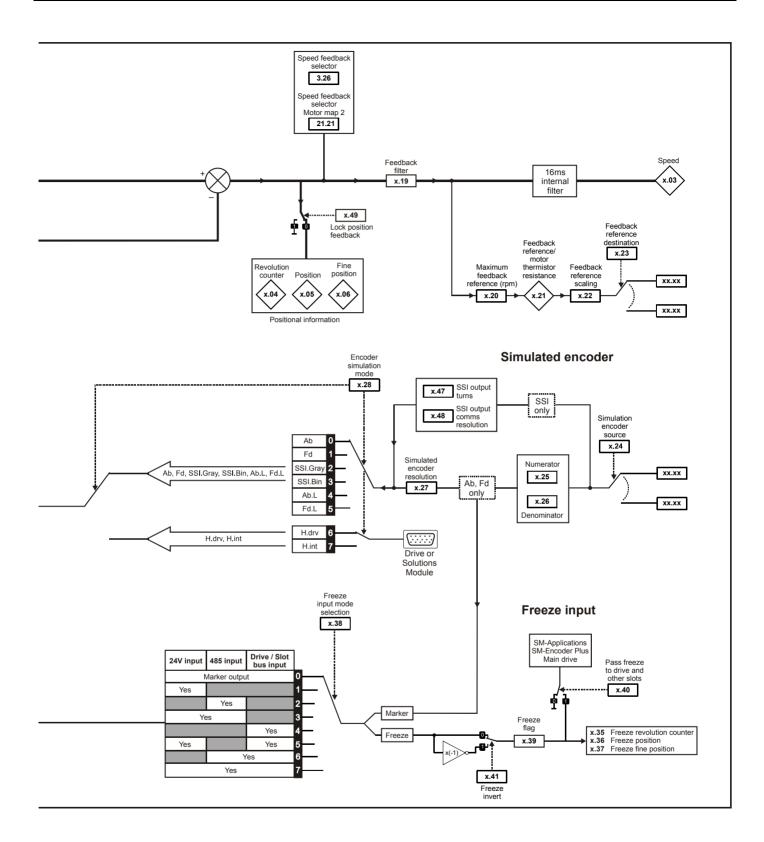
Solutions Module ID	Module	Category				
0	No module installed					
101	SM-Resolver					
102	SM-Universal Encoder Plus	Feedback				
104	SM-Encoder Plus /					
	SM-Encoder Output Plus					
201	SM-I/O Plus					
203	SM-I/O Timer					
204	SM-I/O PELV	Automation				
205	SM-I/O 24V Protected	(I/O Expansion)				
206	SM-I/O 120V					
207	SM-I/O Lite					
208	SM-I/O 32					
301	SM-Applications					
302	SM-Applications Lite	Automation				
303	SM-EZMotion	(Applications)				
304	SM-Applications Plus					
401	SM-LON					
403	SM-PROFIBUS-DP					
404	SM-INTERBUS					
406	SM-CAN	Fieldbus				
407	SM-DeviceNet					
408	SM-CANopen					
409	SM-SERCOS					
410	SM-Ethernet					
501	SM-SLM	SLM				

Solutions Module software

Most Solutions Modules contain software. The software version of the module can be checked by looking at Pr x.02 and Pr x.51.


The software version takes the form of zz.yy.xx, where Pr x.02 displays zz.yy and Pr x.51 displays xx. I.e. for software version 01.01.00, Pr x.02 would display 1.01 and Pr x.51 would display 0

The SM-Resolver, SM-Encoder Plus and SM-I/O Plus modules do not contain any software, so Pr x.02 and Pr x.51 either show 0 (software V01.07.01 and earlier) or the parameters do not appear (software V01.08.00 and later).


Safety	Introduction	Product	System	Mechanical		Getting	Basic	Running	()ntimization	SMARTCARD	Onboard	Advanced		Diagnostics	UL Listing
Information	introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	opunization	operation	PLC	parameters	Data	Diagnootioo	Information

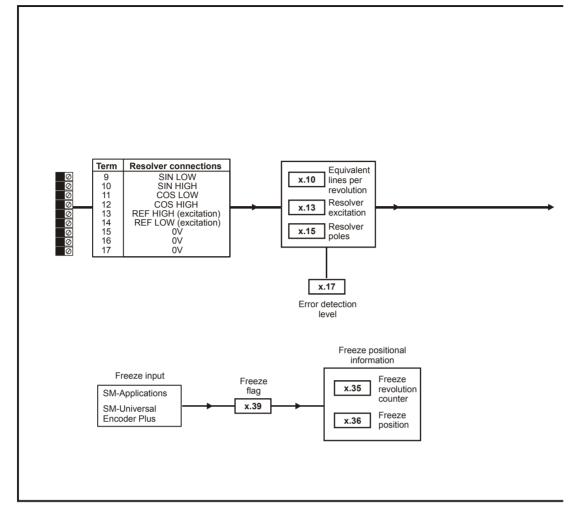
13.15.2 Feedback module category

Figure 13-25 SM-Universal Encoder Plus logic diagram

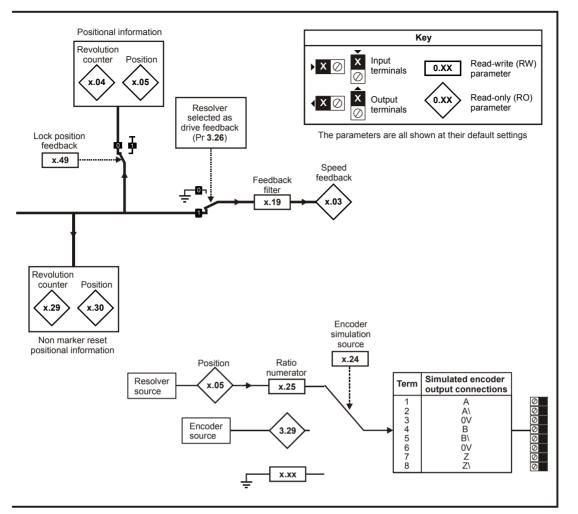
_	0.4.4			<u> </u>		E 1 1 1	0.11		- ·			<u>.</u>		-	1	
	Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical		UL Listing
In	formation	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information
				0												

Safety Information	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	-------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

SM-Universal Encoder Plus parameters


	Parameter	Range	(\$)	I	Defau	ılt(⇔)			Ту	ре		
x.01	Solutions Module ID	0 to 5	99		10)2	RO	Uni			PT	US
x.02	Solutions Module software version	0.00 to 9	9.99				RO	Uni		NC		
x.03	Speed	±40,000.0) rpm				RO	Bi		NC		
x.04	Revolution counter	0 to 65,535 re					RO	Uni		NC		
x.05	Position	0 to 65,535 (1/2 ¹⁶ th	s of a revolution)				RO	Uni		NC		
x.06	Fine position	0 to 65,535 (1/2 ³² nd	s of a revolution)				RO	Uni	FI	NC	PT	
x.07	Marker position reset disable	OFF (0) or			OFF	- (0)	RW	Bit				US
x.08	Marker flag	OFF (0) or	On (1)		OFF	F (0)	RW	Bit		NC		
x.09	Encoder turns/ linear encoder comms	0 to 16	bits		1	6	RW	Uni				US
× 10	to sine wave ratio	0 to 50.	000	_	40	06	RW	Uni				US
x.10	Equivalent lines per revolution Single turn comms bits/ linear encoder	0 to 50,	000	_			RW	Uni				
x.11	comms bits	0 to 32	bits		()	RW	Uni				US
x.12	Motor thermistor check enable	OFF (0) or	On (1)		OFF	- (0)	RW	Bit				US
x.13	Encoder supply voltage	5V (0), 8V (1)	. ,		5V		RW	Uni				US
x.14	Encoder comms baud rate	100 (0), 200 (1), 300 (2			200	(2)	RW	Txt				US
X. 14	Encoder commis badd fate	1,000 (5), 1,500			300	(2)	RVV	TXL				03
x.15	Encoder type	Ab (0), Fd (1), Fr (2) Fd.SErVO (4), Fr.SE SC.HiPEr (7), EndAt SSI (10), SC.SSI (11	rVO (5), SC (6), (8), SC.EndAt (9),		Ab	(0)	RW	Uni				US
x.16	Rotary encoder select/ comms only encoder mode/ terminations	0 to 2	2		1	1	RW	Uni				US
x.17	Error detection level	0 to 1	7		1	1	RW	Uni				US
	Auto configuration/ SSI binary format			-								
x.18	select	OFF (0) or	On (1)		OFF	- (0)	RW	Bit				US
x.19	Feedback filter		0 to 5 (0 to 16 ms)		()	RW	Uni				US
x.20	Maximum feedback reference	0.0 to 40,00	0.0 rpm		150	0.0	RW	Uni				US
x.21	Feedback reference/ motor thermistor resistance	±100.0					RO	Bi		NC	PT	
x.22	Feedback reference scaling	0.000 to 4			1.0		RW	Uni			DT	US
x.23	Feedback reference destination	Pr 0.00 to F			Pr 0		RW		DE		PT	US
x.24	Encoder simulation source	Pr 0.00 to F		_	Pr 0		RW				PT	US
x.25 x.26	Encoder simulation ratio numerator	0.0000 to 3		_	0.2		RW	Uni				US US
x.26 x.27	Encoder simulation ratio denominator Encoder simulation resolution select	OFF (0) or		_	0FF		RW	Uni Bit		NC		05
		Ab (0), Fd (1), SSI.Gra		_		. ,				NC		
x.28	Encoder simulation mode	Ab.L (4), Fd.L (5), H			Ab	(0)	RW	Txt				US
x.29	Non-marker reset revolution counter	0 to 65,535 re					RO	Uni		NC	ΡT	
x.30	Non-marker reset position	0 to 65,535 (1/2 ¹⁶ th	s of a revolution)				RO	Uni		NC	PT	
x.31	Non-marker reset fine position	0 to 65,535 (1/2 ³² nd					RO	Uni		NC	PT	
x.32	Marker revolution counter	0 to 65,535 re					RO	Uni		NC	PT	—
x.33	Marker position	0 to 65,535 (1/2 ¹⁶ th	s of a revolution)				RO	Uni		NC	PT	<u> </u>
	Marker fine position	0 to 65,535 (1/2 ³² nd					RO	Uni		NC		
	Freeze revolution counter	0 to 65,535 re					RO			NC		
x.36	Freeze position	0 to 65,535 (1/2 ¹⁶ ths		_			RO	Uni		NC		
x.37	Freeze fine position			_			RO			NC		—
X.3/	Freeze line position	0 to 65,535 (1/2 ³² nd Bit 0 (LSB) =					RU	011		NC	FI	
x.38	Freeze input mode selection	Bit 0 (LSB) = Bit 1 = EIA4 Bit 2 (MSB) = From anot	85 input		1	1	RW	Uni				US
x.39	Freeze flag	OFF (0) or			OFF	. ,	RW	Bit		NC		
x.40	Pass freeze to drive and other slots	OFF (0) or	()		OFF	()	RW			NC		US
x.41	Freeze invert	OFF (0) or	On (1)		OFF	= (0)	RW	Bit				US
x.42	Encoder comms transmit register/ Sin signal value	0 to 65,	535		C)	RW	Uni		NC		
x.43	Encoder comms receive register/ Cos signal value	0 to 65,	535		()	RW	Uni		NC		
x.44	Disable encoder position check	OFF (0) or	On (1)		OFF	(0)	RW	Bit		NC		┝──┦
x.45	Position feedback initialised	OFF (0) or			011	(0)	RO	Bit		NC	PT	
x.46	Lines per revolution divider	1 to 10	()		1	1	RW	Uni				US
	SSI output turns	0 to 16		1	1		RW		-			US
x.48	SSI output comms resolution	0 to 32)	RW	Uni				US
x.49	Lock position feedback	OFF (0) or		1	OFF		RW					<u> </u>
x.50	Solutions Module error status*	0 to 2					RO	Uni		NC		
x.51	Solutions Module software sub-version	0 to 9	9				RO	Uni		NC	PT	
RW	Read / Write RO Read only U	ni Unipolar Bi	Bi-polar	Bit	Bit parameter	Txt Text string						
	iltered DE Destination N		Rating dependent	PT	Protected	US User save		'S	Pow	er dov	ND C	21/2
		A NOL COPICU NA	rating dependent		10100100		Г	5				uv0

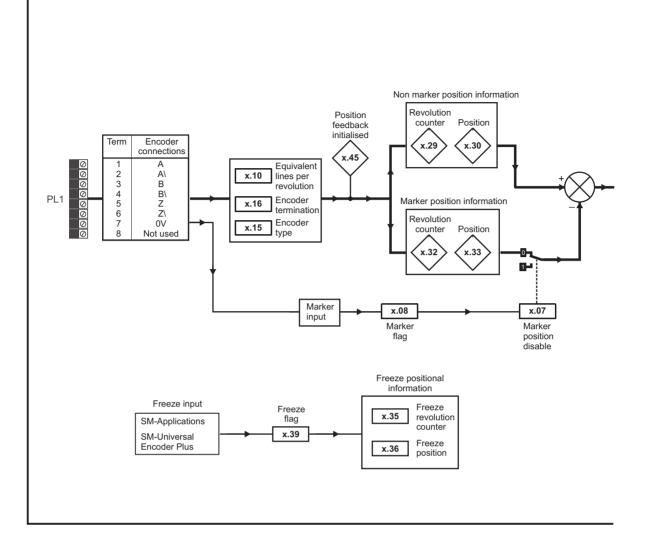
*See trip SLX.Er, Feedback module category on page 284.


	-					_								-	
Safety		Product	Svstem	Mechanical	Electrical	Gettina	Basic	Runnina		SMARTCARD	Onboard	Advanced	Technical		UL Listina
ounory	Introduction	TTOQUOL	Gyotom	meenamoar	Licothour	Cotting	Duolo	rtanning	Optimization	0111/07/07/07/07	onbourd	Auvanoou		Diagnostics	
Information	maoaaoaon	Information	configuration	Installation	Installation	Started	parameters	the motor	optimization	operation	PLC	parameters	Data	Diagnootioo	Information
			oomgaraaon	motanation	motanation	0101100	paramotoro			oporation	. 20	paramotoro	Data		

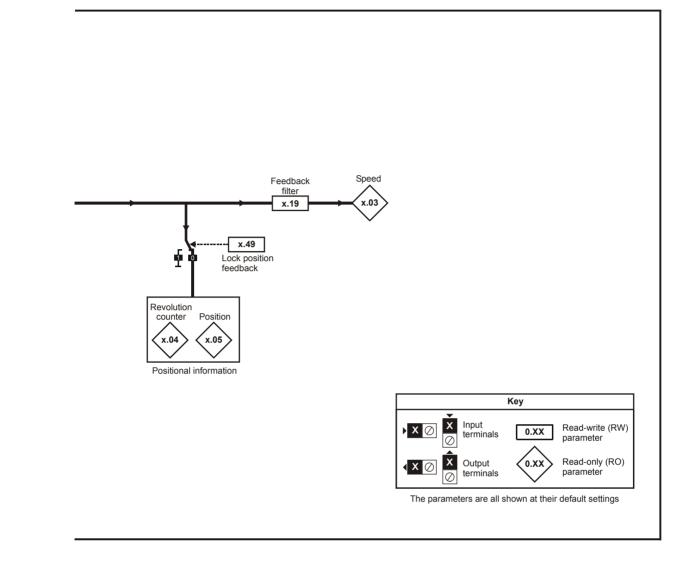
Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
			j				p								

Figure 13-26 SM-Resolver logic diagram

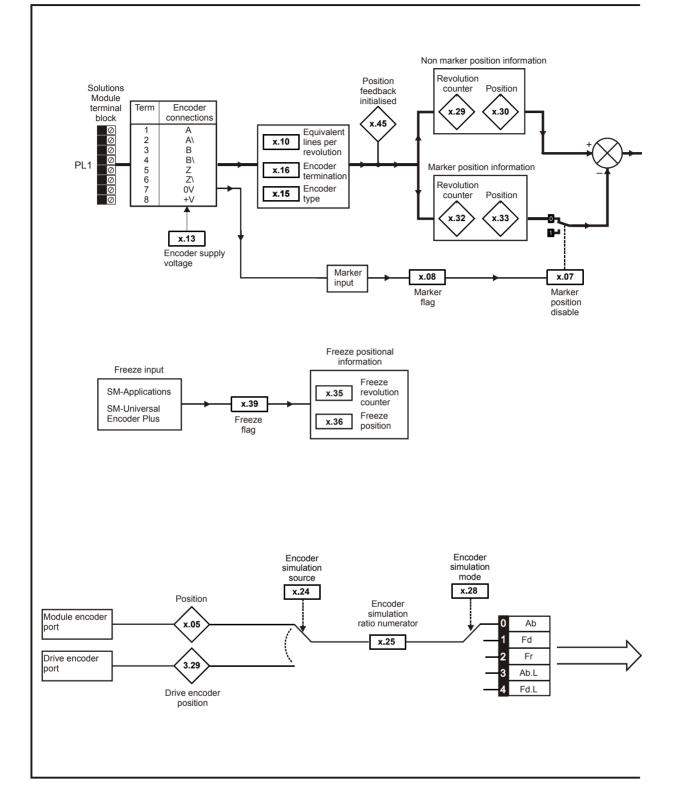
							-		-		_				
Safety		Product	System	Mechanical	Electrical	Gettina	Basic	Runnina	A <i>ii</i> · <i>· ii</i>	SMARTCARD	Onboard	Advanced	Technical	D ¹ <i>U</i>	UL Listina
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information
			j				p								


SM-Resolver parameters

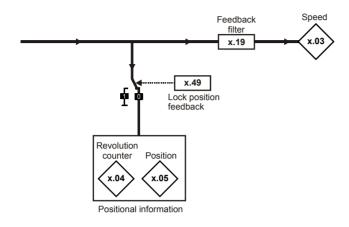
	Pa	ramet	er		I	Range	(①)		Defa	ult(⇔)	1			Ту	ре		
x.01	Solutions Mo	odule II	D			0 to 5	99		1	01		RO	Uni			ΡT	US
x.03	Speed				±4	0,000.	0 rpm					RO	Bi	FI	NC	PT	
x.04	Revolution of	ounter			0 to 6	5,535 re	evolutions					RO	Uni	FI	NC	PT	
x.05	Position				0 to 65,535	1/2 ¹⁶ th	s of a revolution					RO	Uni	FI	NC	PT	
x.10	Equivalent li	nes pe	r revolution) to 50,	000		40	096		RW	Uni				US
x.13	Resolver exe	citation			3:1	(0), 2:1	(1 or 2)		3:1	1 (0)		RW	Uni				US
x.15	Resolver pol	les			8	oole (3			2 pc	ole (0)		RW	Uni				US
x.17	Error detecti	on leve	el	E	Bit 0 (LSB) = Wire Bit 1 = Phase erro Bit 2 (MSB) = SSI /alue is binary su	or detec power				1		RW	Uni				US
x.19	Feedback fil	ter			0 (0), 1 (1), 2 (2), 4 (3), 8 (4), 16 (5) ms			0		RW	Txt				US
x.24	Encoder sim	ulation	source		Pr 0	. 00 to F	Pr 21.51		Pr	0.00		RW	Uni			PT	US
x.25	Encoder sim	ulation	ratio numerato	or	0.0	000 to	3.0000		0	.25		RW	Uni				US
x.29	Non-marker	reset r	evolution count	er	0 to 6	5,535 re	evolutions					RO	Uni		NC	PT	
x.30	Non-marker	reset p	osition		0 to 65,535	1/2 ¹⁶ th	s of a revolution					RO	Uni		NC	PT	
x.35	Freeze revo	lution c	ounter		0 to 6	5,535 re	evolutions					RO	Uni		NC	PT	
x.36	Freeze posit	ion			0 to 65,535	1/2 ¹⁶ th	s of a revolution					RO	Uni		NC	PT	
x.39	Freeze flag				OF	= (0) or	On (1)		OF	F (0)		RW	Bit		NC		
x.45	Position feed	dback i	nitialised		OF	= (0) or	On (1)					RO	Bit		NC	PT	
x.49	Lock position	n feedb	back		OF	= (0) or	On (1)		OF	F (0)		RW	Bit		NC		
x.50	Solutions Mo	odule e	rror status*			0 to 2	55					RO	Uni		NC	PT	
RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string						
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	F	'S	Pow	er dov	wn s	ave

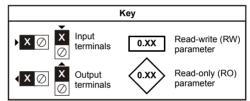

*See trip SLX.Er, Feedback module category on page 284.

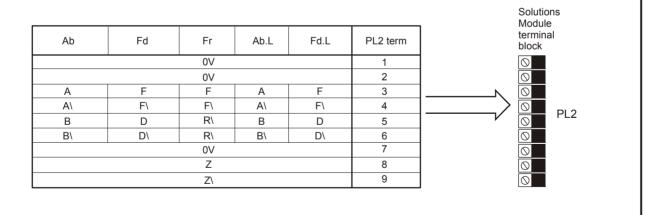
	Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	-----------------------	--------------	------------------------	-------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------



Safety	Introduction	Product	-)	Mechanical		Getting		Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information		Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	g	Information




		Safety Information	Introduction		System configuration	Mechanical Installation	Electrical Installation	Getting Started		Running the motor	Optimization	SMARTCARD operation	Onboard	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	--	-----------------------	--------------	--	-------------------------	----------------------------	----------------------------	--------------------	--	-------------------	--------------	---------------------	---------	------------------------	-------------------	-------------	---------------------------



Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started		Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
			j				p				•				

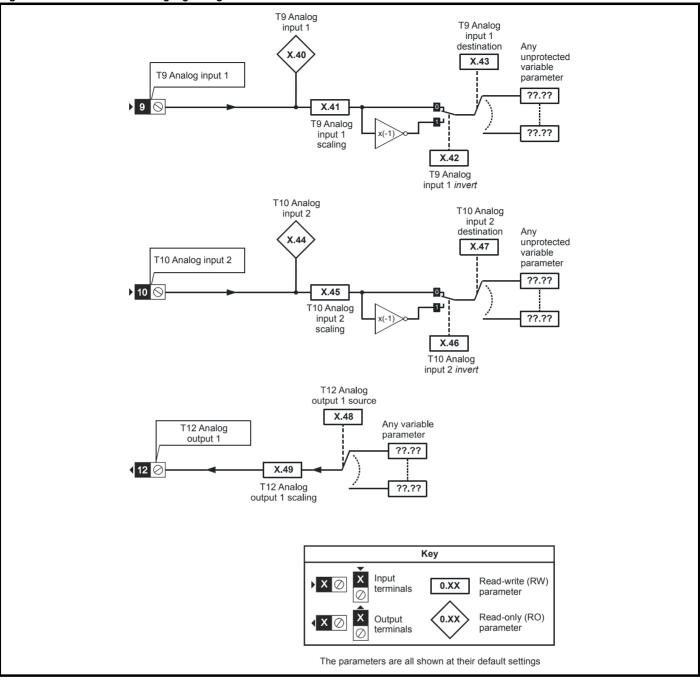
The parameters are all shown at their default settings

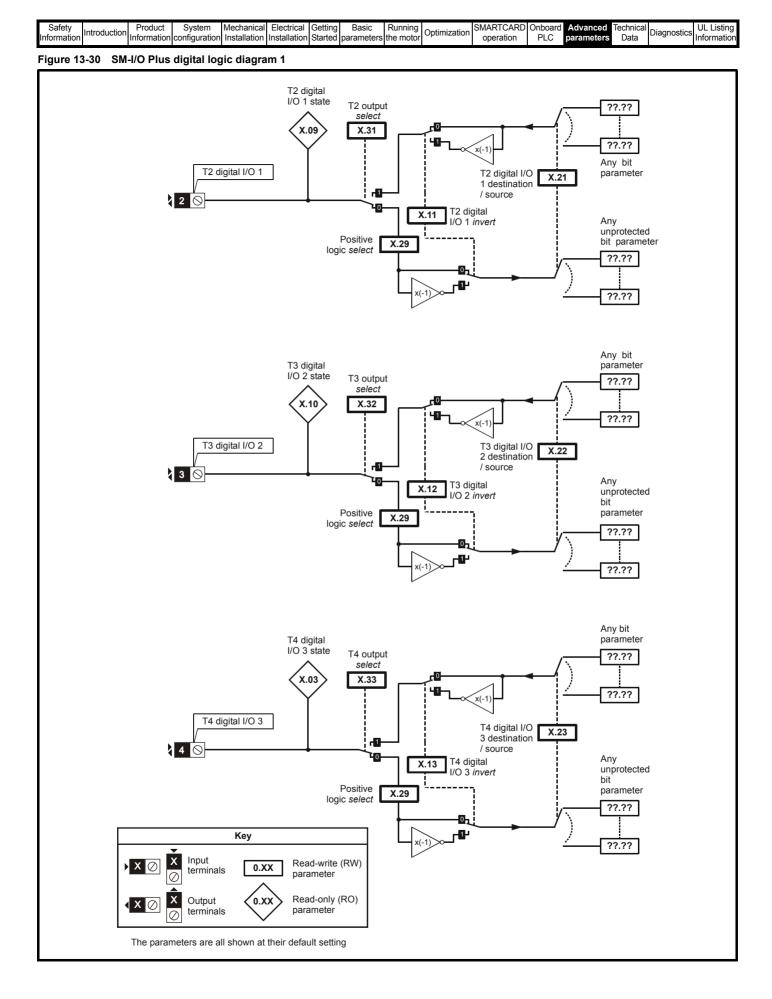
Introduction.	Product Synformation	ystem Mecha iguration Installa	tion Installatio	Getting Started		Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
---------------	----------------------	-----------------------------------	------------------	--------------------	--	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

SM-Encoder Plus / SM-Encoder Output Plus parameters

	Parameter	Range(≎)	Default(⇔)			Ту	ре		
x.01	Solutions Module ID	0 to 599	104	RO	Uni			PT	US
x.03	Speed feedback	±40,000.0 rpm		RO	Bi	FI	NC	PT	
x.04	Revolution counter	0 to 65,535 revolutions		RO	Uni	FI	NC	PT	
x.05	Position	0 to 65,535 (1/2 ¹⁶ ths of a revolution)		RO	Uni	FI	NC	PT	
x.07	Marker position reset disable	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.08	Marker flag	OFF (0) or On (1)	OFF (0)	RW	Bit		NC		
x.10	Equivalent lines per revolution	0 to 50,000	4,096	RW	Uni				US
x.13*	Encoder supply voltage	0: 5V, 1: 8V, 2: 15V	0	RW	Uni				US
x.15	Encoder type	Ab (0), Fd (1), Fr (2)	Ab (0)	RW	Uni				US
x.16	Encoder termination	0 to 2	1	RW	Bit				US
x.19	Feedback filter	0 to 5 (0 to 16 ms)	0	RW	Uni				US
x.24*	Encoder simulation source	Pr 0.00 to Pr 21.51	0.00	RW	Uni			PT	US
x.25*	Encoder simulation ratio numerator	0.0000 to 3.0000	0.2500	RW	Uni				US
x.28*	Encoder simulation mode	0: Ab, 1: Fd, 2: Fr, 3: Ab with marker lock, 4 to 7: Fd with marker lock	0	RW	Uni				US
x.29	Non-marker reset revolution counter	0 to 65,535 revolutions		RO	Uni		NC	PT	
x.30	Non-marker reset position	0 to 65,535 (1/2 ¹⁶ ths of a revolution)		RO	Uni		NC	PT	
x.32	Marker revolution counter	0 to 65,535 revolutions		RO	Uni		NC	PT	
x.33	Marker position	0 to 65,535 (1/2 ¹⁶ ths of a revolution)		RO	Uni		NC	PT	
x.35	Freeze revolution counter	0 to 65,535 revolutions		RO	Uni		NC	PT	
x.36	Freeze position	0 to 65,535 (1/2 ¹⁶ ths of a revolution)		RO	Uni		NC	PT	
x.39	Freeze flag	OFF (0) or On (1)	OFF (0)	RW	Bit		NC		
x.45	Position feedback initialised	OFF (0) or On (1)		RO	Bit		NC	PT	
x.49	Lock position feedback	OFF (0) or On (1)		RW	Bit				
x.50	Solutions Module error status**	0 to 255		RO	Uni		NC	PT	

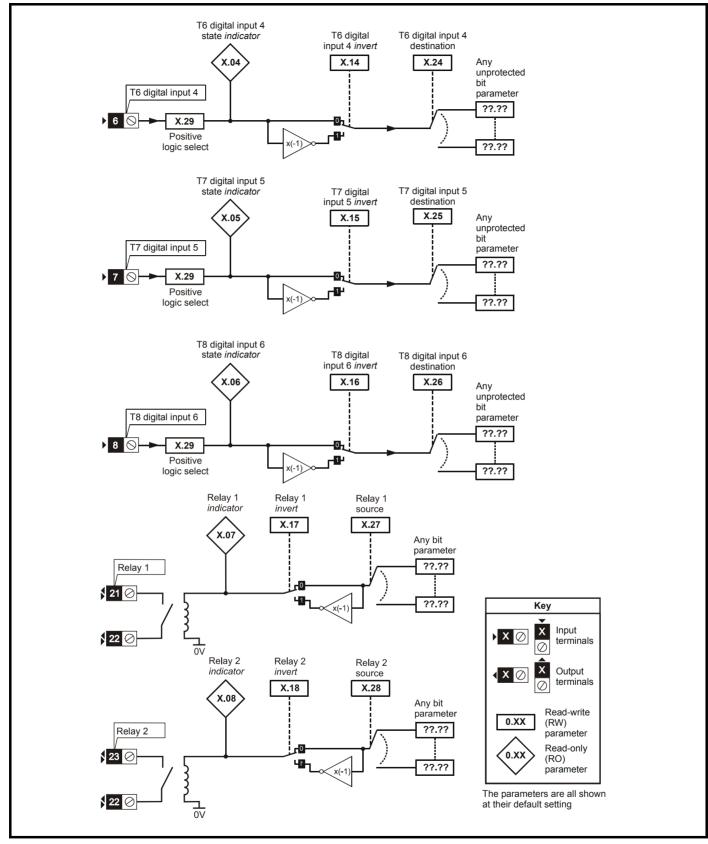
RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save


*Pr x.13, Pr x.24, Pr x.25 and Pr x.28 are only used when operating with a SM-Encoder Output Plus module. These parameters are not used when operating with a SM-Encoder Plus module


**See trip SLX.Er, Feedback module category on page 284.

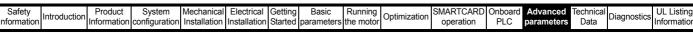
Safety Information	Introduction	System configuration	Mechanical Installation	Electrical Installation	Getting Started		Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
		g=				p								

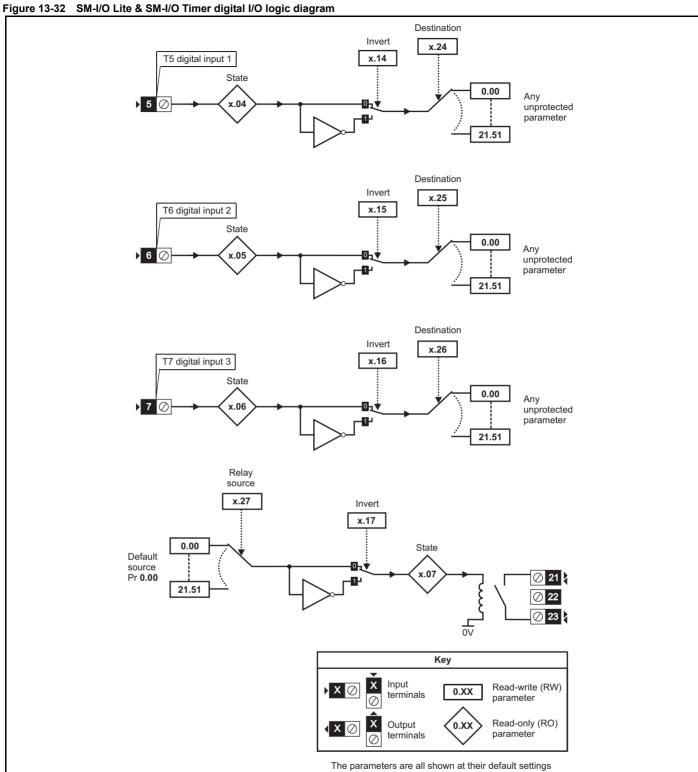
13.15.3 Automation module category

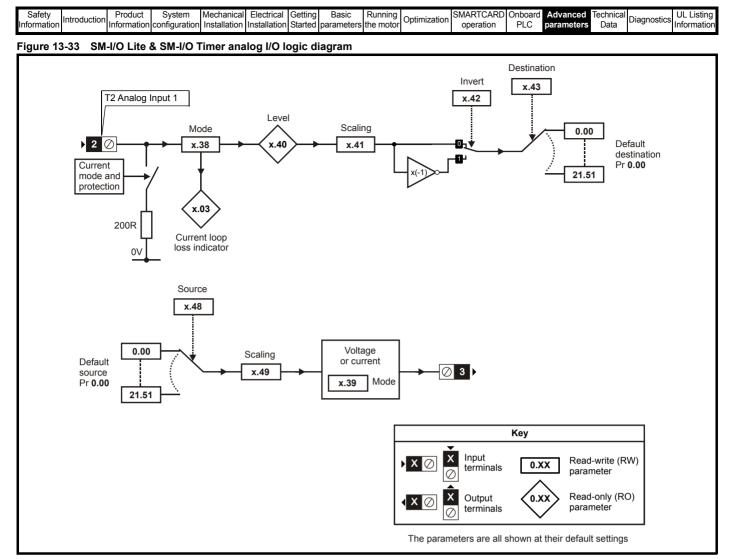

Figure 13-29 SM-I/O Plus analog logic diagram

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information

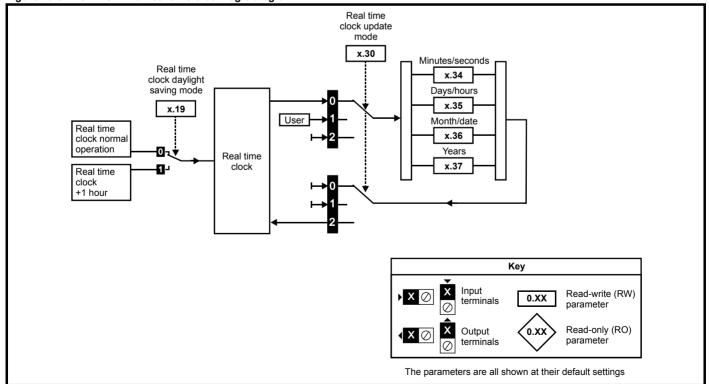
Figure 13-31 SM-I/O Plus digital logic diagram 2

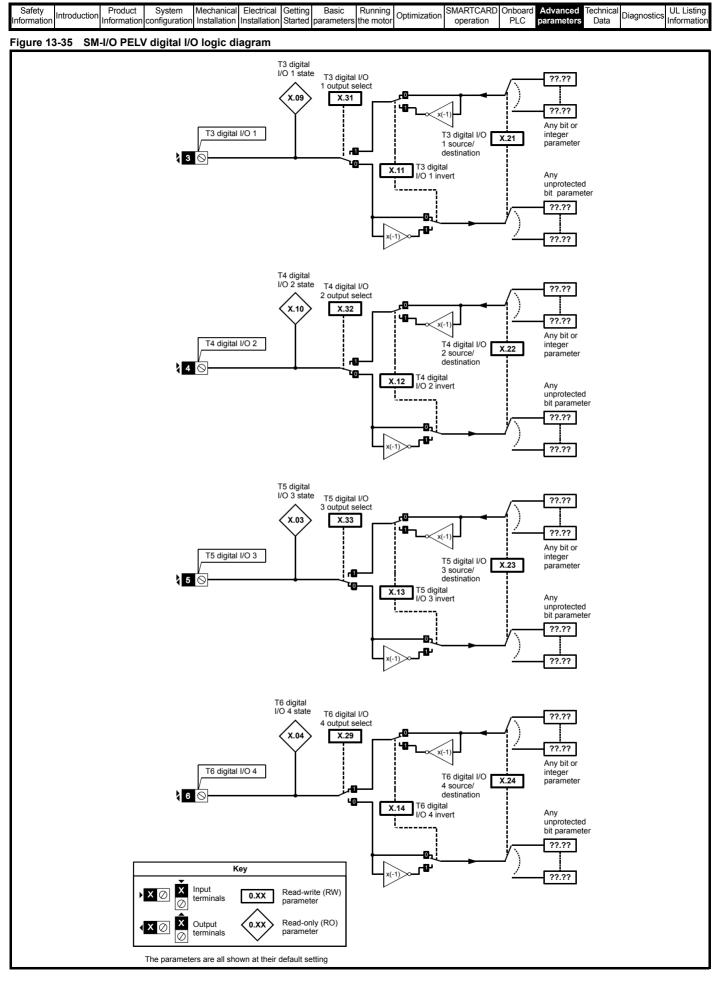


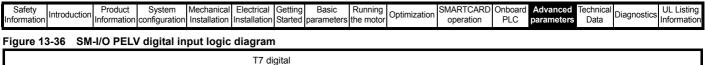

Safety Information	Introduction	Product Information		Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
			•				•								

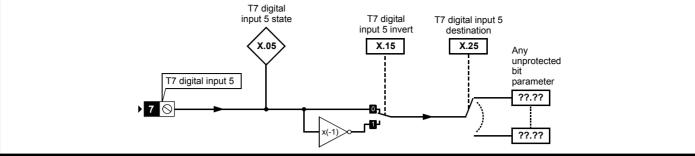

SM-I/O Plus parameters

	Parameter	Range(≎)	Default(⇔)			Ту	ре		
x.01	Solutions Module ID	0 to 599	201	RO	Uni			PT	US
x.03	T4 digital I/O 3 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.04	T6 digital input 4 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.05	T7 digital input 5 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.06	T8 digital input 6 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.07	Relay 1 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.08	Relay 2 state	OFF (0) or On (1)		RO	Bit		-	PT	
x.09	T2 digital I/O 1 state	OFF (0) or On (1)		RO	Bit			PT	
x.10	T3 digital I/O 2 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.11	T2 digital I/O 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.12	T3 digital I/O 2 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.13	T4 digital I/O 3 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.14	T6 digital input 4 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.15	T7 digital input 5 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.16	T8 digital input 6 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.17	Relay 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.18	Relay 2 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.20	Digital I/O read word	0 to 511		RO	Uni		NC	PT	
x.21	T2 digital I/O 1 source/ destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.22	T3 digital I/O 2 source/ destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.23	T4 digital I/O 3 source/ destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.24	T6 digital input 4 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.25	T7 digital input 5 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.26	T8 digital input 6 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.27	Relay 1 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni			PT	US
x.28	Relay 2 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni			PT	US
x.29	Input polarity select	OFF (0) or On (1)	On (1) (positive logic)	RW	Bit			PT	US
x.31	T2 digital I/O 1 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.32	T3 digital I/O 2 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.33	T4 digital I/O 3 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.40	Analog input 1	±100.0%		RO	Bi		NC	PT	
x.41	Analog input 1 scaling	0 to 4.000	1.000	RW	Uni				US
x.42	Analog input 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.43	Analog input 1 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.44	Analog input 2	±100.0%		RO	Bi		NC	PT	
x.45	Analog input 2 scaling	0.000 to 4.000	1.000	RW	Uni				US
x.46	Analog input 2 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.47	Analog input 2 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.48	Analog output 1 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni			PT	US
x.49	Analog output 1 scaling	0.000 to 4.000	1.000	RW	Uni				US
x.50	Solutions Module error status*	0 to 255		RO	Uni		NC	PT	

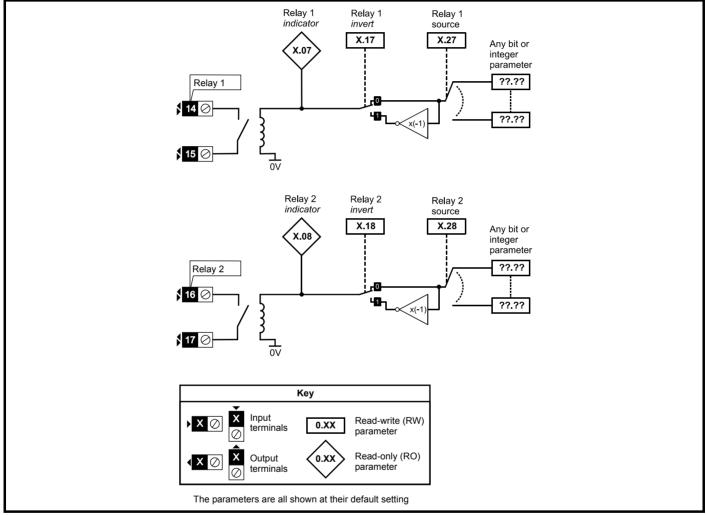

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

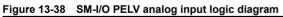


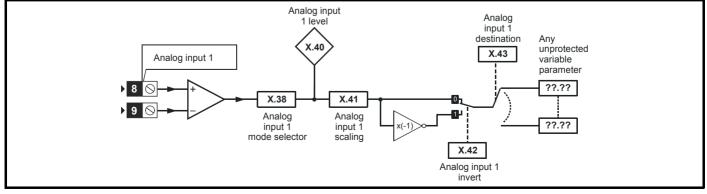

	0 ()		D 1 1	0 1		E 1 () (0	- ·	- ·			<u>.</u>		-		
	Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	Onboard	Advanced	lechnical	Diagnostics	UL Listing
h	nformation	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information
	nonnadon		auon	ooringaration	motanation	motanation	0101100	parametere			operation	. 20	parametero	Dulu		monnation

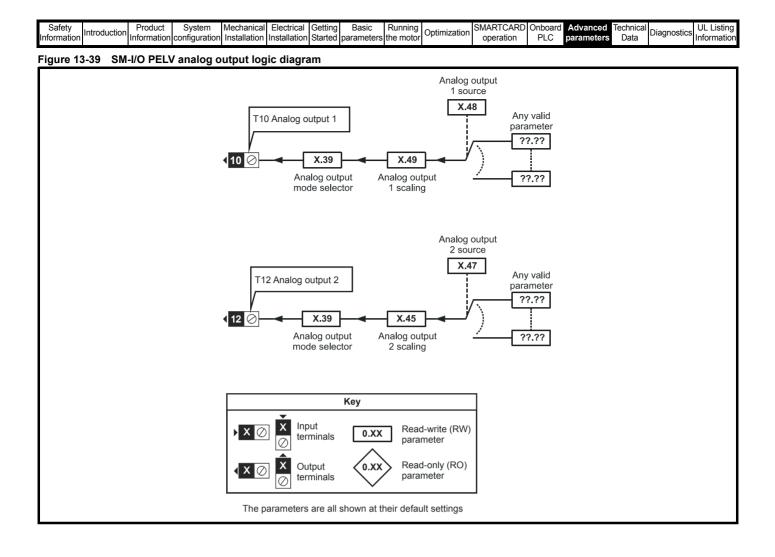

SM-I/O Timer & SM-I/O Lite parameters

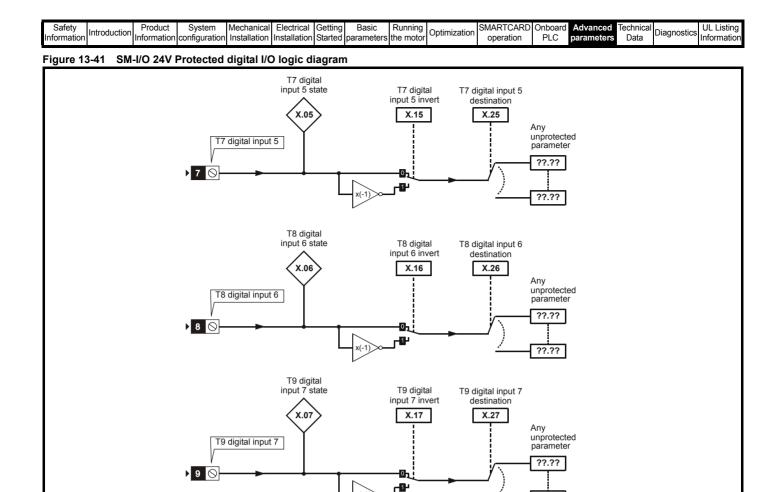
	Devenanten	Barrar (Å)				T				SN	I-I/O
	Parameter	Range(û)	Default(⇔)	RO Uni M PT US RO Uni MC PT US RO Bit MC PT I RW Bit I MC I US RW Bit I I US I US RW Bit I I I US I RW Uni DE PT US I I RW Uni DE PT US I I I RW Uni MC <th>Lite</th> <th>Timer</th>	Lite	Timer					
x.01	Solutions Module ID	0 to 599	SM-I/O Timer: 203 SM-I/O Lite: 207						US	~	~
x.02	Solutions Module software version	0.00 to 99.99		RO	Uni		NC	PT		~	~
x.03	Current loop loss indicator	OFF (0) or On (1)		RO	Bit		NC	PT		~	✓
x.04	T5 digital input 4 state	OFF (0) or On (1)		RO	Bit		NC	PT		~	~
x.05	T6 digital input 5 state	OFF (0) or On (1)		RO	Bit		NC	PT		~	✓
x.06	T7 digital input 6 state	OFF (0) or On (1)		RO	Bit		NC	PT		~	✓
x.07	Relay 1 state	OFF (0) or On (1)		RO	Bit		NC	ΡT		✓	✓
x.14	T5 digital input 4 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US	✓	✓
x.15	T6 digital input 5 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US	~	✓
x.16	T7 digital input 6 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US	✓	✓
x.17	Relay 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US	✓	✓
x.19	Real time clock daylight saving mode	OFF (0) or On (1)	OFF (0)	RW	Bit				US		✓
x.20	Digital I/O read word	0 to 255		RO	Uni		NC	ΡT		✓	✓
x.24	T5 digital input 4 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		ΡT	US	✓	✓
x.25	T6 digital input 5 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		ΡT	US	✓	✓
x.26	T7 digital input 6 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		ΡT	US	✓	✓
x.27	Relay 1 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni			ΡT	US	✓	✓
x.30	Real time clock update mode	0 to 2	0	RW	Uni		NC				✓
x.34	Real time clock time: minutes.seconds	0.00 to 59.59		RW	Uni		NC	ΡT			✓
x.35	Real time clock time: days.hours	1.00 to 7.23		RW	Uni		NC	ΡT			✓
x.36	Real time clock time: months.days	0.00 to 12.31		RW	Uni		NC	ΡT			✓
x.37	Real time clock time: years	2000 to 2099		RW	Uni		NC	ΡT			✓
x.38	Analog input 1 mode	0-20 (0), 20-0 (1), 4-20.tr (2), 20-4.tr (3), 4-20 (4), 20-4 (5), VOLt(6)	0-20 (0)	RW	Txt				US	~	~
x.39	Analog output mode	0-20 (0), 20-0 (1), 4-20 (2), 20-4 (3), VOLt (4)	0-20 (0)	RW					US	~	~
x.40	Analog input 1	±100.0%		RO	Bi		NC	PT		~	~
x.41	Analog input 1 scaling	0 to 4.000	1.000	RW	Uni				US	~	✓
x.42	Analog input 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit	1				√	~
x.43	Analog input 1 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US	~	✓
x.48	Analog output 1 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni			PT	US	~	✓
x.49	Analog output 1 scaling	0.000 to 4.000	1.000	RW	Uni				US	~	✓
x.50	Solutions Module error status*	0 to 255		RO	Uni	1	NC	ΡT		√	✓
x.51	Solutions Module software sub-version	0 to 99		RO	Uni	1	NC	ΡT		~	✓


RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save





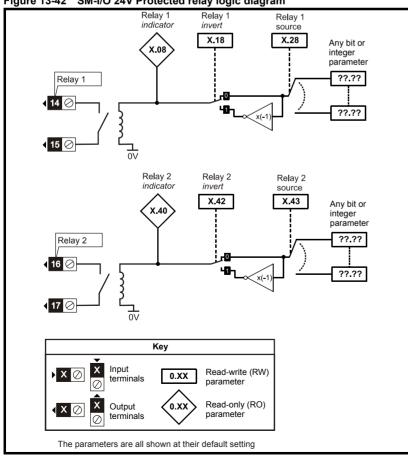



Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
			•											

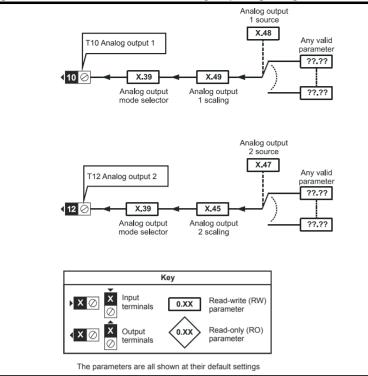
SM-I/O PELV parameters

	Parameter	Range(\$)	Default(⇔)			Ту	ре		
x.01	Solutions Module ID	0 to 599	204	RO	Uni			PT	US
x.02	Solutions Module software version	0.00 to 99.99		RO	Uni		NC	PT	
x.03	T5 digital I/O 3 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.04	T6 digital I/O 4 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.05	T7 digital input 5 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.07	Relay 1 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.08	Relay 2 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.09	T3 digital I/O 1 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.10	T4 digital I/O 2 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.11	T3 digital I/O 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.12	T4 digital I/O 2 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.13	T5 digital I/O 3 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.14	T6 digital I/O 4 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.15	T7 digital input 5 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.16	Disable PELV User power supply absent trip	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.17	Relay 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.18	Relay 2 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.19	Freeze flag	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.20	Digital I/O read word	0 to 255		RO	Uni		NC	PT	
x.21	T3 digital I/O 1 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.22	T4 digital I/O 2 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.23	T5 digital I/O 3 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.24	T6 digital I/O 4 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.25	T7 digital input 5 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.27	Relay 1 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni			PT	US
x.28	Relay 2 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni			PT	US
x.29	T6 digital I/O 4 output select	OFF (0) or On (1)	On (1)	RW	Bit				US
x.31	T3 digital I/O 1 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.32	T4 digital I/O 2 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.33	T5 digital I/O 3 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.38	Analog input 1 mode	0-20 (0), 20-0 (1), 4-20.tr (2), 20-4.tr (3), 4-20 (4), 20-4 (5)	0-20 (0)	RW	Txt				US
x.39	Analog output mode	0-20 (0), 20-0 (1), 4-20 (2), 20-4 (3)	0-20 (0)	RW	Txt				US
x.40	Analog input 1 level	0.0 to 100.0%		RO	Bi		NC	PT	
x.41	Analog input 1 scaling	0.000 to 4.000	1.000	RW	Uni				US
x.42	Analog input 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.43	Analog input 1 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.45	Analog output 2 scaling	0.000 to 4.000	1.000	RW	Uni				US
x.47	Analog output 2 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni			PT	US
x.48	Analog output 1 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni			PT	US
x.49	Analog output 1 scaling	0.000 to 4.000	1.000	RW	Uni				US
x.50	Solutions Module error status*	0 to 255		RO	Uni		NC	PT	
x.51	Solutions Module software sub-version	0 to 99		RO	Uni		NC	PT	

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save



x(-1)


??.??

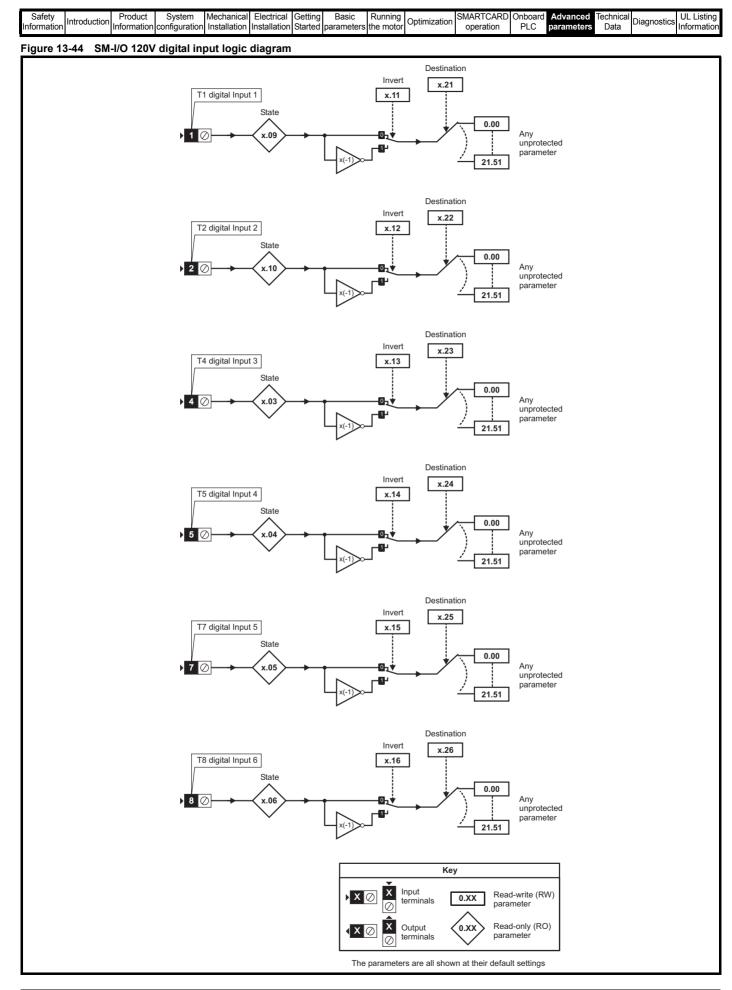
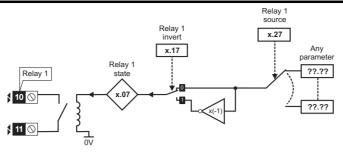
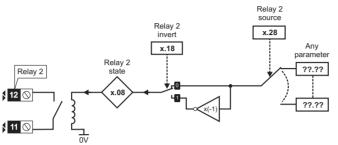
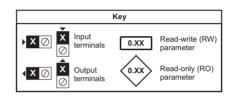

	Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
In	formation		Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	g	Information

Figure 13-43 SM-I/O 24V Protected analog output logic diagram

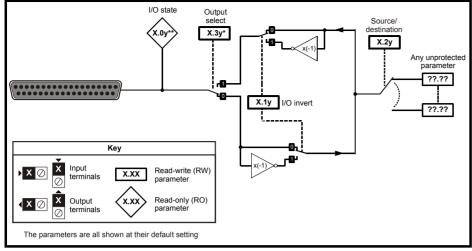

SM-I/O 24V Protected parameters


	Parameter	Range(�)	Default(⇔)			Туј	ре		
x.01	Solutions Module ID	0 to 599	205	RO	Uni			ΡT	US
x.02	Solutions Module Main Software Version	0.00 to 99.99		RO	Uni		NC	PT	
x.03	T5 digital I/O 3 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.04	T6 digital I/O 4 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.05	T7 digital input 5 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.06	T8 digital input 6 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.07	T9 digital input 7 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.08	Relay 1 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.09	T3 digital I/O 1 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.10	T4 digital I/O 2 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.11	T3 digital I/O 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.12	T4 digital I/O 2 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.13	T5 digital I/O 3 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.14	T6 digital I/O 4 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.15	T7 digital input 5 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.16	T8 digital input 6 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.17	T9 digital input 7 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.18	Relay 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.20	Digital I/O read word	0 to 255		RO	Uni		NC	PT	
x.21	T3 digital I/O 1 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE			US
x.22	T4 digital I/O 2 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE			US
x.23	T5 digital I/O 3 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE			US
x.24	T6 digital I/O 4 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE			US
x.25	T7 digital input 5 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE			US
x.26	T8 digital input 6 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE			US
x.27	T9 digital input 7 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE			US
x.28	Relay 1 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni				US
x.29	T6 digital I/O 4 output select	OFF (0) or On (1)	On (1)	RW	Bit				US
x.31	T3 digital I/O 1 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.32	T4 digital I/O 2 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.33	T5 digital I/O 3 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.39	Analog output mode	0-20, 20-0, 4-20, 20-4	0-20	RW	Uni				US
x.40	Relay 2 state	0.0 or 100.0 %		RO	Bit		NC	PT	
x.42	Relay 2 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.43	Relay 2 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni				US
x.45	Analog output 2 scaling	0.000 to 4.000	1.000	RW	Uni				US
x.47	Analog output 2 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni				US
x.48	Analog output 1 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	1			US
x.49	Analog output 1 scaling	0.000 to 4.000	1.000	RW	Uni	1			US
x.50	Solutions Module error status	0 to 255		RO	Uni	1	NC	PT	
x.51	Solutions Module software sub-version	0 to 99		RO	Uni	1	NC	PT	1



Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting		Running the motor	Optimization	SMARTCARD operation	DI C	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
mormation		mormation	conliguration	Installation	Installation	Starteu	parameters	the motor	-	operation	PLC	parameters	Data	-	mormation

Figure 13-45 SM-I/O 120V relay diagram


The parameters are all shown at their default settings

SM-I/O 120V parameters

	Pa	arame	ter			Range	e(û)		Defa	ult(⇔)				Ty	ре		
x.0	1 Solutions	Module	e ID			0 to 5	599		2	06		RO	Uni			ΡT	US
x.0	2 Solutions	Module	e software versi	on		0.00 to	99.99					RO	Uni		NC	PT	
x.0	3 T4 digital	input 3	state		O	F (0) o	r On (1)					RO	Bit		NC	PT	
x.0	4 T5 digital	input 4	state		OF	F (0) o	r On (1)					RO	Bit		NC	PT	
x.0					OF	F (0) o	r On (1)					RO	Bit		NC	PT	
x.0	6 T8 digital	input 6	state		OF	F (0) o	r On (1)					RO	Bit		NC		
x.0	7 Relay 1 s	tate			OF	F (0) o	r On (1)					RO	Bit		NC	PT	
x.0	,				OF	F (0) o	r On (1)					RO	Bit		NC		
x.0	9 T1 digital	input 1	state		OF	F (0) o	r On (1)					RO	Bit		NC	PT	
x.1	0 T2 digital	input 2	state		OF	F (0) o	r On (1)					RO	Bit		NC	PT	
x.1	1 T1 digital	input 1	invert		OF	F (0) o	r On (1)		OF	F (0)		RW	Bit				US
x.1	2 T2 digital	input 2	invert		OF	F (0) o	r On (1)		OF	F (0)		RW	Bit				US
x.1	3 T4 digital	input 3	invert		OF	F (0) o	r On (1)		OF	F (0)		RW	Bit				US
x.1	U				OF	F (0) o	r On (1)			F (0)		RW	Bit				US
x.1	5 T7 digital	input 5	invert		OF	F (0) o	r On (1)		OF	F (0)		RW	Bit				US
x.1	6 T8 digital	input 6	invert		OF	F (0) o	r On (1)		OF	F (0)		RW	Bit				US
x.1	7 Relay 1 ir	ivert			OF	F (0) o	r On (1)		OF	F (0)		RW	Bit				US
x.1	8 Relay 2 in	vert			OF	FF (0) o	r On (1)		OF	F (0)		RW	Bit				US
x.2	0					0 to 2						RO	Uni		NC		
x.2	1 T1 digital	input 1	destination		Pr	0.00 to	Pr 21.51		Pr	0.00		RW	Uni				US
x.2	2 T2 digital	input 2	destination		Pr	0.00 to	Pr 21.51		Pr	0.00		RW		DE			US
x.2	0		destination		Pr	0.00 to	Pr 21.51		Pr	0.00		RW	-	DE			US
x.2	4 T5 digital	input 4	destination		Pr	0.00 to	Pr 21.51		Pr	0.00		RW		DE			US
x.2	25 T7 digital	input 5	destination		Pr	0.00 to	Pr 21.51		Pr	0.00		RW		DE			US
x.2	18 digital	input 6	destination		Pr	0.00 to	Pr 21.51		Pr	0.00		RW	Uni	DE		PT	US
x.2	27 Relay 1 s	ource			Pr	0.00 to	Pr 21.51		Pr	0.00		RW	Uni				US
x.2					Pr		Pr 21.51		Pr	0.00		RW	Uni				US
x.5	Solutions	Module	e error status*			0 to 2	255					RO	Uni		NC	PT	
x.5	Solutions	Module	software sub-ve	rsion		0 to	99					RO	Uni		NC	PT	
RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string						_
			,	-				-			5	-		Deur	an alc:		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save		s	Powe	a ao/	vn sa	٦١

F	Cafat		Due du et	Curstans	Mashaniaal	Electrical	Calling	Deele	Duranian			Orahaand		Technical		III Linding
	Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARICARD	Onboard	Advanced	lechnical		UL Listing
	nformation	muouucuon		configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	Diagnostics	Information
				J				P · · · · ·				-				

Figure 13-6 SM-I/O 32 logic diagram

SM-I/O 32 parameters

	Parameter	Range(‡)	Default(⇔)			Ту	ре		
x.01	Solutions Module ID code	0 to 599	208	RO	Uni			PT	US
x.02	Solutions Module main software version	0.00 to 99.99	99.00	RO	Uni		NC	PT	
x.03	Digital I/O 3 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT	
x.04	Digital I/O 4 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT	
x.05	Digital I/O 5 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT	
x.06	Digital I/O 6 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT	
x.07	Digital I/O 7 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT	
x.08	Digital I/O 8 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT	
x.09	Digital I/O 1 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT	
x.10	Digital I/O 2 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT	
x.11	Digital I/O 1 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				US
x.12	Digital I/O 2 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				US
x.13	Digital I/O 3 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				US
x.14	Digital I/O 4 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				US
x.15	Digital I/O 5 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				US
x.16	Digital I/O 6 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				US
x.17	Digital I/O 7 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				US
x.18	Digital I/O 8 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				US
x.20	Digital I/O read word	0 to 255	0	RO	Uni		NC	PT	
x.21	Digital I/O 1 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.22	Digital I/O 2 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.23	Digital I/O 3 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.24	Digital I/O 4 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.25	Digital I/O 5 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.26	Digital I/O 6 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.27	Digital I/O 7 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.28	Digital I/O 8 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.29	Digital I/O 4 output select	OFF(0) or On(1)	On(1)	RW	Bit			PT	US
x.31	Digital I/O 1 output select	OFF(0) or On(1)	OFF (0)	RW	Bit				US
x.32	Digital I/O 2 output select	OFF(0) or On(1)	OFF (0)	RW	Bit				US
x.33	Digital I/O 3 output select	OFF(0) or On(1)	OFF (0)	RW	Bit				US
x.43	First update method direction register	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.47	Fast update method read register	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.48	Fast update method write register	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni			PT	US
x.50	Solutions Module error status*	0 to 255		RO	Uni		NC	PT	
x.51	Solutions Module software sub-version	0 to 99		RO	Uni		NC	PT	

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation		Getting Started		Running the motor	Optimization	SMARTCARD operation		Advanced parameters	Technical Data	Diagnostics	UL Listing Information
mormation		mormation	configuration	Installation	Installation	Starteu	parameters			operation	FLC	parameters	Dala		mormation

Applications module parameters

	Parame	ter			Range	(\$)			Defa	ult(⇔))			Ту	oe		
x.01	Solutions Module	ID			0 to 5	99						RO	Uni			PT	US
x.02	Solutions Module	software version		C	.00 to 9	99.99						RO	Uni		NC	PT	
x.03	DPL program state	us		None (0), St	op (1),	Run (2), Trip (3)						RO	Txt		NC		
x.04	Available system	resource			0 to 1	00						RO	Uni		NC	PT	
x.05	RS485 address				0 to 2	55				11		RW	Uni				US
x.06	RS485 mode				0 to 2	55				1		RW	Uni				US
x.07	RS485 baud rate			9600 (5), 19200	1200 (2) (6), 38 5200 (9	2), 2400 (3), 4800 (4 3400 (7), 57600 (8)) baud	·),		480	00 (4)		RW	Txt				US
x.08	RS485 Turnaroun	d delay			0 to 25	5 ms				2		RW	Uni				US
x.09	RS485 Tx enable	delay			0 to 1	ms				0		RW	Uni				US
x.10	DPL Print Routing			SYPT: OF	F (0), F	RS485: On (1)			SYPT:	OFF ())	RW	Bit				U
x.11	Clock task schedu	lling (ms)			0 to 2					10		RW	Uni				U
x.12	POS task schedul	ing rate	d), 0.5 ms (2), 1 ms ((5), 8 ms (6)	3),		dISAb	LEd (0)	RW	Txt				U
x.13	Enable autorun			OF	F (0) oi	On (1)			Or	า (1)		RW	Bit				U
x.14	Global run time tri	p enable		OF	F (0) or	On (1)			OF	F (0)		RW	Bit				U
x.15	Disable reset on ti	rip cleared		OF	F (0) or	On (1)			OF	F (0)		RW	Bit				U
x.16	Encoder data upd	ate rate			0 to	3				0		RW	Uni				U
x.17	Enable parameter			OF	F (0) or	On (1)	-		OF	F (0)		RW	Bit				U
x.18	Watchdog enable	5 5 7 7			()	On (1)				F (0)		RW	Bit				U
x.19	Save request				F (0) or	()	_			F (0)		RW	Bit		NC		Ĕ
x.20	Enable power dov	n save			F (0) 01	.,				F (0)		RW	Bit				U
A.2V	Enable power dow		 _	OF		511(1)	_			()							
x.21 x.22	restore CTNet Token Ring			OF	F (0) or	On (1)				F (0)		RW RW	Bit Uni				U U
	CTNet node addre				0 to 2					0		RW					U
x.23		355		F 000 (0) 0 F0						-			Uni				U
x.24	CTNet baud rate					.250 (2), 0.625 (3)				00 (1)		RW	Txt				-
x.25	CTNet sync setup			0	000 to	9,999			0,	000		RW	Uni				ι
x.26	parameter destina	let easy mode - first cyclic ameter destination node			0 to 25	503				0		RW	Uni				ι
x.27	CTNet easy mode parameter CTNet easy mode	•	rce		0 to 9,	999				0			Uni				U
x.28	parameter destina	tion node			0 to 25					0			Uni				U
x.29	source parameter	2			0 to 9,		_			0			Uni				U
x.30 x.31	parameter destina CTNet easy mode	tion node	irce		0 to 25		_			0			Uni Uni				U U
x.31	parameter CTNet easy mode		er		0 to 9,		_			0		_	Uni				U
x.32	slot 1 destination CTNet easy mode	set-up - Transfe	er		0 to 9,		_			0		_	Uni				U
x.34	slot 2 destination	set-up - Transfe	er		0 to 9,					0		_	Uni				ι
x.35	slot 3 destination		[Disabled (0), Eve	nt (1), E Event3	vent1 (2), Event2 (3),		Disat	oled (0))	_	Txt				U
v 36	CTNet diagnostic	narameter			Lvente	(7)		_				DO	Uni		NC	DT	⊢
x.36	9					On (1)			05						NU	ГІ	
x.37	Reject download i				• •	On (1)				F (0)			Bit				l
x.38	Do not trip drive of			OF	. ,	On (1)				F (0)			Bit				ι
x.39	Inter-module sync	hronisation statu	IS		0 to					0			Uni		NC		1
x.41	Indexer control				0 to 2					0			Uni		NC		L
x.42	Freeze main drive	position			F (0) oi	.,				F (0)			Bit				ι
x.43	Freeze invert			OF	F (0) or	On (1)			OF	F (0)		RW	Bit				ι
c.44	Task priority level				0 to 2	55				0		RW	Uni				ι
.45	Indexer step				0 to 65	535						RO	Uni		NC		F
c.46	Indexer error num	ber		-32.		=32,767							Uni		NC		F
(.47 (.47	Indexer state	*		02,	0 to 2								Uni		NC		⊢
x.48		PL line number in error		0 to		483,647				0			Uni		NC	рт	⊢
						+32,768	_			0		RO			NC		⊢
x.49		ser program ID olutions Module error status*		-32,						0							┞
x.50			-		0 to 2								Uni		NC		L
c.51	Solutions Module s	oitware sub-vers	on		0 to 9	22						RO	Uni		NC	۲I	L
WF	Read / Write RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	t E	Bit parameter	Txt	Text string						
		. ,	1		RA	Rating dependent	PT		Protected	US	User save	P			r dov		1

*See trip SLX.Er, Automation (Applications) module category on page 285.

Safety	Introduction	Product	System	Mechanical	Licouridar	Getting	Dasic	Running	Optimization	SMARTCARD		Advanced	Technical	Diagnostics	UL Listing Information
Information		Information	configuration	Installation	Installation	Started	parameters	the motor	optimization	operation	PLC	parameters	Data	Blaghootioo	Information

13.15.4 Fieldbus module category Fieldbus module parameters

	Pa	arame	ter			Rang	e(‡)		Defa	ult(⇔)				Ty	ре		
x.01	Solutions	Module	e ID			0 to :	599					RO	Uni			PT	US
x.02	Solutions	Module	e software versie	on		0.00 to	99.99					RO	Uni		NC	PT	
x.03	Fieldbus N	Node A	ddress			65,5	635		65	,535		RW	Uni				US
x.04	Fieldbus E	Baud R	ate			-128 to	+127			0		RW	Bi				US
x.05	Mode					65,5	635			4		RW	Uni				US
x.06	Fieldbus [Diagno	stic			±9,9	99					RO	Bi		NC	PT	
x.07	' Trip Delay	' Time				0 to 3	,000		2	00		RW	Uni				US
x.08	Little endi	anism	select		O	FF (0) c	or On (1)		Or	า (1)		RW	Bit				US
x.09	Register of	ontrol			0	FF (0) c	or On (1)		OF	F (0)		RW	Bit				US
x.101 x.19		gisters	0 - 9		-32	2,768 to	+32,767					RW	Bi				
x.20 f x.29		gisters	s 0 - 9		-32	2,768 to	+32,767					RW	Bi				
x.30	Load Solu defaults	itions N	lodule		O	FF (0) c	or On (1)		OF	F (0)		RW	Bit				US
x.31	Save Solutions Module parameters			O	FF (0) c	or On (1)		OF	F (0)		RW	Bit				US	
x.32	Request to	o reinit	ialise		0	FF (0) c	or On (1)		OF	F (0)		RW	Bit				
x.33	Download Solutions				O	FF (0) c	or On (1)		OF	F (0)		RW	Bit				
x.34	Compress	sion			0	FF (0) c	or On (1)		OF	F (0)		RW	Bit				US
x.35	Serial nun	nber			-2,147,48	3,648 to	2,147,483,647					RO	Bi		NC	PT	
x.36 1 x.37		specific	:		O	FF (0) c	or On (1)		OF	F (0)		RW	Bit				US
x.38	Fieldbus s mode	specific	defined			0 to :	255			0		RW	Uni				US
x.39	Cyclic inp	ut conf	iguration			0 to 1	255			0		RW	Uni				US
x.40	Cyclic out	put cor	nfiguration			0 to 1	255			0		RW	Uni				US
x.41 t x.43		specific	:			0 to :	255			0		RW	Uni				US
x.44 t x.48		specific	:			0 to :	255			0		RO	Uni			PT	
x.49	Mapping e	error st	atus			0 to 1	255			0		RO	Uni			PT	
x.50	Solutions	Module	e error status*	_		0 to 1	255					RO	Uni		NC	PT	
										_							
	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string						
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	P	SI	Powe	er dov	vn sa	ave

*See trip SLX.Er, *Fieldbus module category* on page 286.

Safety Introduction Product System Mechanical Electrical Getting Basic Running Optimization SMARTCARD Onboard Advanced Technical Diagnostics Diagnostics <thdiagnostics< th=""> Diag</thdiagnostics<>	UL Listing nformation
---	--------------------------

SM-LON parameters

FI Filtered

DE Destination

NC Not copied

	Parameter		Range	ə(û)		Defa	ult(⇔)				Ту	ре		
x.0	1 Solutions Module ID		0 to 5	599		40	01		RO	Uni			PT	US
x.0	2 Solutions Module software version		0.00 to	99.99					RO	Uni		NC	PT	
x.0	3 Node ID		0 to 1	27		(0		RW	Uni				
x.0	6 Option module diagnostic information	-	-9999 to	9999		(0		RW	Uni				
x.0	7 Network loss trip		0 to	1			0		RW	Uni				
x.1	0 Subnet ID		0 to 2	255		(0		RW	Uni				
x.1	1 Domain ID length		0 to	6		(0		RW	Uni				
x.1	2 Domain ID byte 1		0 to 2	255			0		RW	Uni				
x.1	3 Domain ID byte 2		0 to 2	255		(0		RW	Uni				
x.1	4 Domain ID byte 3		0 to 2	255		(0		RW	Uni				
x.1	5 Domain ID byte 4		0 to 2	255			0		RW	Uni				
x.1	6 Domain ID byte 5		0 to 2	255		(0		RW	Uni				
x.1	7 Domain ID byte 6		0 to 2	255		(0		RW	Uni				
x.3	0 Load Option Defaults	0	Off (0) or On (1)			Off	(0)		RW	Bit				
x.3	1 Save option parameters	0	off (0) or	On (1)		Off	(0)		RW	Bit				
x.3	2 Request to re-initialise	0	off (0) or	On (1)		Off	(0)		RW	Bit				
x.3	3 Restore parameters from option module	0	off (0) or	On (1)		Off	(0)		RW	Bit				
x.3	4 Initialise drive reference selectors	0	off (0) or	On (1)		Off	(0)		RW	Bit				
x.3	5 Option module serial number	-214748	33648 to	2147483647					RO	Bi		NC	PT	
x.3	6 Transmit service pin message	0	off (0) or	On (1)		Off	(0)		RW	Bit				
x.3	7 Wink active	0	off (0) or	On (1)		Off	(0)		RW	Bit				
x.3	8 Unconfigure option module		0 to	1		(0		RW	Uni				
x.3	9 Default configuration property storage		0 to	1		(C		RW	Uni				
x.5	0 Module error status		0 to 2	255					RO	Uni		NC	PT	
x.5	1 Module software sub-version		0 to :	99					RO	Uni		NC	PT	
	Read / Write RO Read only Ur	i Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string	-				_	_

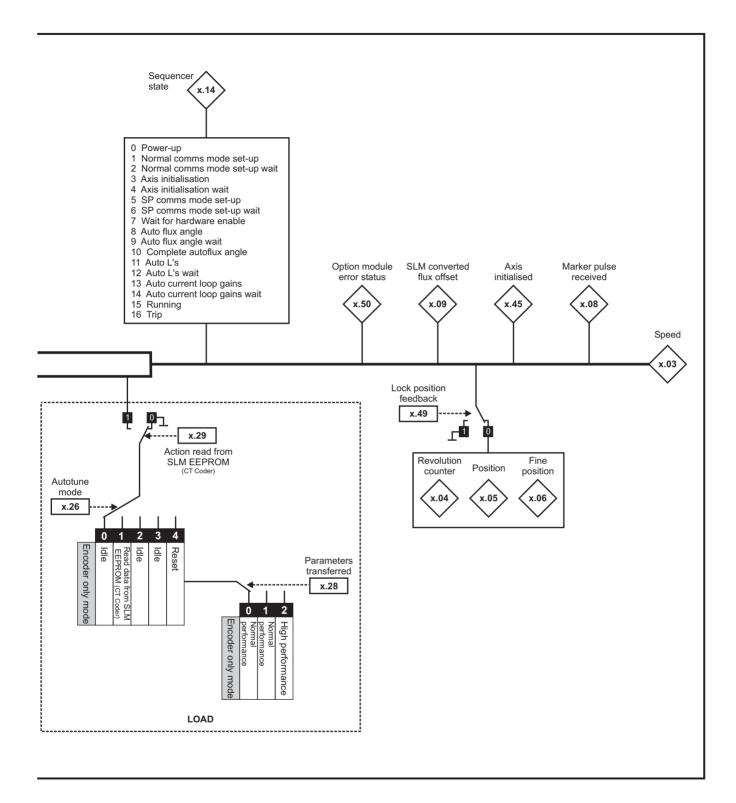
RA Rating dependent PT

US User save

PS Power down save


Protected

Safety		Product	System	Mechanical	Electrical	Gettina	Basic	Runnina		SMARTCARD	Onhoard	Advanced	Technical		UL Listina
Information	Introduction	Information	configuration	Installation			parameters		Optimization	operation	PLC	parameters	Data	Diagnostics	Information


Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information		Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	Diagnostics	Information

13.15.5 SLM module category

Figure 13-46 SM-SLM logic diagram

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
			0											

Safety Information	Introduction	Product Information		Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
			-				-								

SM-SLM parameters

	Parameter	Range(≎)	Default(⇔)			Ту	ре		
x.01	Solutions Module ID	0 to 499		RO	Uni			PT	US
x.02	Solutions Module software version	0.0 to 99.99		RO	Uni		NC	PT	
x.03	Speed	±40,000.0 rpm		RO	Bi	FI	NC	PT	
x.04	Revolution counter	0 to 65,535 revolutions		RO	Uni	FI	NC	PT	
x.05	Position	0 to 65,535 (1/2 ¹⁶ ths of a revolution)		RO	Uni	FI	NC	PT	
x.06	Fine position	0 to 65,535 (1/2 ³² nds of a revolution)		RO	Uni	FI	NC	PT	
x.07	Operating mode	HoSt (0), Enc.Only (1)	HoSt (0)	RW	Txt				US
x.08	Marker pulse received indicator	OFF (0) or On (1)	OFF (0)	RO	Bit		NC		
x.09	SLM converted flux offset	0 to 65,535	0	RO	Uni				
x.10	Encoder lines per revolution	0 to 50,000	1024	RW	Uni				US
x.11	SLM software version	0.000 to 9.999	0.000	RO	Uni		NC	PT	
x.12	SLM power-up delay	0.000 (0), 0.250 (1), 0.500 (2), 0.750 (3), 1.000 (4), 1.250 (5), 1.500 (6) s	0.250 (1)	RW	Txt				US
x.13	Not used*								
x.14	Sequencer status	0 to 16		RO	Uni		NC	PT	
x.15	Not used*								
x.16	Not used*								
x.17	Not used*								
x.18	Not used*		0.(0)	D 14/	T 1				110
x.19	Feedback filter	0 (0), 1 (1), 2 (2), 4 (3), 8 (4), 16 (5) ms	0 (0)	RW	Txt				US
x.20	Not used*								
x.21 x.22	Not used* Not used*								
x.22 x.23	Not used*								
	Not used*								
x.24			0		Lini				110
x.26 x.27	Autotune mode	0 to 4 0 to 2	0	RW RW	Uni Uni				US US
	Saving mode Parameters transferred	0 to 2	0	RW	Uni				US
x.28	Action the tuning and saving		-	RVV	UIII				
x.29	parameters	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.30	Automatic basic drive set-up request	0 to 1	0	RW	Uni				US
x.32	Not used*								
x.33	Not used*								
x.34	Not used*								
x.35	Not used*								
x.36	Not used*								
x.37	Not used*								
x.38	Not used*				L		L		
x.39	Not used*				L		L		
x.40	Not used*								
x.41	Not used*								
x.42	Not used*								
x.43	Not used*				L		L		
x.44	Not used*			50	D''			D7	
x.45	Axis initialised	OFF (0) or On (1)		RO	Bit			PT	
x.46	Not used*								
x.47	Not used*								
x.48	Not used*			RW	Dit			PT	
x.49 x.50	Lock position feedback Solutions Module error status**	OFF (0) or On (1) 0 to 255	OFF (0)	RW	Bit Uni		NC	PT	
	Solutions Module software sub-								
x.51	version	0 to 99		RO	Uni		NC	PT	

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

* Some of the parameters which are not used will be introduced in scheduled product enhancement.

**See trip SLX.Er, SLM module category on page 287.

Safety	Induced continue	Product	System	Mechanical	Electrical	Getting	Basic	Running		SMARTCARD	Onboard	Advanced	Technical		UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

13.16 Menu 18: Application menu 1

	Parameter	Range(≎)	Default(⇔)			Ту	pe	
18.01	Application menu 1 power-down saved integer	-32,768 to +32,767	0	RW	Bi		NC	PS
18.02 to 18.10	Application menu 1 read-only integer	-32,768 to +32,767	0	RO	Bi		NC	
18.11 to 18.30	Application menu 1 read-write integer	-32,768 to +32,767	0	RW	Bi			US
18.31 to 18.50	Application menu 1 read-write bit	OFF (0) or On (1)	0	RW	Bit			US

13.17 Menu 19: Application menu 2

	Parameter	Range(‡)	Default(⇔)			Ту	ре		
19.01	Application menu 2 power-down saved integer	-32,768 to +32,767	0	RW	Bi		NC	F	PS
19.02 to 19.10	Application menu 2 read-only integer	-32,768 to +32,767	0	RO	Bi		NC		
19.11 to 19.30	Application menu 2 read-write integer	-32,768 to +32,767	0	RW	Bi			ι	US
19.31 to 19.50	Application menu 2 read-write bit	OFF (0) or On (1)	0	RW	Bit			ι	US

13.18 Menu 20: Application menu 3

Parameter	Range(獔)	Default(⇔)			Тур	e	
20.01 to 20.20 Application menu 3 read-write integer	-32,768 to +32,767	0	RW	Bi		NC	
20.21 toApplication menu 3 read-write long20.40integer	-2^{31} to 2^{31} -1	0	RW	Bi		NC	

With software V01.07.00 and later, all menu 20 parameters are transferred to the SMARTCARD when a 4yyy transfer is performed. See section 11.2.1 *Writing to the SMARTCARD* on page 150 for more information.

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

			-			-									
Safety	In the strend second	Product	System	Mechanical	Electrical	Getting	Basic	Running	0.11	SMARTCARD	Onboard	Advanced	Technical	Discussion	UL Listing
nformation	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PI C	parameters	Data	Diagnostics	Information
monnation		internation	ooringaraaon	motanation	motamation	0101100	paramotoro			operation	1 20	paramotoro	Dula		monnation

13.19 Menu 21: Second motor parameters

	Parameter		R	ange(‡)			Туре						
	Farameter		OL	OL	VT	SV	туре						
21.01	Maximum reference clamp	{0.02 }*	0 to 3,000.0 Hz	SPEED_LIMIT_MAX rpm	EUR> 50.0 USA> 60.0	EUR> 1,500.0 USA> 1,800.0	3,000.0		Uni				US
21.02	Minimum reference clamp	{0.01}*	±3,000.0 Hz	±SPEED_LIMIT_MAX rpm		0.0		RW	Bi			PT	US
21.03	Reference selector	{0.05}*		A2.Pr (2), Pr (3), PAd (4), Prc (5)		A1.A2 (0)		RW	Txt				US
21.04	Acceleration rate	{0.03}*	0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1000rpm	5.0	2.000	0.200	RW	Uni				US
21.05	Deceleration rate	{0.04}*	0.0 to 3200.0 s/100Hz	0.000 to 3,200.000 s/1000rpm	10.0	2.000	0.200	RW	Uni				US
21.06	Rated frequency	{0.47 }*	0 to 3000.0 Hz	VT> 0 to 1250.0Hz		R> 50 A> 60		RW	Uni				US
21.07	Rated current	{0.46}*	0 to RATED	_CURRENT_MAX A	Drive r	ated current (Pr	11.32)	RW	Uni		RA		US
21.08	()		0 to 180,000 rpm	0.00 to 40,000.00 rpm		EUR> 1,450.00 USA> 1,770.00	3,000.00	RW	Uni				US
21.09	21.09 Rated voltage {0.44}*		0 to AC_VO	200V rating drive: 230V 400V rating drive: EUR> 400V, USA> 460V 575V rating drive: 575V 690V rating drive: 690V				Uni		RA		US	
21.10	Rated power factor	{0.43}*	0.000 to 1.000	VT> 0.000 to 1.000	0).85		RW	Uni		RA		US
21.11	.11 Number of motor poles {0.42		Auto to 7	120 pole (0 to 60)	Auto (0)		6 POLE (3)	RW	Txt				US
21.12	Stator resistance		0.000 to) 65.000 x 10 mΩ		0.0		RW	Uni		RA		US
21.13	Voltage offset		0.0 to 25.0 V		0.0			RW	Uni	1	RA		US
21.14	Transient inductance (σL_{s})		0.000	to 500.000mH		0.000		RW	Uni		RA		US
21.15	Motor 2 active		OFF	(0) or On (1)				RO	Bit	1	NC	PT	
21.16	Thermal time constant	{0.45}*	0.	0 to 3000.0	8	39.0	20.0	RW	Uni	1			US
21.17	Speed controller Kp gain	{0.07 }*		0.000 to 6.5535 rad s ⁻¹		0.0300	0.0100	RW	Uni				US
21.18	Speed controller Ki gain	{0.08 }*		0.00 to 655.35 s/rad s ⁻¹		0.10	1.00	RW	Uni				US
21.19	Speed controller Kd gain {0.09}*			0.00000 to 0.65535 s ⁻¹ /rad s ⁻¹		00	RW	Uni				US	
21.20	Encoder phase angle	{0.43}*		0.0 to 359.9 ° electrical			0.0	RW	Uni	1			US
21.21	Speed feedback selector			drv (0), SLot1 (1), SLot2 (2), SLot3 (3)		drv (0)	RW	Txt				US
21.22	Current controller Kp gain	{0.38}*	0	to 30,000	20	200V: 75, 40 575V: 180, 6		RW	Uni				US
21.23	Current controller Ki gain	{0.39}*	0 to 30,000		40	200V: 1,000, 400V: 2,000, 575V: 2,400, 690V: 3,000		RW	Uni				US
21.24	Stator inductance (L _s)			VT> 0.00 to 5,000.00 mH		0.00		RW	Uni	1	RA		US
21.25	Motor saturation breakpoint	1		VT> 0 to 100% of rated flux		50		RW	Uni	1	1		US
21.26	Motor saturation breakpoint	2		VT> 0 to 100% of rated flux		75		RW	Uni	1	1		US
21.27	Motoring current limit		0 to MOTOR2_C	URRENT_LIMIT_MAX %	165.0	175.	0	RW	Uni	1	RA		US
21.28	Regen current limit		0 to MOTOR2_C	URRENT_LIMIT_MAX %	165.0 175.0			RW	Uni	1	RA		US
21.29	Symmetrical current limit	{0.06 }*	0 to MOTOR2_C	URRENT_LIMIT_MAX %	165.0	175.	0	RW	Uni	1	RA		US
21.30	Motor volts per 1,000 rpm, K	e		SV> 0 to 10,000 V			98	RW	Uni				US
21.31	Motor pole pitch		0.00	to 655.35 mm		0.00		RW	Uni	1	1		US

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

* The menu 0 references are only valid when the second motor map parameters have been made active by setting Pr **11.45** to 1. (The second motor map only becomes effective when the output stage of the drive is not enabled, i.e. inh, rdY, or trip states.)

When the second motor map parameters are active, the symbol 'Mot2' will appear in the lower left hand corner of the LCD display or the decimal point that is second from the right on the first row of the LED display is lit.

Encoder phase angle (servo mode only)

With drive software version V01.08.00 onwards, the encoder phase angles in Pr 3.25 and Pr 21.20 are copied to the SMARTCARD when using any of the SMARTCARD transfer methods.

With drive software version V01.05.00 to V01.07.01, the encoder phase angles in Pr **3.25** and Pr **21.20** are only copied to the SMARTCARD when using either Pr **0.30** set to Prog (2) or Pr **xx.00** set to 3yyy.

This is useful when the SMARTCARD is used to back-up the parameter set of a drive but caution should be used if the SMARTCARD is used to transfer parameter sets between drives.

Unless the encoder phase angle of the servo motor connected to the destination drive is known to be the same as the servo motor connected to the source drive, an autotune should be performed or the encoder phase angle should be entered manually into Pr **3.25** (or Pr **21.20**). If the encoder phase angle is incorrect the drive may lose control of the motor resulting in an O.SPd or Enc10 trip when the drive is enabled. With drive software version V01.04.00 and earlier, or when using software version V01.05.00 to V01.07.01 and Pr **xx.00** set to 4vvv is used.

then the encoder phase angles in Pr 3.25 and Pr 21.20 are not copied to the SMARTCARD. Therefore, Pr 3.25 and Pr 21.20 in the destination would not be changed during a transfer of this data block from the SMARTCARD.

				0 1		E1 1 1 1	Cotting	D .	D .			<u>.</u>		T 1 1 1		
5	Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	lechnical	Diagnostics	UL Listing
Info	ormation	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information
				j				p								

13.20 Menu 22: Additional Menu 0 set-up

	 2 Parameter 0.32 set-up 3 Parameter 0.33 set-up 4 Parameter 0.34 set-up 5 Parameter 0.35 set-up 6 Parameter 0.36 set-up 7 Parameter 0.37 set-up 0 Parameter 0.40 set-up 1 Parameter 0.41 set-up 8 Parameter 0.48 set-up 0 Parameter 0.50 set-up 1 Parameter 0.51 set-up 2 Parameter 0.52 set-up 3 Parameter 0.53 set-up 	or		Р	ange(<u> </u>		Defa	ult(⇔)				Ту	no		
	rai	ameu	51		ĸ	ange(₩		OL \	/т	SV			ועי	Je	
22.0	1 Parameter 0	.31 set	t-up	Ĩ	Pr 1.0	10 to Pr	21.51	1	Pr 1	1.33		RW	Un	i	PT	US
22.02	2 Parameter 0	.32 set	t-up		Pr 1.(10 to Pr	21.51		Pr 1	1.32		RW	Un	i	PT	US
22.03	3 Parameter 0	.33 set	t-up		Pr 1.(10 to Pr	21.51	Pr	6.09 Pr	5.16	Pr 0.00	RW	Un	i	PT	US
22.04	4 Parameter 0	.34 set	t-up		Pr 1.(10 to Pr	21.51		Pr 1	1.30		RW	Un	i	PT	US
22.0	5 Parameter 0	.35 set	t-up		Pr 1.(10 to Pr	21.51		Pr 1	1.24		RW	Un	j l	PT	US
22.0	6 Parameter 0	.36 set	t-up		Pr 1.(10 to Pr	21.51		Pr 1	1.25		RW	Un	i	PT	US
22.0	7 Parameter 0	.37 set	t-up		Pr 1.0	0 to Pr	21.51		Pr 1	1.23		RW	Un	i	PT	US
22.10	0 Parameter 0	.40 set	t-up		Pr 1.0	10 to Pr	21.51		Pr	5.12		RW	Un	i	PT	US
22.1	1 Parameter 0	.41 set	t-up		Pr 1.0	0 to Pr	21.51		Pr	5.18		RW	Un	i	PT	US
22.18	8 Parameter 0	.48 set	t-up		Pr 1.0	0 to Pr	21.51		Pr 1	1.31		RW	Un	i	PT	US
22.20	0 Parameter 0	.50 set	t-up		Pr 1.(10 to Pr	21.51		Pr 1	1.29		RW	Un	j l	PT	US
22.2	1 Parameter 0	.51 set	t-up		Pr 1.0	0 to Pr	21.51		Pr 1	0.37		RW	Un	i	PT	US
22.22	2 Parameter 0	.52 set	t-up		Pr 1.0	0 to Pr	21.51		Pr	0.00		RW	Un	i	PT	US
22.23	3 Parameter 0	.53 set	t-up		Pr 1.0	10 to Pr	21.51		Pr	0.00		RW	Un	i	PT	US
22.24	4 Parameter 0	.54 set	t-up		Pr 1.0	0 to Pr	21.51		Pr	0.00		RW	Un	i	PT	US
22.2	5 Parameter 0	.55 set	t-up		Pr 1.0	10 to Pr	21.51		Pr	0.00		RW	Un	i	PT	US
22.20	6 Parameter 0	.56 set	t-up		Pr 1.0	10 to Pr	21.51		Pr	0.00		RW	Un	i l	PT	US
22.2	7 Parameter 0	.57 set	t-up		Pr 1.0	10 to Pr	21.51		Pr	0.00		RW	Un	i	PT	US
22.28	8 Parameter 0	.58 set	t-up		Pr 1.0	10 to Pr	21.51		Pr	0.00		RW	Un	i l	PT	US
22.29	9 Parameter 0	. 59 set	t-up		Pr 1.(10 to Pr	21.51		Pr	0.00		RW	Un	i	PT	US
RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string					
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	P	S	Powe	er down s	save

Safety Information	Introduction	Product Information		Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
			•				•								

13.21 Advanced features

This section gives information on some of the advanced functions of the drive. For additional information see the *Advanced User Guide*.

Reference modes	Pr 1.14, Pr 1.15 and Pr 8.39
Braking modes	Pr 2.04 and Pr 2.08
S ramps	Pr 2.06 and Pr 2.07
Torque modes	Pr 4.08 and Pr 4.11
Stop modes	Pr 6.01, Pr 6.06, Pr 6.07 and Pr 6.08
Main loss modes	Pr 6.03, Pr 6.48, Pr 4.13 and Pr 4.14
Start/stop logic modes	Pr 6.04 and Pr 6.40
Catch a spinning motor	Pr 6.09 and Pr 5.40
Position loop modes	Pr 13.10
Fast disable	Pr 6.29

13.21.1 Reference modes

	1.1	4	Refere	ence se	elector					
R\	N	Txt					NC		US	
Û	1.14 Reference selector RW Txt A1.A2 (0), A1.Pr (2), A2.Pr (2 Pr (3), PAd (4), Prc (5)					⇔		A1.A2	(0)	

	1.1	5	Preset	t refere	ence se	lec	tor				
R١	RW							NC		US	
ţ	0 to 9					Û			0		

8.39 T28 and T29 auto-selection disable RW Bit US											
R۱	RW Bit									US	
ţ	OFF (0) or On (1)					₽			OFF (0)	

If Pr **8.39** is set to OFF (0), then the setting of Pr **1.14** automatically changes the operation of digital inputs T28 and T29 by configuring the destination parameters Pr **8.25** and Pr **8.26**. To allow Pr **8.25** and Pr **8.26** to be changed manually by the user, the automatic set-up must be disabled by setting Pr **8.39** to 1.

If Pr **8.39** is 0 and Pr **1.14** is changed, then a drive reset is required before the function of terminal T28 or T29 will become active.

Table 13-7 Active reference

Pr 1.14	Pr 1.15	[Digital Input T28	C	Digital Input T29	Pr 1.49	Pr 1.50	Active Reference
FT 1.14	FI 1.15	State	Function	State	Function		FT 1.50	Active Reference
	0 or 1	0	Local Remote			1	1	Analog input 1
	0011	1				2	1	Analog input 2
A1.A2 (0)	2 to 8		No function		Jog forward**	1 or 2	2 to 8	Preset reference 2 to 8
A1.A2 (0)		0	Local Remote		Jog lorward	1	1	Analog input 1
	9 *	1	Local Remote			2	1	Analog input 2
			No function			1 or 2	2 to 8	Preset reference 2 to 8
		0		0			1	Analog input 1
	0	1	Preset select bit 0	0	Preset select bit 1		2	Preset reference 2
	0	0	Flesel select bit 0	1	Flesel select bit 1		3	Preset reference 3
A1.Pr (1)		1				1	4	Preset reference 4
AI.FI (1)	1						1	Analog input 1
	2 to 8		No function		No function		2 to 8	Preset reference 2 to 8
	9 *		INO TURCUOR				1	Analog input 1
	9						2 to 8	Preset reference 2 to 8
		0		0 2 to 8 Preset reference 0 1 Analog inp 2 Preset select bit 1 2 3 Preset reference	Analog input 2			
	0	1	Preset select bit 0		Preset reference 2			
	0	0	Flesel select bit U	1			3	Preset reference 3
A2.Pr (2)		1				2	4	Preset reference 4
AZ.FI (2)	1					2	1	Analog input 2
	2 to 8		No function		No function		2 to 8	Preset reference 2 to 8
	9 *						1	Analog input 2
	9						2 to 8	Preset reference 2 to 8
		0		0			1	Preset reference 1
	0	1	Preset select bit 0	U	Preset select bit 1		2	Preset reference 2
Pr (3)	0	0		1		3	3	Preset reference 3
P I (3)		1				3	4	Preset reference 4
	1 to 8		No function		No function		1 to 8	Preset reference 1 to 8
	9 *						1 to 8	Preset reference 1 to 8
PAd (4)			No function		No function	4		Keypad reference
Prc (5)			No function		No function	5		Precision reference

* Setting Pr **1.15** to 9 enables the Preset reference scan timer. With the scan timer enabled analog 1 and preset references 2 to 8 are selected automatically in turn. Pr **1.16** defines the time between each change.

** Jog forward can only be selected when the drive is in either the ready (rdy), inhibit (inh) or trip states.

Safety	Introduction	Product	- ,	Mechanical		Getting	Basic	Running	Optimization	SMARTCARD		Advanced	Technical	Diagnostics	UL Listing
Information		Information	configuration	Installation	Installation	Started	parameters	the motor	•	operation	PLC	parameters	Data	0	Information

Preset references

Preset references 1 to 8 are contained in Pr 1.21 to Pr 1.28.

Keypad reference

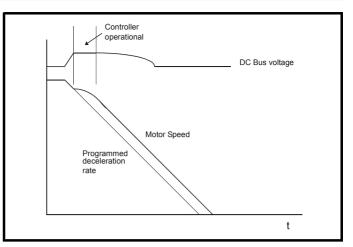
If Keypad reference is selected the drive sequencer is controlled directly by the keypad keys and the keypad reference parameter (Pr **1.17**) is selected. The sequencing bits, Pr **6.30** to Pr **6.34**, and Pr **6.37** have no effect and jog is disabled.

Precision reference

If Precision reference is selected the speed reference is given $\mbox{Pr}\,1.18$ and $\mbox{Pr}\,1.19.$

13.21.2 Braking Modes

	2.0	4	Ramp	mode	select					
R۱	RW Txt							US		
OL	Û	F	ASt (0) Std.h),	⇔		Std (1	1)	
	€	F	ASt (0)	, Std (1)					


This parameter does not affect the acceleration ramp, as the ramp output always rises at the programmed acceleration rate subject to the current limits. It is possible in under some unusual circumstances in open-loop mode (i.e. highly inductive supply) for the motor to reach a low speed in standard ramp mode, but not completely stop. It is also possible if the drive attempts to stop the motor with an overhauling load in any mode that the motor will not stop when standard ramp mode or fast ramp mode is used. If the drive is in the deceleration state the rate of fall of the frequency or speed is monitored. If this does not fall for 10 seconds the drive forces the frequency or the speed reference to zero. This only applies when the drive is in the deceleration state and not when the reference is simply set to zero.

0: Fast ramp

Fast ramp is used where the deceleration follows the programmed deceleration rate subject to current limits.

1: Standard ramp

Standard ramp is used. During deceleration, if the voltage rises to the standard ramp level (Pr **2.08**) it causes a controller to operate, the output of which changes the demanded load current in the motor. As the controller regulates the link voltage, the motor deceleration increases as the speed approaches zero speed. When the motor deceleration rate reaches the programmed deceleration rate the controller ceases to operate and the drive continues to decelerate at the programmed rate. If the standard ramp voltage (Pr **2.08**) is set lower than the nominal DC Bus level the drive will not decelerate the motor, but it will coast to rest. The output of the ramp controller (when active) is a current demand that is fed to the frequency changing current controller (Open-loop modes) or the torque producing current controller (Closed-loop vector or Servo modes). The gain of these controllers can be modified with Pr **4.13** and Pr **4.14**.

2: Standard ramp with motor voltage boost

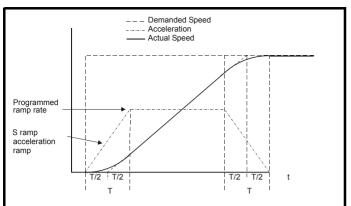
This mode is the same as normal standard ramp mode except that the motor voltage is boosted by 20%. This increases the losses in the motor giving faster deceleration.

	2.0	8	Stand	ard rar	np volt	age				
R١	N	Uni		RA					US	
€	D	C_VOL	0 to TAGE_		IAX V	Ŷ	400V 57	drive: I I 5V driv	ve: 375 EUR> 7 USA> 7 ve: 895 e: 1075	

This voltage is used as the control level for standard ramp mode. If this parameter is set too low the machine will coast to rest, and if it is set too high and no braking resistor is used the drive may give an over-volt 'OV' trip. The minimum level should be greater than the voltage produced on the DC Bus by the highest supply voltage. Normally the DC Bus voltage will be approximately the rms supply line voltage x $\sqrt{2}$.

Care should be taken in the setting of this parameter. It is recommended that the setting should be at least 50V higher than the maximum expected level of the DC Bus voltage. If this is not done, the motor may fail to decelerate on a STOP command.

13.21.3 S ramps


	2.0	6	S ram	p enab	le					
R۱	N	Bit							US	
Û	OFF (0) or On (1)					⇒		OFF (0)	

Setting this parameter enables the S ramp function. S ramp is disabled during deceleration using standard ramp. When the motor is accelerated again after decelerating in standard ramp the acceleration ramp used by the S ramp function is reset to zero.

	2.0)7	S ram	р ассе	leratio	n liı	nit						
R١	N	Uni								US			
OL			0.0 to 300.0 s ² /100Hz					3.1					
νт	€	0.000 to 100.000							1.50	0			
sv		s ² /1000rpm							0.03	0			

This parameter defines the maximum rate of change of acceleration/ deceleration. The default values have been chosen such that for the default ramps and maximum speed, the curved parts of the S will be 25% of the original ramp if S ramp is enabled.

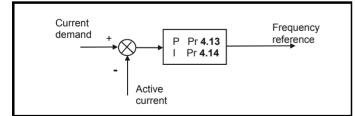
Г	Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
In	nformation		Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data		Information

Since the ramp rate is defined in s/100Hz or s/1000rpm and the S ramp parameter is defined in s²/100Hz or s²/1000rpm, the time T for the 'curved' part of the S can be determined from:

T = S ramp rate of change / Ramp rate

Enabling S ramp increases the total ramp time by the period T since an additional T/2 is added to each end of the ramp in producing the S.

13.21.4 Torque modes


	4.0	8	Torqu	e refer	ence					
R١	N	Bi							US	
Û	tUSER_CURRENT_MAX %							0.00)	

Parameter for main torque reference. The normal update rate for the torque reference is 4ms. However if analog inputs 2 or 3 on the drive are used as the source of the reference, the drive is in closed-loop vector or servo mode and the analog inputs are in voltage mode with zero offset, the sample time is reduced to $250 \mu s$.

	4.1	1	Torqu	e mode	e selec	tor				
R۱	N	Uni							US	
OL	介		0 t	o 1		⇔		0		
CL	Ŷ		0 te	o 4		-v		0		

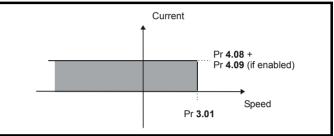
Open loop

If this parameter is 0 normal frequency control is used. If this parameter is set to 1 the current demand is connected to the current PI controller giving closed loop torque/current demand as shown below. The current error is passed through proportional and integral terms to give a frequency reference which is limited to the range: -SPEED_FREQ_MAX to +SPEED_FREQ_MAX.

Closed loop vector and Servo

When this parameter is set to 1, 2 or 3 the ramps are not active while the drive is in the run state. When the drive is taken out of the run state, but not disabled, the appropriate stopping mode is used. It is recommended that coast stopping or stopping without ramps are used. However, if ramp stop mode is used the ramp output is pre-loaded with the actual speed at the changeover point to avoid unwanted jumps in the speed reference.

0: Speed control mode


The torque demand is equal to the speed loop output.

1: Torque control


The torque demand is given by the sum of the torque reference and the torque offset, if enabled. The speed is not limited in any way, however, the drive will trip at the overspeed threshold if runaway occurs.

2: Torque control with speed override

The output of the speed loop defines the torque demand, but is limited between 0 and the resultant torque reference (Pr **4.08** and Pr **4.09** (if enabled)). The effect is to produce an operating area as shown below if the final speed demand and the resultant torque reference are both positive. The speed controller will try and accelerate the machine to the final speed demand level with a torque demand defined by the resultant torque reference. However, the speed cannot exceed the reference because the required torque would be negative, and so it would be clamped to zero.

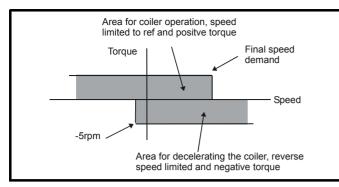
Depending on the sign of the final speed demand and the resultant torque the four areas of operation shown below are possible.

This mode of operation can be used where torque control is required, but the maximum speed must be limited by the drive.

3: Coiler/uncoiler mode

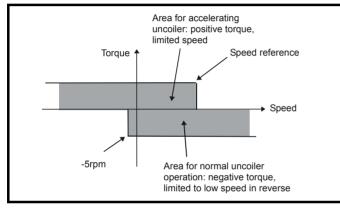
Positive final speed demand:

A positive resultant torque will give torque control with a positive speed limit defined by the final speed demand. A negative resultant torque will give torque control with a negative speed limit of -5rpm.


Negative final speed demand:

A negative resultant torque will give torque control with a negative speed limit defined by the final speed demand. A positive resultant torque will give torque control with a positive speed limit of +5rpm.

Example of coiler operation:


This is an example of a coiler operating in the positive direction. The final speed demand is set to a positive value just above the coiler reference speed. If the resultant torque demand is positive the coiler operates with a limited speed, so that if the material breaks the speed does not exceed a level just above the reference. It is also possible to decelerate the coiler with a negative resultant torque demand. The coiler will decelerate down to -5rpm until a stop is applied. The operating area is shown in the following diagram.

Safety	Introduction	Product	-)	Mechanical		Getting		Running	Optimization	SMARTCARD	Onboard PLC		Technical Data	Diagnostics	
Information		Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	- 3	Information

Example of uncoiler operation:

This is an example for an uncoiler operating in the positive direction. The final speed demand should be set to a level just above the maximum normal speed. When the resultant torque demand is negative the uncoiler will apply tension and try and rotate at 5rpm in reverse, and so take up any slack. The uncoiler can operate at any positive speed applying tension. If it is necessary to accelerate the uncoiler a positive resultant torque demand is used. The speed will be limited to the final speed demand. The operating area is the same as that for the coiler and is shown below:

4: Speed control with torque feed-forward

The drive operates under speed control, but a torque value may be added to the output of the speed controller. This can be used to improve the regulation of systems where the speed loop gains need to be low for stability.

13.21.5 Stop modes

	6.0)1	Stop r	node		_				
R١	N	Txt							US	
OL	Ŷ		St (0), ı dcl (3) diSAb	, td.dcl				rP (1)	
VT	V	(1) diSAbLE (5) COASt (0), rP (1),								
sv	no.rP (2)							no.rP	(2)	

Open-loop

Stopping is in two distinct phases: decelerating to stop, and stopped.

Stopping Mode	Phase 1	Phase 2	Comments
0: Coast	Inverter disabled	Drive cannot be re-enabled for 1s	Delay in phase 2 allows rotor flux to decay
1: Ramp	Ramp down to zero frequency	Wait for 1s with inverter enabled	
2: Ramp followed by DC injection	Ramp down to zero frequency	Inject DC at level specified by Pr 6.06 for time defined by Pr 6.07	
3: DC injection with zero speed detection	Low frequency current injection with detection of low speed before next phase	Inject DC at level specified by Pr 6.06 for time defined by Pr 6.07	The drive automatically senses low speed and therefore it adjusts the injection time to suit the application. If the injection current level is too small the drive will not sense low speed (normally a minimum of 50-60% is required).
4: Timed DC injection braking stop	Inject DC at level specified by Pr 6.06 for time specified by Pr 6.07		
5: Disable	Inverter disabled		Allows the drive to be immediately disabled and then re-enabled again immediately if required.

Once modes 3 or 4 have begun the drive must go through the ready state before being restarted either by stopping, tripping or being disabled.

If this parameter is set to DiASbLE (5), the disable stopping mode is used when the run command is removed. This mode will allow the drive to be started immediately by re-applying the run command. However, if the drive is disabled by removing the drive enable (i.e. via the Enable SAFE TORQUE OFF (SECURE DISABLE) input or Pr **6.15** *Drive enable*) then the drive cannot be re-enabled for 1s.

Closed loop vector and Servo

Only one stopping phases exists and the ready state is entered as soon as the single stopping action is complete.

Stopping Mode	Action
0: Coast	Inhibits the inverter
1: Ramp	Stop with ramp
2: No ramp	Stop with no ramp

The motor can be stopped with position orientation after stopping. This mode is selected with the position controller mode parameter (Pr 13.10). When this mode is selected Pr 6.01 has no effect.

	6.0)6	Injecti	on bra	king le	vel				
R۱	N	Uni					RA		US	
OL	$\hat{\mathbb{V}}$		0.0 to 150.0 %					100.	0	

Defines the current level used during DC injection braking as a percentage of motor rated current as defined by Pr **5.07**.

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
			9												

	6.0	7	Injecti	on bra	king ti	me			
RW		Uni						US	
OL 1	Ĵ		0.0 to	25.0 s		⇒	1.0		

Defines the time of injection braking during phase 1 with stopping modes 3 and 4, and during phase 2 with stopping mode 2 (see Pr **6.01**).

	6.0	8	Hold z	zero sp	eed							
R١	Ν	Bit								US		
OL							OFF (0)					
VT	\hat{v}	0	FF (0)	or On (1)							
sv									On (1	1)		

When this bit is set the drive remains active even when the run command has been removed and the motor has reached standstill. The drive goes to the 'StoP' state instead of the 'rdy' state.

13.21.6 Line power supply loss modes

	6.03 Line power supp							ode					
R\	Ν	Txt						US					
$\hat{\mathbb{G}}$	diS (0), StoP (1), ridE.th (2)					⇒			diS (0))			

0: diS

There is no line power supply loss detection and the drive operates normally only as long as the DC bus voltage remains within specification (i.e. >Vuu). Once the voltage falls below Vuu an under-voltage 'UV' trip occurs. This will reset itself if the voltage rises above Vuu Restart, as stated in the table below.

1: StoP - Open-loop

The action taken by the drive is the same as for ride through mode, except the ramp down rate is at least as fast as the deceleration ramp setting and the drive will continue to decelerate and stop even if the line power supply is re-applied. If normal or timed injection braking is selected the drive will use ramp mode to stop on loss of the supply. If ramp stop followed by injection braking is selected, the drive will ramp to a stop and then attempt to apply dc injection. At this point, unless the line power supply has been restored, the drive is likely to initiate a trip.

1: StoP - Closed-loop vector or Servo

The speed reference is set to zero and the ramps are disabled allowing the drive to decelerate the motor to a stop under current limit. If the Line power supply is re-applied while the motor is stopping any run signal is ignored until the motor has stopped. If the current limit value is set very low level the drive may trip UV before the motor has stopped.

2: ridE.th

The drive detects line power supply loss when the DC Bus voltage falls below Vml_1 . The drive then enters a mode where a closed-loop controller attempts to hold the DC Bus level at Vml_1 . This causes the motor to decelerate at a rate that increases as the speed falls. If the line power supply is re-applied it will force the DC Bus voltage above the detection threshold Vml_3 and the drive will continue to operate normally.

The output of the line power supply loss controller is a current demand that is fed into the current control system and therefore the gain Pr **4.13** and Pr **4.14** must be set up for optimum control. See parameters Pr **4.13** and Pr **4.14** for set-up details.

The following table shows the voltage levels used by drives with each voltage rating.

Voltage level	200V drive	400V drive	575V drive	690V drive
Vuu	175	330	43	35
Vml ₁	205*	410*	54	0*
Vml ₂	Vml ₁ - 10V	Vml ₁ - 20V	Vml ₁	- 25V
Vml ₃	Vml ₁ + 10V	Vml ₁ + 15V	Vml ₁	+ 50V
Vuu Restart	215	425	59	90

 * Vml_1 is defined by Pr **6.48**. The values in the table above are the default values.

		6.4	8	Line p	ower s	supply	loss ride through detection le						
	R۷	V	Uni						RA		US		
Û	¢	DC	C_VOL	0 to TAGE_		1AX V	ᡎ		40 57	0V driv 0V driv 5V driv 0V driv	e: 410 e: 540		

The line power supply loss detection level can be adjusted using this parameter. If the value is reduced below the default value, the default value is used by the drive. If the level is set too high, so that the line power supply loss detection becomes active under normal operating conditions, the motor will coast to a stop.

4	.13	Current loop P gain								
RW	Uni								US	
OL (;				仓		All vo	ltage ra	atings: 2	20
CL {		0 to 3	0,000		Ŷ		40 57	00V driv 0V driv 5V driv 0V driv	e: 150 e: 180	

	4.1	4	Curre	nt loop	l gain							
R	W Uni						US					
OL	ţ					₽	All vo	ltage ra	atings: 4	10		
CL	€		0 to 3	0,000		Ŷ	400 575)V drive 5V drive	e: 1,000 e: 2,000 e: 2,400 e: 3,000			

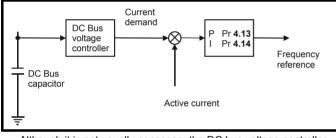
Open-loop

These parameters control the proportional and integral gains of the current controller used in the open loop drive. As already mentioned the current controller either provides current limits or closed loop torque control by modifying the drive output frequency. The control loop is also used in its torque mode during line power supply loss, or when the controlled mode standard ramp is active and the drive is decelerating, to regulate the flow of current into the drive. Although the default settings have been chosen to give suitable gains for less demanding applications it may be necessary for the user to adjust the performance of the controller. The following is a guide to setting the gains for different applications.

Current limit operation:

The current limits will normally operate with an integral term only, particularly below the point where field weakening begins. The proportional term is inherent in the loop. The integral term must be increased enough to counter the effect of the ramp which is still active even in current limit. For example, if the drive is operating at constant frequency and is overloaded the current limit system will try to reduce the output frequency to reduce the load. At the same time the ramp will try to increase the frequency back up to the demand level. If the integral gain is increased too far the first signs of instability will occur when operating around the point where field

	Introduction	Product Information	System	Mechanical	Electrical	Getting Started		Running	Optimization		011000110		Technical Data	Diagnostics	UL Listing
Information		Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data		Information


weakening begins. These oscillations can be reduced by increasing the proportional gain. A system has been included to prevent regulation because of the opposite actions of the ramps and the current limit. This can reduce the actual level that the current limit becomes active by 12.5%. This still allows the current to increase up to the current limit set by the user. However the current limit flag (Pr **10.09**) could become active up to 12.5% below the current limit depending on the ramp rate used.

Torque control:

Again the controller will normally operate with an integral term only, particularly below the point where field weakening begins. The first signs of instability will appear around base speed, and can be reduced by increasing the proportional gain. The controller can be less stable in torque control mode rather than when it is used for current limiting. This is because load helps to stabilise the controller, and under torque control the drive may operate with light load. Under current limit the drive is often under heavy load unless the current limits are set at a low level.

Line power supply loss and controlled standard ramp:

The DC bus voltage controller becomes active if line power supply loss detection is enabled and the drive supply is lost or controlled standard ramp is being used and the machine is regenerating. The DC bus controller attempts to hold the DC bus voltage at a fixed level by controlling the flow of current from the drive inverter into its DC bus capacitors. The output of the DC bus controller is a current demand which is fed into the current PI controller as shown in the following diagram.

Although it is not usually necessary the DC bus voltage controller can be adjusted with Pr **5.31**. However, it may often be necessary to adjust the current controller gains to obtain the required performance. If the gains are not suitable it is best to set up the drive in torque control first. Set the gains to a value that does not cause instability around the point at which field weakening occurs. Then revert back to open loop speed control in standard ramp mode. To test the controller the supply should be removed while the motor is running. It is likely that the gains can be increased further if required because the DC bus voltage controller has a stabilising effect, provided that the drive is not required to operate in torque control mode.

Closed-loop vector and Servo

The Kp and Ki gains are used in the voltage based current controller. The default values give satisfactory operation with most motors. However it may be necessary to change the gains to improve the performance. The proportional gain (Pr **4.13**) is the most critical value in controlling the performance. Either the value can be set by auto-tuning (see Pr **5.12**) or it can be set by the user so that

$$Pr 4.13 = Kp = (L / T) \times (I_{fs} / V_{fs}) \times (256 / 5)$$

Where:

T is the sample time of the current controllers. The drive compensates for any change of sample time, and so it should be assumed that the sample time is equivalent to the lowest sample rate of $167 \mu s$.

L is the motor inductance. For a servo motor this is half the phase to phase inductance that is normally specified by the manufacturer. For an induction motor this is the per phase transient inductance (σL_s). This is the inductance value stored in Pr **5.24** after the autotune test

is carried out. If σL_s cannot be measured it can be calculated from the steady state per-phase equivalent circuit of the motor as follows:

$$_{\mathrm{T}}\mathbf{L}_{\mathrm{s}} = \mathbf{L}_{\mathrm{s}} - \left(\frac{\mathbf{L}_{\mathrm{m}}^{\mathbf{z}}}{\mathbf{L}_{\mathrm{r}}}\right)$$

 I_{fs} is the peak full scale current feedback = K_C x $\sqrt{2}$ / 0.45. Where K_C is defined in Table 13-5.

 V_{fs} is the maximum DC Bus voltage.

Pr **4.13** = Kp = (L / 167
$$\mu$$
s) x (K_C x $\sqrt{2}$ / 0.45 / V_{fs}) x (256 / 5)
= K x L x K_C

Where:

 $K = [\sqrt{2} / (0.45 \times V_{fs} \times 167 \mu s)] \times (256 / 5)$

Drive voltage rating	Vfs	К
200V	415V	2322
400V	830V	1161
575V	990V	973
690V	1190V	809

This set-up will give a step response with minimum overshoot after a step change of current reference. The approximate performance of the current controllers will be as given below. The proportional gain can be increased by a factor of 1.5 giving a similar increase in bandwidth, however, this gives at step response with approximately 12.5% overshoot.

Switching frequency kHz	Current control sample time μs	Gain bandwidth Hz	Phase delay μs
3	167	TBA	1160
4	125	TBA	875
6	83	TBA	581
8	125	TBA	625
12	83	TBA	415
16	125	TBA	625

The integral gain (Pr 4.14) is less critical and should be set so that

Pr 4.14 = Ki = Kp x 256 x T / τ_m

Where:

 τ_m is the motor time constant (L / R).

R is the per phase stator resistance of the motor (i.e. half the resistance measured between two phases).

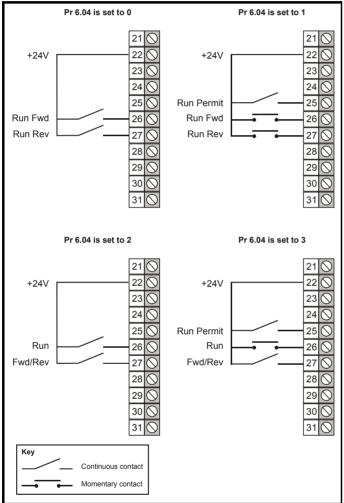
Therefore

 $\label{eq:Pr} \begin{array}{l} \mbox{Pr} \mbox{ 4.14 = Ki = (K \ x \ L \ x \ K_C) \ x \ 256 \ x \ 167 \mu s \ x \ R \ / \ L} \\ \mbox{ = 0.0427 \ x \ K \ x \ R \ x \ K_C} \end{array}$

The above equation gives a conservative value of integral gain. In some applications where it is necessary for the reference frame used by the drive to dynamically follow the flux very closely (i.e. high speed closed-loop induction motor applications) the integral gain may need to have a significantly higher value.

13.21.7 Start / stop logic modes

	6.0)4	Start /	stop le	ogic se	lect				
R١	N	Uni							US	
ţ	0 to 4							0		


This parameter is provided to allow the user to select several predefined digital input routing macros to control the sequencer. When a value between 0 and 3 is selected the drive processor continuously updates the destination parameters for digital I/O T25, T26 and T27, and the enable sequencer latching bit (Pr **6.40**). When a value of 4 is selected the destination parameters for these digital I/O and Pr **6.40** can be modified by the user.

	Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	-----------------------	--------------	------------------------	-------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

If Pr **6.04** is changed then a drive reset is required before the function of T25, T26 or T27 will become active.

Pr 6.04	T25	T26	T27	Pr 6.40
0	No Function	Pr 6.30 (Run Forward)	Pr 6.32 (Run Reverse)	0 (Non Latching)
1	Pr 6.39	Pr 6.30	Pr 6.32	1
	(Run Permit)	(Run Forward)	(Run Reverse)	(Latching)
2	No Function	Pr 6.34 (Run)	Pr 6.33 (Fwd/Rev)	0 (Non Latching)
3	Pr 6.39	Pr 6.34	Pr 6.33	1
	(Run Permit)	(Run)	(Fwd/Rev)	(Latching)
4	User	User	User	User
	programmable	programmable	programmable	programmable

Figure 13-47 Digital input connections when Pr 6.04 is set to 0 to 3

	6.4	10	Enable	e sequ	encer	atc	hin	g			
R۱	Ν	Bit				US					
$\hat{\mathbb{Q}}$	OFF (0) or On (1)					Û			OFF (0)	

This parameter enables sequencer latching. When sequencer latching is used, a digital input must be used as a run permit or not stop input. The digital input should write to Pr **6.39**. The run permit or not stop input must be made active to allow the drive to run. Making the run permit or not stop input inactive resets the latch and stops the drive.

13.21.8 Catch a spinning motor

	6.0	9	Catch	a spin	ning m	oto	r				
R١	N	Uni								US	
OL	☆		0 t	o 3		⇒			0		
CL	v		0 t	o 1			1				

Open-loop

When the drive is enabled with this parameter at zero, the output frequency starts at zero and ramps to the required reference. When the drive is enabled with this parameter at a non-zero value, the drive performs a start-up test to determine the motor speed and then sets the initial output frequency to the synchronous frequency of the motor.

The test is not carried out and the motor frequency starts at zero if one of the following is true.

- The run command is given when the drive is in the stop state
- The drive is first enabled after power-up with Ur_I voltage mode (Pr 5.14 = Ur_I).
- The run command is given with Ur_S voltage mode (Pr 5.14 = Ur_S).

With default parameters the length of the test is approximately 250ms, however, if the motor has a long rotor time constant (usually large motors) it may be necessary to extend the test time. The drive will do this automatically if the motor parameters including the rated load rpm are set up correctly for the motor.

For the test to operate correctly it is important that the stator resistance (Pr **5.17** or Pr **21.12**) is set up correctly. This applies even if fixed boost (Pr **5.14** = Fd) or square law (Pr **5.14** = SrE) voltage mode is being used. The test uses the rated magnetising current of the motor during the test, therefore the rated current (Pr **5.07**, Pr **21.07** and Pr **5.10**, Pr **21.10**) and power factor should be set to values close to those of the motor, although these parameters are not as critical as the stator resistance. For larger motors it may be necessary to increase Pr **5.40** *Spin start boost* from its default value of 1.0 for the drive to successfully detect the motor speed.

It should be noted that a stationary lightly loaded motor with low inertia might move slightly during the test. The direction of the movement is undefined. Restrictions may be placed on the direction of this movement and on the frequencies detected by the drive as follows:

Pr 6.09	Function
0	Disabled
1	Detect all frequencies
2	Detect positive frequencies only
3	Detect negative frequencies only

Closed-loop vector and Servo

When the drive is enabled with this bit at zero, the post ramp reference (Pr **2.01**) starts at zero and ramps to the required reference. When the drive is enabled with this bit at one, the post ramp reference is set to the motor speed.

When closed-loop vector mode is used without position feedback, and catch a spinning motor is not required, this parameter should be set to zero as this avoids unwanted movement of the motor shaft when zero speed is required. When closed-loop vector mode without position feedback is used with larger motors it may be necessary to increase Pr **5.40** *Spin start boost* from its default value of 1.0 for the drive to successfully detect the motor speed.

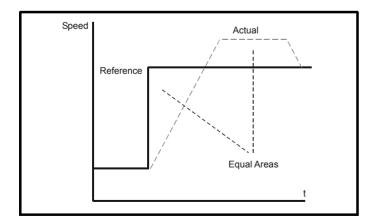
Safety		Product	System	Mechanical	Electrical	Gettina	Basic	Running		SMARTCARD	Onboard	Advanced	Technical		UL Listina
Information	Introduction	Information	configuration	Installation				the motor	Optimization	operation		parameters	Data	Diagnostics	Information
intornation		intornation	conliguration	matanation	installation	Otaricu	parameters			operation	T LO	parameters	Data		mormation

Non-rigid position control

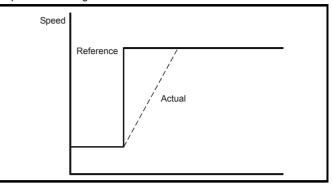
5	.40	Spin s	tart bo	ost					
RW	Uni							US	
OL VT [₹]	ţ	0.0 to	0 10.0		₽		1.0		

If Pr **6.09** is set to enable the catch a spinning motor function in openloop mode or closed-loop vector mode without position feedback, (Pr **3.24** = 1 or 3) this parameter defines a scaling function used by the algorithm that detects the speed of the motor. It is likely that for smaller motors the default value of 1.0 is suitable, but for larger motors this parameter may need to be increased. If the value of this parameter is too large the motor may accelerate from standstill when the drive is enabled. If the value of this parameter is too small the drive will detect the motor speed as zero even if the motor is spinning.

13.21.9 Position modes


	13.	10	Positi	on cor	ntroller	mo	de			
R۷	N	Uni							US	
OL	☆		0 te	o 2		亡		0		
CL	Ŷ		0 te	06				0		

This parameter is used to set the position controller mode as shown in the table below.


Parameter value	Mode	Feed forward active
0	Position controller disabled	
1	Rigid position control	✓
2	Rigid position control	
3	Non-rigid position control	✓
4	Non-rigid position control	
5	Orientation on stop	
6	Orientation on stop and when drive enabled	

Rigid position control

In rigid position control the position error is always accumulated. This means that, if for example, the slave shaft is slowed down due to excessive load, the target position will eventually be recovered by running at a higher speed when the load is removed.

In non-rigid position control the position loop is only active when the 'At Speed' condition is met (see Pr **3.06**). This allows slippage to occur while the speed error is high.

Velocity feed forward

The position controller can generate a velocity feed forwards value from the speed of the reference encoder. The feed-forwards value is passed to menu, and so ramps may be included if required. Because the position controller only has a proportional gain, it is necessary to use velocity feed-forwards to prevent a constant position error that would be proportional to the speed of the reference position.

If for any reason the user wishes to provide the velocity feed forward from a source other than the reference position, the feed forward system can be made inactive, i.e. Pr **13.10** = 2 or 4. The external feed forward can be provided via Menu 1 from any of the frequency/speed references. However, if the feed forward level is not correct a constant position error will exist.

Relative jogging

If relative jogging is enabled the feedback position can be made to move relative the reference position at the speed defined by Pr **13.17**.

Orientation

If Pr **13.10** is 5 the drive orientates the motor following a stop command. If hold zero speed is enabled (Pr **6.08** = 1) the drive remains in position control when orientation is complete and hold the orientation position. If hold zero speed is not enabled the drive is disabled when orientation is complete.

If Pr **13.10** is 6 the drive orientates the motor following a stop command and whenever the drive is enabled provided that hold zero speed is enabled (Pr **6.08** = 1). This ensures that the spindle is always in the same position following the drive being enabled.

When orientating from a stop command the drive goes through the following sequence:

- 1. The motor is decelerated or accelerated to the speed limit programmed in Pr **13.12**, using ramps if these are enabled, in the direction the motor was previously running.
- 2. When the ramp output reaches the speed set in Pr **13.12**, ramps are disabled and the motor continues to rotate until the position is found to be close to the target position (i.e. within 1/32 of a revolution). At this point the speed demand is set to 0 and the position loop is closed.
- 3. When the position is within the window defined by Pr **13.14**, the orientation complete indication is given in Pr **13.15**.

The stop mode selected by Pr **6.01** has no effect if orientation is enabled.

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation		Getting	Basic	Running the motor	Optimization	SMARTCARD operation	Onboard	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
mormation		mormation	conliguration	Installation	installation	Starteu	parameters			operation	I LO	parameters	Data		mornation

13.21.10 Fast Disable Software V01.10.00 and later

	6.2	29	Hardw	/are en	able				
R	0	Bit					NC	PT	
€		OFI	F (0) or	On (1)		Û			

This bit is a duplicate of Pr **8.09** and reflects the state of the enable input. With software V01.10.00 and later, if the destination of one of the drive digital I/O (Pr **8.21** to Pr **8.26**) is set to Pr **6.29** and the I/O is set as an input, the state of the input does not affect the value of this parameter as it is protected, however, it does provide a fast disable function.

The SAFE TORQUE OFF (SECURE DISABLE) input to the drive (T31) disables the drive in hardware by removing the gate drive signals from the inverter IGBT's and also disables the drive via the software system. When the drive is disabled by de-activating the SAFE TORQUE OFF (SECURE DISABLE) input (T31) there can be a delay of up to 20ms (typically 8ms) before the drive is disabled. However, if a digital I/O is set up to provide the fast disable function it is possible to disable the drive within 600μ s of de-activating the input. To do this an enable signal should be given to both the SAFE TORQUE OFF (SECURE DISABLE) input (T31) and to the digital I/O selected for the fast disable function. The state of the digital I/O including the effect of its associated invert parameter is ANDed with the SAFE TORQUE OFF (SECURE DISABLE) (T31) to enable the drive

If the safety function of the SAFE TORQUE OFF (SECURE DISABLE) input is required then there must not be a direct connection between the SAFE TORQUE OFF (SECURE DISABLE) input (T31) and any other digital I/O on the drive. If the safety function of the SAFE TORQUE OFF (SECURE DISABLE) input and the fast disable function is required then the drive should be given two separate independent enable signals. A safety related enable from a safe source connected to the SAFE TORQUE OFF (SECURE DISABLE) input on the drive. A second enable connected to the digital I/O on the drive selected for the fast disable function. The circuit must be arranged so that a fault which causes the fast input to be forced high cannot cause the SAFE TORQUE OFF (SECURE DISABLE) input to be forced high, including the case where a component such as a blocking diode has failed.

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Licothour	Getting Started		Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
information		information	configuration	Installation	Installation	Started	parameters	the motor	•	operation	PLC	parameters	Data	Ū.	information

14 Technical Data

14.1 Drive

14.1.1 Power and current ratings (Derating for switching frequency and temperature)

For a full explanation of 'Normal Duty' and 'Heavy Duty' refer to section 3.1 *Ratings* on page 12.

Table 14-1 Maximum permissible continuous output current @ 40°C (104°F) ambient (SPMD drives in docked condition)

			Normal Duty	/				Heavy Dut	у	
Model	Nomina	I rating	output curr	permissible o rent (A) for th ching frequer	e following	Nomina	al rating	output cur	permissible (rent (A) for th ching freque	ne following
	kW	hp	3kHz	4kHz	6kHz	kW	hp	3kHz	4kHz	6kHz
SPMA14X1	110	150	20	05	164	90	150	180	174	135
SPMA14X2	132	200	236	210	158	110	150	210	175	130
SPMA16X1	110	125	125	100	74	90	100	100	100	74
SPMA16X2	132	150	144	100	74	110	125	125	100	74
SPMD12X1	55	75	192	187	143	45	60	156	150	110
SPMD12X2	75	100	248	225	172	55	75	192	175	128
SPMD12X3	90	125	312	264	202	75	100	250	206	151
SPMD12X4	90	125	335	305	233	90	125	290	241	177
SPMD14X1	110	150	205	187	143	90	150	180	150	110
SPMD14X2	132	175	248	225	172	110	150	210	175	128
SPMD14X3	160	200	290	264	202	132	175	248	206	151
SPMD14X4	185	300	335	305	233	160	200	290	241	177
SPMD16X1	110	125	125	103	74	90	100	100	90	65
SPMD16X2	132	150	140	118	89	110	125	125	112	84
SPMD16X3	160	150	158	133	100	132	150	142	119	89
SPMD16X4	160	200	165	140	106	150	150	160	135	102

Table 14-2 Maximum permissible continuous output current @ 40°C (104°F) ambient (SPMD drives in undocked condition)

			Normal Duty	1				Heavy Dut	у	
Model	Nomina	l rating	output curr	permissible o ent (A) for th ching frequer	e following	Nomina	al rating	output cur	permissible (rent (A) for th ching freque	ne following
	kW	hp	3kHz	4kHz	6kHz	kW	hp	3kHz	4kHz	6kHz
SPMD12X1	55	75	192	187	143	45	60	156	150	110
SPMD12X2	75	100	248	225	172	55	75	192	175	128
SPMD12X3	90	125	312	264	202	75	100	250	206	151
SPMD12X4	110	150	350*	312	240	90	125	290	255	190
SPMD14X1	110	150	205	187	143	90	150	180	150	110
SPMD14X2	132	175	248	225	172	110	150	210	175	128
SPMD14X3	160	200	290	264	202	132	175	248	206	151
SPMD14X4	200	300	350*	312	240	160	200	290	255	190
SPMD16X1	110	125	125	109	79	90	100	100	95	68
SPMD16X2	132	150	144	128	96	110	125	125	119	89
SPMD16X3	160	150	168	1142	107	132	150	144	126	99
SPMD16X4	160	200	192	158	119	150	150	168	144	102

* Rating at 35°C.

NOTE

For the definition of ambient temperature, see section 5.8.2 Enclosure ambient temperature on page 51.

NOTE

An additional derating of 5% is required for parallel applications.

Safety	Induced and the second	Product	System	Mechanical	Electrical	Getting		Running	0.11	SMARTCARD	Onboard	Advanced	Technical	Discourse	UL Listing
nformation	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PI C	parameters	Data	Diagnostics	Information
monnation		mormation	ooringaraaori	motanation	motanation	otartoa	paramotoro			operaderi	I LO	paramotoro			internation

Table 14-3	Maximum permissible continuous output current @ 50°C (122°F) ambient (SPMD drives in docked condition	on)
------------	---	-----

		Normal Duty			Heavy Duty			
Model	Maximum permissi the follow	ble continuous out ving switching freq		Maximum permissible continuous output current (A) for the following switching frequencies				
	3kHz	4kHz	6kHz	3kHz	4kHz	6kHz		
SPMA14X1	191	190	148	180	158	122		
SPMA14X2	198	181	138	190	158	116		
SPMA16X1	98	81	59	98	81	59		
SPMA16X2	98	81	59	98	81	59		
SPMD12X1	172	157	120	156	135	100		
SPMD12X2	208	189	145	190	158	116		
SPMD12X3	244	222	170	224	186	137		
SPMD12X4	282	256	196	262	218	160		
SPMD14X1	172	157	120	163	135	100		
SPMD14X2	208	189	145	190	158	116		
SPMD14X3	244	222	170	224	186	137		
SPMD14X4	282	256	196	262	218	160		
SPMD16X1	114	93	67	100	82	59		
SPMD16X2	122	102	75	121	101	75		
SPMD16X3	138	117	86	129	108	80		
SPMD16X4	138	117	85	137	110	77		

Table 14-4 Maximum permissible continuous output current @ 50°C (122°F) ambient (SPMD drives in undocked condition)

		Normal Duty			Heavy Duty				
Model	Maximum permissi the follow	ble continuous out ving switching freq			Maximum permissible continuous output current (A) for the following switching frequencies				
	3kHz	4kHz	6kHz	3kHz	4kHz	6kHz			
SPMD12X1	172	157	120	156	135	100			
SPMD12X2	208	189	145	190	158	116			
SPMD12X3	244	222	170	224	186	137			
SPMD12X4	305	265	200	270	230	170			
SPMD14X1	172	157	120	163	135	100			
SPMD14X2	208	189	145	190	158	116			
SPMD14X3	244	222	170	224	186	137			
SPMD14X4	305	265	200	270	230	170			
SPMD16X1	121	99	71	100	86	62			
SPMD16X2	135	114	85	125	108	81			
SPMD16X3	154	127	95	137	115	86			
SPMD16X4	157	133	100	155	129	97			

NOTE

For the definition of ambient temperature, see section 5.8.2 Enclosure ambient temperature on page 51.

NOTE

An additional derating of 5% is required for parallel applications.

Table 14-5 Unidrive SPMC/U maximum permissible ratings

	35°C (95°F) amb	ient temperature	40°C (104°F) amb	pient temperature	50°C (122°F) ambient temperature		
Model	Maximum AC input current A	Maximum DC output current A	Maximum AC input current A	Maximum DC output current A	Maximum AC input current A	Maximum DC output current A	
SPMC/U1402	358	394	344	379	302	333	
SPMC/U2402	2 x 325	2 x 359	2 x 312	2 x 345	2 x 278	2 x 307	
SPMC/U1601	203	218	195	209	169	181	
SPMC/U2601	2 x 180	2 x 192	2 x 173	2 x 185	2 x 152	2 x 163	

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started		Running the motor	Optimization	SMARTCARD operation		Advanced parameters	Technical Data	Diagnostics	UL Listing Information
intornation		inionnation	configuration	motanation	motanation	otaricu	parameters			operation	1 LO	parameters	Data		mormation

14.1.2 Power dissipation

Table 14-6 Losses @ 40°C (104°F) ambient (SPMD drives in docked condition)

		Drive	losses (W) ta	king into cor	sideration ar	ny current d	erating for t	he given con	ditions	
Madal			Normal Duty	1				Heavy Duty	/	
Model	Nomina	l rating	3kHz	4kHz	6kUz	Nomina	al rating	3kHz	4kHz	6kU=
	kW	hp	JKHZ	4KHZ	6kHz	kW	hp	3KHZ	4KHZ	6kHz
SPMA14X1	110	150	2058	2259	2153	90	150	1817	1935	1772
SPMA14X2	132	200	2477	2455	2255	110	150	2192	2042	1888
SPMA16X1	110	125	2573	2512	2438	90	100	2573	2512	2438
SPMA16X2	132	150	3106	2512	2438	110	125	3106	2512	2438
SPMD12X1	55	75	2020	2210	2580	45	60	1630	1790	2110
SPMD12X2	75	100	1920	2180	2700	55	75	1510	1720	2150
SPMD12X3	90	125	3410	3700	3340	75	100	2670	2930	2910
SPMD12X4	90	125	3730	3540	3240	90	125	3020	3060	2820
SPMD14X1	110	150	2380	2650	2790	90	150	2070	2310	2370
SPMD14X2	132	175	2930	3290	3440	110	150	2490	2800	3120
SPMD14X3	160	200	3500	3650	3410	132	175	2930	3290	3120
SPMD14X4	185	300	3690	3520	3360	160	200	3380	3220	3040
SPMD16X1	110	125	2740	3040	2950	90	100	2160	2550	2680
SPMD16X2	132	150	3110	3040	2950	110	125	2740	2970	2700
SPMD16X3	160	150	3290	3180	2860	132	150	2840	2820	2540
SPMD16X4	160	200	3300	3160	2880	150	150	3060	2820	2540

NOTE

Loss figures for the SPMD docked drives represent losses for the IGBT, rectifier and control master pod at the maximum current given.

Table 14-7 Losses @ 40°C (104°F) ambient (SPMD drives in undocked condition)

		Drive	losses (W) ta	king into cor	sideration ar	ny current d	erating for t	he given con	ditions			
Madal		Να		Normal Duty			Heavy Duty					
Model	Nomina	l rating	3kHz	4kHz	6kHz	Nominal rating		3kHz	41-11-	6kHz		
	kW	hp	экпи	4602	OKITZ	kW	hp	ЭКПZ	4kHz	OKI		
SPMD12X1	55	75	1490	1680	2050	45	60	1220	1380	1700		
SPMD12X2	75	100	1920	2180	2700	55	75	1510	1720	2150		
SPMD12X3	90	125	2420	2730	2820	75	100	1940	2200	2450		
SPMD12X4	110	150	2730	2890	2810	90	125	2250	2500	2440		
SPMD14X1	110	150	1800	2060	2420	90	150	1580	1820	2060		
SPMD14X2	132	175	2210	2570	3110	110	150	1900	2210	2760		
SPMD14X3	160	200	2600	3020	3110	132	175	2210	2570	2760		
SPMD14X4	185	300	3080	3090	3100	160	200	2600	2760	2760		
SPMD16X1	110	125	2420	2900	2990	90	100	1920	2310	2660		
SPMD16X2	132	150	2820	2980	2990	110	125	2420	2870	2680		
SPMD16X3	160	150	2470	2340	2210	132	150	2150	2040	1940		
SPMD16X4	160	200	3110	3030	2830	150	150	2830	2670	2480		

NOTE

Loss figures for the SPMD undocked drives represent losses for the IGBT and control master pod at the maximum current given.

NOTE

For the definition of ambient temperature, see section 5.8.2 Enclosure ambient temperature on page 51.

Ir	Safety	Introduction	Product Information		Mechanical	Electrical Installation	Getting Started		Running the motor	Optimization	SMARTCARD operation	Onboard	Advanced	Technical Data	Diadnostics	UL Listing
Ir	itormation		Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	Ū.	information

Table 14-8 Losses @ 50°C (122°F) ambient (SPMD drives in docked condition)

	Drive I	osses (W) taking in	to consideration a	ny current derating	for the given condi	tions		
Model		Normal Duty		Heavy Duty				
	3kHz	4kHz	6kHz	3kHz	4kHz	6kHz		
SPMA14X1	1942	2118	1939	1817	1747	1610		
SPMA14X2	2068	2108	1997	1979	1851	1715		
SPMA16X1	2084	2036	1978	2084	2036	1978		
SPMA16X2	2084	2036	1978	2084	2036	1978		
SPMD12X1	2020	2210	2580	1630	1790	2110		
SPMD12X2	2650	2910	2960	2030	2240	2630		
SPMD12X3	3320	3170	3960	2670	2870	2630		
SPMD12X4	3190	3060	2860	2940	2760	2560		
SPMD14X1	2380	2650	2520	2070	2260	2150		
SPMD14X2	2930	3000	2810	2490	2800	2800		
SPMD14X3	3150	3010	2810	2930	2980	2810		
SPMD14X4	3050	2920	2760	3030	2850	2720		
SPMD16X1	2670	2610	2530	2160	2550	2430		
SPMD16X2	2670	2600	2520	2670	2610	2420		
SPMD16X3	2720	2650	2530	2710	2530	2310		
SPMD16X4	2720	2650	2500	2710	2510	2280		

NOTE

Loss figures for the SPMD docked drives represent losses for the IGBT, rectifier and control master pod at the maximum current given.

Table 14-9 Losses @ 50°C (122°F) ambient (SPMD drives in undocked condition)

	Drive	losses (W) taking in	to consideration a	ny current derating	for the given cond	itions	
Model		Normal Duty	Heavy Duty				
	3kHz	4kHz	6kHz	3kHz	4kHz	6kHz	
SPMD12X1	1490	1680	2050	1220	1380	1700	
SPMD12X2	1920	2180	2570	1510	1720	2150	
SPMD12X3	2420	2630	2550	1940	2200	2240	
SPMD12X4	2670	2620	2530	2250	2270	2230	
SPMD14X1	1800	2060	2210	1580	1820	1880	
SPMD14X2	2210	2570	2700	1900	2210	2520	
SPMD14X3	2600	2700	2700	2210	2520	2520	
SPMD14X4	2700	2680	2700	2520	2510	2510	
SPMD16X1	2420	2640	2630	1920	2310	2410	
SPMD16X2	2640	2630	2640	2420	2600	2430	
SPMD16X3	2700	2700	2530	2460	2420	2250	
SPMD16X4	2700	2700	2550	2550	2420	2250	

NOTE

Loss figures for the SPMD undocked drives represent losses for the IGBT and control master pod at the maximum current given.

Table 14-10 Unidrive SPMC/U losses @ 40/50°C (104/122°F) ambient

Model	Maximum Losses W
SPMU1401	442
SPMU1402	765
SPMU2402	1524
SPMC1401	525
SPMC1402	871
SPMC2402	1737
SPMU1601	481
SPMU2601	956
SPMC1601	503
SPMC2601	1001

Table 14-11 Power losses from the front of the drive when through-panel mounted

Model	Power losses W
SPMA	≤480
SPMD	≤300
SPMC/U	≤50

In	Safety	Introduction	Product	System	Mechanical		Getting		Running	Optimization	SMARTCARD	Onboard	Advanced	Technical Data	Diagnostics	UL Listing
Ir	nformation		Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	- 3	Information

Table 14-12 Input line reactor losses @ 40/50°C (104/122°F) ambient

Part number	Model	Maximum Losses
Part number	Woder	w
4401-0181	INL401	148
4401-0182	INL402	205
4401-0183	INL601	88
4401-0184	INL602	116
4401-0206	INL411	252
4401-0207	INL412	270
4401-0190	INL611	241
4401-0191	INL612	269

Table 14-13 Output sharing choke losses @ 40/50°C (104/122°F) ambie	Table 14-13	put sharing choke losses	s @ 40/50°C	(104/122°F) ambie
---	-------------	--------------------------	-------------	-------------------

Part number	Model	Maximum Losses W
4401-0197	OTL401	113
4401-0198	OTL402	145
4401-0199	OTL403	122
4401-0200	OTL404	156
4401-0201	OTL601	63
4401-0202	OTL602	74
4401-0203	OTL603	61
4401-0204	OTL604	70
4401-0188	OTL411	71
4401-0189	OTL412	85
4401-0192	OTL413	83
4401-0186	OTL414	100
4401-0193	OTL611	74
4401-0194	OTL612	85
4401-0195	OTL613	88
4401-0196	OTL614	100

14.1.3 Supply requirements

Voltage:

SPMXX20X 200V to 240V ±10% SPMXX40X 380V to 480V ±10% SPMXX60X 500V to 690V ±10%

Number of phases: 3

Maximum supply imbalance: 2% negative phase sequence (equivalent to 3% voltage imbalance between phases).

Frequency range: 48 to 65 Hz

For UL compliance only, the maximum supply symmetrical fault current must be limited to $100 \mbox{kA}$

Unidrive SPMA/D heatsink fan supply requirements

munve or mA/D neatonik la	n suppry requirements
Nominal voltage:	24V
Minimum voltage:	23.5V
Maximum voltage:	27V
Current drawn:	
SPMA (all)	3.3A
SPMD12X1 to 12X4	3.3A
SPMD14X1 and 14X2	3.3A
SPMD14X3 and 14X4	4.5A
SPMD16X1 and 16X2	3.3A
SPMD16X3 and 16X4	4.5A
Recommended power supply:	24V, 5A
Recommended fuse:	
SPMA (all)	4A fast blow (I ² t <20A ² s)
SPMD12X1 to 12X4	4A fast blow (I ² t <20A ² s)
SPMD14X1 and 14X2	4A fast blow (I ² t <20A ² s)
SPMD14X3 and 14X4	6.3A fast blow (I ² t <100A ² s)

SPMD16X1 and 16X2 SPMD16X3 and 16X4 4A fast blow (I²t <20A²s) 6.3A fast blow (I²t <100A²s)

Unidrive SPMC/U external 24V supply requirements

Nominal voltage:	24V
Minimum voltage:	23V
Maximum voltage:	28V
Current drawn:	3A
Minimum start-up voltage:	18V
Recommended power supply:	24V, 100W, 4.5A
Recommended fuse:	4A fast blow ($I^2t < 20A^2s$)

NOTE

If the Unidrive SPM 24V power supply (CT part number 8510-0000) is used to supply the Unidrive SPMA/D or SPMC/U fusing is not required.

14.1.4 Unidrive SPM 24V power supply

CT part number:	8510-0000
Current rating:	10A
Input voltage:	85 to 123 / 176 to 264Vac auto switching
Cable size:	0.5mm ² (20AWG)
Fuse:	5A slow-blow from supply

14.1.5 Additional line reactors

Reactor current ratings

See section 6.2.3 *Supplies requiring additional line reactance* on page 68.

The current rating of the line reactors should be as follows:

Continuous current rating:

Not less than the continuous input current rating of the drive

Repetitive peak current rating:

Not less than twice the continuous input current rating of the drive

14.1.6 Motor requirements

No. of phases: 3

Maximum voltage: Unidrive SPM (200V): 240V Unidrive SPM (400V): 480V Unidrive SPM (690V): 690V

14.1.7 Temperature, humidity and cooling method

Ambient temperature operating range:

 0° C to 50° C (32° F to 122° F). Output current derating must be applied at ambient temperatures >40°C (104° F).

Minimum temperature at power-up:

-15°C (5°F), the supply must be cycled when the drive has warmed up to 0°C (32°F).

Cooling method: Forced convection

Maximum humidity: 95% non-condensing at 40°C (104°F)

14.1.8 Storage

-40°C (-40°F) to +50°C (122°F) for long term storage, or to +70°C (158°F) for short term storage.

14.1.9 Altitude

Altitude range: 0 to 3,000m (9,900 ft), subject to the following conditions:

1,000m to 3,000m (3,300 ft to 9,900 ft) above sea level: de-rate the maximum output current from the specified figure by 1% per 100m (330 ft) above 1,000m (3,300 ft)

For example at 3,000m (9,900ft) the output current of the drive would have to be de-rated by 20%.

14.1.10 IP Rating (Ingress Protection)

The Unidrive SPM is rated to IP20 pollution degree 2 (dry, nonconductive contamination only) (NEMA 1). However, it is possible to configure the drive to achieve IP54 rating (NEMA 12) at the rear of the heatsink for through-panel mounting (some current derating is required, and the fan requires changing on SPMC/U).

mormation reconsignation installation of and parameters are motor reconsigned in the parameters batter		Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diadnostics	UL Listing Information
--	--	-----------------------	--------------	------------------------	-------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	------------------------	----------------	---------------------	-------------------	-------------	---------------------------

The IP rating of a product is a measure of protection against ingress and contact to foreign bodies and water. It is stated as IP XX, where the two digits (XX) indicate the degree of protection provided as shown in Table 14-14.

Table 14-14 IP Rating degrees of protection

	First digit		Second digit
	otection against contact and gress of foreign bodies	Pr	otection against ingress of water
0	No protection	0	No protection
1	Protection against large foreign bodies $\phi > 50$ mm (large area contact with the hand)	1	Protection against vertically falling drops of water
2	Protection against medium size foreign bodies $\phi > 12mm$ (finger)	2	Protection against spraywater (up to 15° from the vertical)
3	Protection against small foreign bodies $\phi > 2.5$ mm (tools, wires)	3	Protection against spraywater (up to 60° from the vertical)
4	Protection against granular foreign bodies $\phi > 1$ mm (tools, wires)	4	Protection against splashwater (from all directions)
5	Protection against dust deposit, complete protection against accidental contact.	5	Protection against heavy splash water (from all directions, at high pressure)
6	Protection against dust ingress, complete protection against accidental contact.	6	Protection against deckwater (e.g. in heavy seas)
7	-	7	Protection against immersion
8	-	8	Protection against submersion

Table 14-15 NEMA enclosure ratings

NEMA rating	Description
Туре 1	Enclosures are intended for indoor use, primarily to provide a degree of protection against contact with the enclosed equipment or locations where unusual service conditions do not exist.
Type 12	Enclosures are intended for indoor use, primarily to provide a degree of protection against dust, falling dirt and dripping non-corrosive liquids.

14.1.11 Corrosive gases

Concentrations of corrosive gases must not exceed the levels given in: • Table A2 of EN 50178

• Class 3C2 of IEC 60721-3-3

This corresponds to the levels typical of urban areas with industrial activities and/or heavy traffic, but not in the immediate neighborhood of industrial sources with chemical emissions.

14.1.12 Vibration

Bump Test

Testing in each of three	mutually perpendicular axes in turn.
Referenced standard:	IEC 60068-2-29: Test Eb:
Severity:	10g, 6ms, half sine
No. of Bumps:	600 (100 in each direction of each axis)

Random Vibration Test

Testing in each of three	e mutually perpendicular axes in turn.
Referenced standard:	IEC 60068-2-64: Test Fh:
Severity:	1.0 m ² /s ³ (0.01 g ² /Hz) ASD from 5 - 20 Hz
	-3 dB/octave from 20 to 200 Hz
Duration:	30 minutes in each of 3 mutually
	perpendicular axes.

Sinusoidal Vibration Test

Testing in each of three mutually perpendicular axes in turn.

Referenced standard:	IEC 60068-2-6: Test Fc:
Frequency range:	2 - 500 Hz
Severity:	3.5 mm peak displacement from 2 to 9 Hz
	10 m/s ² peak acceleration from 9 to 200 Hz
	15 m/s ² peak acceleration from 200 to
	500 Hz
Sweep rate:	1 octave/minute
Duration:	15 minutes in each of 3 mutually
	perpendicular axes.

14.1.13 Starts per hour

By electronic control: unlimited

By interrupting the AC supply: ≤20 (equally spaced)

14.1.14 Start up time

This is the time taken from the moment of applying power to the drive, to the drive being ready to run the motor:

All sizes: 4s

14.1.15 Output frequency / speed range

Open-loop frequency range: 0 to 3,000Hz

Closed-loop speed range: 0 to 40,000rpm

Closed-loop frequency range: 0 to 1,250Hz (Limit to 600Hz for good performance)

14.1.16 Accuracy and resolution

Speed:

The absolute frequency and speed accuracy depends on the accuracy of the crystal used with the drive microprocessor. The accuracy of the crystal is 100ppm, and so the absolute frequency/speed accuracy is 100ppm (0.01%) of the reference, when a preset speed is used. If an analog input is used the absolute accuracy is further limited by the absolute accuracy of the analog input.

The following data applies to the drive only; it does not include the performance of the source of the control signals.

Open loop resolution:

Preset frequency reference: 0.1Hz Precision frequency reference: 0.001Hz

Closed loop resolution

Preset speed reference: 0.1rpm Precision speed reference: 0.001rpm Analog input 1: 16bit plus sign Analog input 2: 10bit plus sign

Current:

The resolution of the current feedback is 10bit plus sign. The typical accuracy of the current feedback is 5%.

14.1.17 Acoustic noise

The heatsink fan generates the majority of the acoustic noise produced by the drive. The heatsink fan on Unidrive SPMA and SPMD is a variable speed fan. The drive controls the speed at which the fan runs based on the temperature of the heatsink and the drive's thermal model system. The Unidrive SPMA and SPMD are also installed with variable speed fan to ventilate the capacitor bank.

Table 14-16 gives the acoustic noise produced by the drive for the heatsink fan running at the maximum and minimum speeds.

Table 14-16 Acoustic noise

Size	Maximum pressur	e level at 1m (dBA)
3120	Max speed	Min speed
SPMA		
SPMD12X1 to 12X4 SPMD14X1 to 14X2 SPMD16X1 to 16X2	72	43
SPMD14X3 to 14X4 SPMD16X3 to 16X4	75	
SPMC/U	53	

Safe	ety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Informa	ation	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

14.1.18 Overall dimensions

- H Height including surface mounting brackets
- W Width
- D Projection forward of panel when surface mounted
- F Projection forward of panel when through-panel mounted
- R Projection rear of panel when through-panel mounted

Table 14-17 Overall drive dimensions

Size			Dimension		
5126	Н	w	D	F	R
SPMA	1169mm (46.016in)			200mm (7.874in)	≤98mm (3.858in)
SPMD	795.5mm 31.319in	310mm (12.205in)	298mm (11.732in)	202mm	≤95mm
SPMC/U	399.1mm 15.731in			(7.953in)	(3.740in)

14.1.19 Weights

Table 14-18 Overall drive weights

Size	kg	lb
SPMA	80	176.4
SPMD	42	92.6
SPMC/U	20	44

14.1.20 Input current, fuse and cable size ratings

The input current is affected by the supply voltage and impedance.

Typical input current

The values of typical input current are given to aid calculations for power flow and power loss.

The values of typical input current are stated for a balanced supply.

Maximum continuous input current

The values of maximum continuous input current are given to aid the selection of cables and fuses. These values are stated for the worst case condition with the unusual combination of stiff supply with bad balance. The value stated for the maximum continuous input current would only be seen in one of the input phases. The current in the other two phases would be significantly lower.

The values of maximum input current are stated for a supply with a 2% negative phase-sequence imbalance and rated at the maximum supply fault current given in Table 14-19.

Table 14-19 Supply fault current used to calculate maximum input currents

Model	Symmetrical fault level (kA)
SPMA	
SPMD	100
SPMC/U	

Fuse protection must be provided at the power input.

Table 14-20 Unidrive SPMA input current, fuse and cable size ratings

	Typical input current	Maximum		option 1 <u>OR</u> Ferraz HSJ	Fuse o HRC <u>AND</u> Se	Typical cable size					
Model		input current	IEC class gR	North America: Ferraz HSJ	HRC IEC class gG UL class J	Semi- conductor IEC class aR	AC input		Motor	output	Cable installation
	Α	Α	Α	Α	Α	Α	mm ²	AWG	mm ²	AWG	method
SPMA14X1	224	241	315	300	250	315	2 x 70	2 x 2/0	2 x 70	2 x 2/0	B2
SPMA14X2	247	266	315	300	315	350	2 x 120	2 x 4/0	2 x 120	2 x 4/0	B2
SPMA16X1	128	138	200	200	200	200	2 x 50	2 x 1	2 x 50	2 x 1	B2
SPMA16X2	144	156	200	200	200	200	2 x 50	2 x 1	2 x 50	2 x 1	B2

Table 14-21 Unidrive SPMD input current, fuse and cable size ratings

	Typical DC	Maximum DC	Maximum DC	DC fuse		Ту	pical cable	e size	
Model	input current	input current	input voltage for cable rating	IEC class aR	DC i	nput	Motor	Cable installation	
	Α	Α	v	Α	mm ²	AWG	mm ²	AWG	method
SPMD12X1	202	343	400	400	2 x 70	2 x 2/0	2 x 70	2 x 2/0	B2
SPMD12X2	261	400	400	560	2 x 95	2 x 4/0	2 x 120	2 x 4/0	B2
SPMD12X3	338	457	400	560	2 x 120	2 x 4/0	2 x 120	2 x 4/0	B2
SPMD12X4	372	552	400	560	2 x 120	2 x 4/0	2 x 120	2 x 4/0	B1 or C
SPMD14X1	222	343	800	400	2 x 70	2 x 2/0	2 x 70	2 x 2/0	B2
SPMD14X2	268	400	800	560	2 x 95	2 x 4/0	2 x 120	2 x 4/0	B2
SPMD14X3	314	457	800	560	2 x 120	2 x 4/0	2 x 120	2 x 4/0	B2
SPMD14X4	379	552	800	560	2 x 120	2 x 4/0	2 x 120	2 x 4/0	B1 or C
SPMD16X1	135	191	1150	250	2 x 95	2 x 4/0	2 x 50	2 x 1	B2
SPMD16X2	157	240	1150	315	2 x 120	2 x 4/0	2 x 50	2 x 1	B2
SPMD16X3	184	275	1150	350	2 x 120	2 x 4/0	2 x 50	2 x 1	B2
SPMD16X4	209	323	1150	400	2 x 120	2 x 4/0	2 x 50	2 x 1	B2

NOTE

Fuse ratings are for a DC supply or paralleled DC bus arrangements. When supplied by a single SPMC or SPMU of the correct rating, the AC input fuses provide protection for the drive and no DC fuse is required.

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information

Table 14-22 Unidrive SPMC/U 400V input current, fuse and cable size rating

I			Maximum	Typical Semiconductor fuse in series with HRC fuse			Typical cable size					
	Model		input current	output current	HRC IEC Class gG UL class J	Semi- conductor IEC class aR	AC input		DC output cable		Cable installation	
			Α	Α	Α	Α	mm ²	AWG	mm ²	AWG	method	
I	0	SPMC/U1402	344	379	450	400	2 x 120	2 x 4/0	2 x 120	2 x 4/0	B1 or C	
	SPMC/U240		2 x 312	2 x 345	450	400	2 x 120	2 x 4/0	2 x 120	2 x 4/0	B1 or C	

Table 14-23 Unidrive SPMC/U 690V input current, fuse and cable size ratings

		Maximum	Typical		uctor fuse in h HRC fuse	Typical cable size					
Model		input DC current current		HRC IEC Class gG UL class J	Semi- conductor IEC class aR			DC outp	Cable installation		
			Α	Α	Α	mm ²	AWG	mm ²	AWG	method	
0	SPMC/U1601	195	209	250	250	2 x 70	2 x 2/0	2 x 120	2 x 4/0	B2	
SPMC/U260		2 x 173	2 x 185	250	250	2 x 70	2 x 2/0	2 x 120	2 x 4/0	B2	

NOTE

The cable sizes noted in Table 14-20, Table 14-21, Table 14-22 and Table 14-23 are typical cable sizes based on UL508C and IEC60364-5-52:2001. Maximum cable sizes are 2×240 mm² or 2×400 kcmil per pole. The user will have to decide what size of cable to use in any given application based on the local wiring regulations. Use of high temperature cables that are thinner than those stated in the typical cable chart maybe possible, contact the supplier of the drive for advice.

14.1.21 Line reactor ratings

Table 14-24 400V input line reactor ratings

Model	Current A	Inductance μH	Overall width (W) mm	Overall depth (D) mm	Overall height (H) mm	Weight kg	Max ambient temp °C	Min airflow m/s	Quantity required	Part No
INL 401	245	63	240	190	225	32	50	1	1	4401-0181
INL 402	339	44	276	200	225	36	50	1	1	4401-0182
INL 401W*	245	63	255	235	200	27	40	3	1	4401-0208
INL 402W*	339	44	255	235	200	27	40	3	1	4401-0209

*May represent a more economic solution where operating temperature and cooling requirements are observed.

Table 14-25 400V dual input line reactor ratings

Model	Current A	Inductance μH	Overall width (W) mm	Overall depth (D) mm	Overall height (H) mm	Weight kg	Max ambient temp °C	Min airflow m/s	Quantity required	Part No.
INL411	2 x 245	2 x 31.5	320	220	360	55	50	1	1	4401-0206
INL412	2 x 339	2 x 22	320	220	360	55	50	1	1	4401-0207

Table 14-26 690V input line reactor ratings

Model	Current A	Inductance μH	Overall width (W) mm	Overall depth (D) mm	Overall height (H) mm	Weight kg	Max ambient temp °C	Min airflow m/s	Quantity required	Part No.
INL 601	145	178	240	190	225	33	50	1	1	4401-0183
INL 602	192	133	276	200	225	36	50	1	1	4401-0184

Table 14-27 690V dual input line reactor ratings

Model	Current A	Inductance µH	Overall width (W) mm	Overall depth (D) mm	Overall height (H) mm	Weight kg	Max ambient temp °C	Min airflow m/s	Quantity required	Part No.
INL 611	2 x 145	2 x 89	320	220	360	40	50	1	1	4401-0190
INL 612	2 x 192	2 x 66.5	320	220	360	55	50	1	1	4401-0191

NOTE

The INLX1X parallel line reactors have been designed to work in conjunction with the Unidrive SPMC/U, allowing one reactor to be used with the dual rectifier model or two separate rectifier units.

Safety Information	Introduction	Product Information	-)	Mechanical Installation	Electrical Installation	Getting Started		Running the motor	Optimization	SMARTCARD operation	PI C	narameters		Diagnostics	UL Listing Information
Information		IIIIOIIIIalioII	conniguration	Installation	Installation	Starteu	parameters	the motor		operation	FLC	parameters	Dala		IIIIOIIIIauoii

14.1.22 Output sharing choke ratings

Table 14-28 400V output sharing choke ratings

Model	Current A	Inductance μH	Width (W) mm	Depth (D) mm	Height (H) mm	Weight kg	Max ambient temp °C	Min airflow m/s	Required SPM module	Part No.
OTL401	221	40.1	240	220	210	20	50	1	SPMA/D 14X1	4401-0197
OTL402	267	34	242	220	205	20	50	1	SPMA/D 14X2	4401-0198
OTL403	313	28.5	242	220	205	25	50	1	SPMD 14X3	4401-0199
OTL404	378	23.9	242	220	205	25	50	1	SPMD 14X4	4401-0200

Table 14-29 600V output sharing choke ratings

Model	Current A	Inductance μH	Width (W) mm	Depth (D) mm	Height (H) mm	Weight kg	Max ambient temp °C	Min airflow m/s	Required SPM module	Part No.
OTL601	135	103.9	242	170	203	20	50	1	SPMA/D 16X1	4401-0201
OTL602	156	81.8	242	170	203	20	50	1	SPMA/D 16X2	4401-0202
OTL603	181	70.1	242	200	203	20	50	1	SPMD 16X3	4401-0203
OTL604	207	59.2	242	200	203	20	50	1	SPMD 16X4	4401-0204

Dual output sharing chokes

The OTLX1X parallel output sharing chokes can only be used when two Unidrive SPM drives are paralleled together. For all other combinations the OTLX0X output sharing choke must

be used.

Table 14-30 400V dual output sharing choke ratings

Model	Current A	Inductance μH	Width (W) mm	Depth (D) mm	Height (H) mm	Weight kg	Max ambient temp °C	Min airflow m/s	Part No.
OTL411	390	42.8	300	150	160	8	50	1	4401-0188
OTL412	470	36.7	300	150	160	8	50	1	4401-0189
OTL413	551	31.1	300	150	160	8	50	1	4401-0192
OTL414	665	26.6	300	150	160	9	50	1	4401-0186

Table 14-31 600V dual output sharing choke ratings

Model	Current A	Inductance μH	Width (W) mm	Depth (D) mm	Height (H) mm	Weight kg	Max ambient temp °C	Min airflow m/s	Part No.
OTL611	238	110.4	300	150	160	8	50	1	4401-0193
OTL612	274	88.4	300	150	160	8	50	1	4401-0194
OTL613	319	76.7	300	150	160	8	50	1	4401-0195
OTL614	365	65.7	300	150	160	8	50	1	4401-0196

14.1.23 Maximum motor cable lengths

Table 14-32 Maximum motor cable lengths (Unidrive SPMA)

Model		Maximum permissible motor cable length for each of the following frequencies							
	3kHz	4kHz	6kHz						
SPMA14X1									
SPMA14X2	250m (820ft)	185m (607ft)	125m (410ft)						
SPMA16X1	23011 (02011)	10011 (00711)	12011 (41011)						
SPMA16X2									

Table 14-33 Maximum motor cable lengths (Unidrive SPMD)

Model	•	nissible motor c he following fre	•
	3kHz	4kHz	6kHz
SPMD12X1			
SPMD12X2			
SPMD12X3			
SPMD12X4			
SPMD14X1			
SPMD14X2	250m (820ft)	185m (607ft)	125m (410ft)
SPMD14X3	230111 (02011)	10011 (00711)	12311 (41011)
SPMD14X4			
SPMD16X1			
SPMD16X2	1		
SPMD16X3	1		
SPMD16X4			

Cable lengths in excess of the specified values may be used only when special techniques are adopted; refer to the supplier of the drive.

٠

Cafaty		Dueduet	Curatana	Mashaniaal	Electrical	Catting	Deele	Duranina			Orahaand	A	-		III Linding
Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARICARD	Onboard	Advanced	Technical	Diagnostics	OL LISting
Information	muouucuon		configuration	Installation	Installation	Started	parameters	the motor	opumization	operation	PLC	parameters	Data	Diagnostics	Information
			0												

The default switching frequency is 3kHz for Open-loop and Closedloop vector, and 6kHz for Servo.

The maximum cable length is reduced from that shown in Table 14-32 and Table 14-33 if high capacitance motor cables are used. For further information, refer to section High-capacitance cables on page 76.

14.1.24 Braking resistor values

Table 14-34 Minimum resistance values and peak power rating for the braking resistor at 40°C (104°F)

Model	Minimum resistance* Ω	Instantaneous power rating** kW	Average power for 60s kW								
SPMA1401	5	122	122								
SPMA1402	5	122	122								
SPMA1601	10	125	113								
SPMA1602	10	125	125								
SPMD1201	2.5	61	61								
SPMD1202	2.5	61	61								
SPMD1203	1.9	80	80								
SPMD1204	1.9	80	80								
SPMD1401	5	122	122								
SPMD1402	5	122	122								
SPMD1403	3.8	160	160								
SPMD1404	3.8	160	160								
SPMD1601	10	125	113								
SPMD1602	10	125	125								
SPMD1603	6.2	202	165								
SPMD1604	6.2	202	198								

* Resistor tolerance: ±10%

** Continuous rating if drive is part of a common DC bus system. In parallel systems without the DC bus connected, the resistors must be matched to within ±5%.

14.1.25 **Torque settings**

Table 14-35 Master drive control and relay terminal data

Model	Connection type	Torque setting
All	Plug-in terminal block	0.5 N m 0.4 lb ft

Table 14-36 Drive power terminal data

Model	AC terminals	High current DC and braking	Ground terminal		
All	-	M10 stud 15 N m			
	Torque tolerar	±10%			

14.1.26 Electromagnetic compatibility (EMC)

This is a summary of the EMC performance of the drive. For full details, refer to the Unidrive SP EMC Data Sheet which can be obtained from the supplier of the drive.

Table 14-37 Immunity compliance

Standard	Type of immunity	Test specification	Application	Level			
IEC61000-4-2 EN61000-4-2	Electrostatic discharge	6kV contact discharge 8kV air discharge	Module enclosure	Level 3 (industrial)			
IEC61000-4-3 EN61000-4-3	Radio frequency radiated field	10V/m prior to modulation 80 - 1000MHz 80% AM (1kHz) modulation	Module enclosure	Level 3 (industrial)			
IEC61000-4-4	Fast transient	5/50ns 2kV transient at 5kHz repetition frequency via coupling clamp	Control lines	Level 4 (industrial harsh)			
EN61000-4-4	burst	5/50ns 2kV transient at 5kHz repetition frequency by direct injection	Power lines	Level 3 (industrial)			
		Common mode 4kV 1.2/50µs waveshape	AC supply lines: line to ground	Level 4			
IEC61000-4-5 EN61000-4-5	Surges	Differential mode 2kV 1.2/50µs waveshape	AC supply lines: line to line	Level 3			
		Lines to ground	Signal ports to ground ¹	Level 2			
IEC61000-4-6 EN61000-4-6	Conducted radio frequency	10V prior to modulation 0.15 - 80MHz 80% AM (1kHz) modulation	Control and power lines	Level 3 (industrial)			
IEC61000-4-11 EN61000-4-11	Voltage dips and interruptions	-30% 10ms +60% 100ms -60% 1s <-95% 5s	AC power ports				
EN50082-1 IEC61000-6-1 EN61000-6-1		nity standard for the nmercial and light - onment		Complies			
EN50082-2 IEC61000-6-2 EN61000-6-2	Generic immur industrial envir	nity standard for the onment		Complies			
EN61800-3 IEC61800-3 EN61800-3	Product standa speed power d (immunity requ		Meets immunit requirements f second enviror	or first and			

¹ See section Surge immunity of control circuits - long cables and connections outside a building on page 86 for control ports for possible requirements regarding grounding and external surge protection

Emission

The drive contains an in-built filter for basic emission control. An additional optional external filter provides further reduction of emission. The requirements of the following standards are met, depending on the motor cable length and switching frequency.

Key (shown in decreasing order of permitted emission level):

- F2R EN 61800-3 second environment, restricted distribution (Additional measures may be required to prevent interference)
- E2U EN 61800-3 second environment, unrestricted distribution
 - Industrial generic standard EN 50081-2 (EN 61000-6-4) EN 61800-3 first environment restricted distribution (The following caution is required by EN 61800-3)

This is a product of the restricted distribution class according to IEC 61800-3. In a residential environment this product may cause radio interference in which case the user may be CAUTION required to take adequate measures.

Residential generic standard EN 50081-1 (EN 61000-6-3) R EN 61800-3 first environment unrestricted distribution

I

Safety	Introduction	Product		Mechanical		Getting		Running	Optimization	SMARTCARD	Onboard	Advanced		Diadnostics	UL Listing
Informatio	n	Information	configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	g	Information

EN 61800-3 defines the following:

- The first environment is one that includes residential premises. It also includes establishments directly connected without intermediate transformers to a low-voltage power supply network which supplies buildings used for residential purposes.
- The second environment is one that includes all establishments other than those directly connected to a low-voltage power supply network which supplies buildings used for residential purposes.
- Restricted distribution is defined as a mode of sales distribution in which the manufacturer restricts the supply of equipment to suppliers, customers or users who separately or jointly have technical competence in the EMC requirements of the application of drives.

NOTE

Shared external filters for multiple drives

When more than one drive is used in the same enclosure, some cost saving is possible by sharing a single filter of suitable current rating between several drives. Tests have shown that combinations of drives with a single filter are able to meet the same emission standard as a single drive, provided that all filters and drives are mounted on the same metal plate. Because of the unpredictable effect of the additional wiring and the need for separate fuses for the drives on the drive side of the filter, this arrangement is not recommended where strict compliance with a specific standard is required, unless emission tests can be carried out.

Table 14-38 SPMA (400V only) emission compliance

Motor cable length (m)	Switching frequency (kHz)						
Motor cable length (iii)	3	4	6				
Using internal filter:							
0 to 100	E2U						
100 to max*		E2R					
Using external filter:							
0 to 100		l					

* See user guide for maximum permitted length

Table 14-39 SPMA (690V only) emission compliance

Motor cable length (m)	Switching frequency (kHz)						
wotor cable length (III)	3	4	6				
Using internal filter:							
0 to 100	E2U						
100 to max*		E2R					
Using external filter:							
0 to 25		I					
25 to 100		Do no	ot use				

* See user guide for maximum permitted length

The tables below summarise the performance of all filters when used with single pairs of SPMD drives and SPMC or SPMU rectifiers, assembled in the standard recommended configuration.

Table 14-40 SPMD (400V only) emission compliance

Motor cable length (m)	Switching frequency (kHz)					
Motor cable length (III)	3	4	6			
Using internal filter:						
0 to 100	E2U					
Using external filter:						
0 to 25		I				
25 to 50	I I -					
50 to 100	I					

Table 14-41 SPMD (690V only) emission compliance

Motor cable length (m)	Switching frequency (kHz)						
	3	4	6				
Using internal filter:							
0 to 100	E2U	E2U E2U					
Using external filter:							
0 to 25	I	I	I				
25 to 100	I	I	-				

14.2 Optional external EMC filters

Table 14-42 Unidrive SPM and EMC filter cross reference

Drive	Scha	ffner	Epcos		
Dive	CT part no.	Weight	CT part no.	Weight	
SPMA14X1 to SPMA14X2	4200-6603	5.25 kg (11.6 lb)	4200-6601	8.6 kg (19.1 lb)	
SPMA16X1 to SPMA16X2	4200-6604	5.25 kg (11.6 lb)	4200-6602	8.6 kg (19.1 lb)	
SPMD12X1 to SPMD12X4	4200-6315	5.5 kg (12.11 lb)	4200-6313	8.6 kg (19.1 lb)	
SPMD14X1 to SPMD14X4	4200-6315	5.5 kg (12.11 lb)	4200-6313	8.6 kg (19.1 lb)	
SPMD16X1 to SPMD16X4	4200-6316	5.5 kg (12.11 lb)	4200-6314	8.5 kg (18.7 lb)	

Table 14-43 EMC filters for multiple drive combinations

Combination	Er	cos
Combination	CT part no.	Weight
2 x SPMD1401		
2 x SPMD1402	4200-6801	22kg (48.5lb)
2 x SPMD1403		
2 x SPMD1404		
4 x SPMD1401	4200-6802	28kg (61.7lb)
3 x SPMD1403	4200-0802	20Kg (01.710)
4 x SPMD1402		
4 x SPMD1403	4200-6803	34kg (75lb)
4 x SPMD1404	4200-0603	54Kg (75b)

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
mormation		mormation	oornigaration	motanation	motanation	oturtou	parametero			operation	1 20	parametero	Bata		internation

14.2.1 EMC filter ratings

Table 14-44 Optional external EMC filter details

		Maximum continuous current		Voltage		Power	Ground leaka	ige	
CT part number	Manufacturer	@ 40°C (104°F) A	@ 50°C (122°F) A	rating V	IP rating	dissipation at rated current W	Balanced supply phase-to-phase and phase-to-ground mA	1 phase open circuit mA	Discharge resistors
4200-6603		260	237	480		14.2	41	219	
4200-6604	Schaffner	160		690			88.5	296	See Note 1
4200-6315		340		480			52	293	See Note 1
4200-6316		200		690			72	406	ł
4200-6601		260	195	480		13	45	220	
4200-6602		160	120	690	00	5	60	310	See Note 2
4200-6313		340	255	480			74	375	See Note 2
4200-6314	Epcos	200	150	690			79	392	
4200-6801		600	546			66.96	<6		
4200-6802		1000	910	500		99	<6		
4200-6803		1600	1456			168.96	<6		

NOTE

1. $1M\Omega$ in a λ connection between phases, with the λ point connected by a $680k\Omega$ resistor to ground (i.e. line to line $2M\Omega$, line to ground $1.68M\Omega$)

2. Line to line $3.6M\Omega$, line to ground $3.3M\Omega$

14.2.2 Overall EMC filter dimensions

Table 14-45 Optional external EMC filter dimensions

CT part number	Manufacturer	Н	W	D	
4200-6603			295 mm (11.614 in)		
4200-6604	Schaffner	136 mm (5.354 in)	357 mm (14.055 in)	230 mm (9.055 in)	
4200-6315	Schaimer	130 11111 (5.354 11)	339 mm (13.346 in)	230 mm (9.055 m)	
4200-6316	1		559 mm (15.540 m)		
4200-6601		147 mm (5.787 in)	364 mm (14.330 in)		
4200-6602		147 11111 (5.767 11)	504 mm (14.550 m)	230 mm (9.055 in)	
4200-6313	1	149 mm (5.866 in)	339 mm (13.346 in)	230 mm (9.055 m)	
4200-6314	Epcos	149 1111 (5.600 11)	559 mm (15.540 m)		
4200-6801		116mm (4.57in)	440±2.5 mm (17.32±0.1 in)	260 mm (10.24 in)	
4200-6802	1	166mm (6.54in)	460±2.5 mm (18.11±0.1 in)	300 mm (11.81 in)	
4200-6803	1	1001111 (0.5411)	590±3 mm (23.23±0.12 in)	500 mm (11.01 m)	

14.2.3 EMC filter torque settings

Table 14-46 Optional external EMC Filter terminal data

CT part number	Manufacturer	Power connections	Ground connections			
CT part number	Manufacturer	Max torque	Ground stud size	Max torque		
4200-6603						
4200-6604	Schaffner	12 N m (8.8 lb ft)		25 N m (18.4 lb ft)		
4200-6315	Schallfier	12 N III (0.0 ID II)		25 N III (10.4 ID II)		
4200-6316	-					
4200-6601			M10			
4200-6602	-					
4200-6313	-			10 N m (7.4 lb ft)		
4200-6314	Epcos	10 N m (7.4 lb ft)				
4200-6801	-					
4200-6802	1		M12	15.5 N m (11.4 lb ft)		
4200-6803]		IVI I Z	15.5 N III (11.4 ID II)		

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running		SMARTCARD	Onboard	Advanced	Technical		UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

15 Diagnostics

The display on the drive gives various information about the status of the drive. These fall into three categories:

- Trip indications
- Alarm indications
- Status indications

Users must not attempt to repair a drive if it is faulty, nor carry out fault diagnosis other than through the use of the diagnostic features described in this chapter. If a drive is faulty, it must be returned to an authorized Control Techniques distributor for repair.

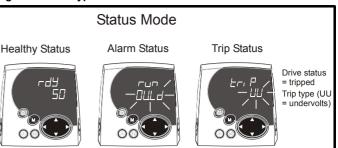
15.1 Trip indications

If the drive trips, the output of the drive is disabled so that the drive stops controlling the motor. The upper display indicates that a trip has occurred and the lower display shows the trip. If this is a multi-module drive and a power module has indicated a trip, then the lower display will alternate between the trip string and the module number.

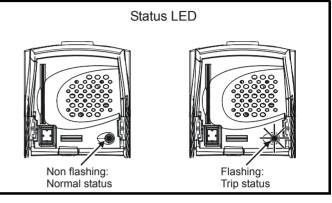
Trips are listed alphabetically in Table 15-1 based on the trip indication shown on the drive display. Refer to Figure 15-1.

If a display is not used, the drive LED Status indicator will flash if the drive has tripped. Refer to Figure 15-2.

The trip indication can be read in Pr **10.20** providing a trip number. Trip numbers are listed in numerical order in Table 15-2 so the trip indication can be cross referenced and then diagnosed using Table 15-1.


Example

- 1. Trip code 3 is read from Pr 10.20 via serial communications.
- 2. Checking Table 15-2 shows Trip 3 is an OI.AC trip.



- 3. Look up OI.AC in Table 15-1.
- 4. Perform checks detailed under *Diagnosis*.

Figure 15-1 Keypad status modes

Figure 15-2 Location of the status LED

Trip	Diagnosis
OI.AC	Instantaneous output over current detected: peak output current greater than 225%
3	Acceleration / deceleration rate is too short. If seen during autotune reduce voltage boost Pr 5.15 Check for short circuit on output cabling Check integrity of motor insulation Check feedback device wiring Check feedback device mechanical coupling Check feedback signals are free from noise Is motor cable length within limits for that frame size? Reduce the values in speed loop gain parameters – Pr 3.10 , Pr 3.11 and Pr 3.12 (and servo modes only) Has offset measurement test been completed? (servo mode only) Reduce the values in current loop gain parameters - Pr 4.13 and Pr 4.14 (closed loop vector and servo modes only)

Safety	Introduction	Product		Mechanical	Electrical	Getting		Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	macadonom	Information	configuration	Installation	Installation	Started	parameters	the motor	opumzation	operation	PLC	parameters	Data	Diagnoonoo	Information

Table 15-1 Trip indications

Trip	Diagnosis
br.th	Internal braking resistor thermistor temperature monitoring fail (size 0 only)
10	 If no internal brake resistor is installed, set Pr 0.51 (or Pr 10.37) to 8 to disable this trip. If an internal brake resistor is installed: Ensure that the internal braking resistor thermistor is connected correctly Ensure that the fan in the drive is working correctly Replace the internal braking resistor
C.Acc	SMARTCARD trip: SMARTCARD Read / Write fail
185	Check SMARTCARD is installed / located correctly Ensure SMARTCARD is not writing data to data location 500 to 999 Replace SMARTCARD
C.boot	SMARTCARD trip: The menu 0 parameter modification cannot be saved to the SMARTCARD because the necessary file has not been created on the SMARTCARD
177	A write to a menu 0 parameter has been initiated via the keypad with Pr 11.42 set to auto(3) or boot(4), but the necessary file on the SMARTCARD has not bee created Ensure that Pr 11.42 is correctly set and reset the drive to create the necessary file on the SMARTCARD Re-attempt the parameter write to the menu 0 parameter
C.bUSY	SMARTCARD trip: SMARTCARD can not perform the required function as it is being accessed by a Solutions Module
178	Wait for the Solutions Module to finish accessing the SMARTCARD and then re-attempt the required function
C.Chg	SMARTCARD trip: Data location already contains data
179	Erase data in data location Write data to an alternative data location
C.cPr	SMARTCARD trip: The values stored in the drive and the values in the data block on the SMARTCARD are different
188	Press the red 💿 reset button
C.dAt	SMARTCARD trip: Data location specified does not contain any data
183	Ensure data block number is correct
C.Err	SMARTCARD trip: SMARTCARD data is corrupted
182	Ensure the card is located correctly Erase data and retry Replace SMARTCARD
C.Full	SMARTCARD trip: SMARTCARD full
184	Delete a data block or use different SMARTCARD
cL2	Analog input 2 current loss (current mode)
28	Check analog input 2 (terminal 7) current signal is present (4-20mA, 20-4mA)
cL3	Analog input 3 current loss (current mode)
29	Check analog input 3 (terminal 8) current signal is present (4-20mA, 20-4mA)
CL.bit	Trip initiated from the control word (Pr 6.42)
35	Disable the control word by setting Pr 6.43 to 0 or check setting of Pr 6.42
ConF.P	The number of power modules installed no longer matches the value stored in Pr 11.35
	Ensure that all power modules are correctly connected
111	Ensure that all power modules have powered up correctly
	Ensure that the value in Pr 11.35 matches the number of power modules connected
C.OPtn	SMARTCARD trip: Solutions Modules installed are different between source drive and destination drive
180	Ensure correct Solutions Modules are installed Ensure Solutions Modules are in the same Solutions Module slot
	Press the red 💿 reset button
C.Prod	SMARTCARD trip: The data blocks on the SMARTCARD are not compatible with this product Erase all data on the SMARTCARD by setting Pr xx.00 to 9999 and pressing the red in reset button
175	Replace SMARTCARD
C.rdo	SMARTCARD trip: SMARTCARD has the Read Only bit set
181	Enter 9777 in Pr xx.00 to allow SMARTCARD Read / Write access Ensure the drive is not writing to data locations 500 to 999 on the card

Safety formation	duction Product System I Information configuration		Electrical Installation		Basic parameters	Running the motor	Optimization	SMARTCARD operation	PLC	parameters	Data	Diagnostics UL I Infor
Trip						Diag						
C.rtg	SMARTCARD trip: The	-			-							
	Drive rating dependent parameters (parameters with the RA coding) are likely to have different values and ranges with drives of different voltage and current ratings. Parameters with this attribute will not be transferred to the destination drive by SMARTCARD when the rating of the destination drive is different from the source drive and the file is a parameter file. However, with software V01.09.00 and later drive rating dependent parameters will be transferred if only the current rating is different and the file is a differences from default type file.											
	Drive rating parameters Parameter	are.				Funct	ion					
	2.08	Ste	and ard re	mnva	ltogo	Funct						
	4.05/6/7, 21.27/8		andard ra		maye							
	4.00/0/1, 21.2/10				imum sca	alina						
186	5.07, 21.07		otor rated			g						
	5.09, 21.09		otor rated									
	5.10, 21.10		ted powe		,							
	5.17, 21.12	Sta	ator resis	tance								
	5.18	Sw	/itching fi	requer	псу							
	5.23, 21.13	Vo	Itage offs	set								
	5.24, 21.14	Tra	ansient ir	nducta	nce							
	5.25, 21.24	Sta	ator induc	ctance								
	6.06	DC	c injectio	n braki	ing currer	nt						
	6.48	Lin	ie power	supply	y loss ride	e through	n detection	level				
	The above parameters v	will be set	to their o	default	values.							
C.TyP	SMARTCARD trip: SM	ARTCAR	D param	eter s	et not co	mpatibl	e with driv	/e				
187	Press the reset button Ensure destination drive	e type is th	ne same	as the	source p	aramete	r file drive	type				
dESt	Two or more paramete	rs are wr	iting to	the sa	me desti	nation p	arameter					
199	Set Pr xx.00 = 12001 ch						•					
EEF	EEPROM data corrupte RS485 comms port.	ed - Drive	e mode k	becom	les open	loop an	d serial co	omms will t	timeout	with rem	iote key	pad on the dr
31	This trip can only be clea	ared by lo	ading de	efault p	arameter	s and sa	iving parar	neters				
Enc1	Drive encoder trip: Enc	coder po	wer sup	ply ov	erload							
189	Check encoder power se Maximum current = 200	mA @ 15	V, or 300)mA @	8V and	5V						
Enc2	Drive encoder trip: Win	re break (Drive er	ncode	r termina	ls 1 & 2	, 3 & 4, 5 8	£ 6)				
190	Check cable continuity Check wiring of feedbac Check encoder power is Replace feedback devic If wire break detection o	s set corre	ectly		r input is	not requ	ired, set Pi	r 3.40 = 0 to	o disable	e the Enc2	2 trip	
Enc3	Drive encoder trip: Pha	ase offse	t incorre	ect wh	ile runni	ng						
191	Check the encoder sign Check encoder shielding Check the integrity of the Repeat the offset measu	g e encodei	r mechar	nical m	ounting							
Enc4	•			mms	failure							
192	Ensure encoder power s											
Enc5	Drive encoder trip: Cho		or CRC 4	error								
193	Check the encoder signa Check the encoder cable	al for nois e shieldin	e g				it the cut-	oonfigures		44		
Enot	With EnDat encoders, cl					carry o		-configuration	un Př 3.	41		
Enc6	Drive encoder trip: Enc Replace feedback devic		s marcat	leu an	error							
194	With SSI encoders, check		ing and e	encode	er supply	setting						

Trip	Diagnosis
Enc7	Drive encoder trip: Initialisation failed
195	Re-set the drive Check the correct encoder type is entered into Pr 3.38 Check encoder wiring Check encoder power supply is set correctly Carry out the auto-configuration Pr 3.41
	Replace feedback device
Enc8	Drive encoder trip: Auto configuration on power up has been requested and failed
196	Change the setting of Pr 3.41 to 0 and manually enter the drive encoder turns (Pr 3.33) and the equivalent number of lines per revolution (Pr 3.34) Check the comms resolution
Enc9	Drive encoder trip: Position feedback selected is selected from a Solutions Module slot which does not have a speed / position feedback Solutions Module installed
197	Check setting of Pr 3.26 (or Pr 21.21 if the second motor parameters have been enabled)
Enc10	Drive encoder trip: Servo mode phasing failure because encoder phase angle (Pr 3.25 or Pr 21.20) is incorrect
198	Check the encoder wiring. Perform an autotune to measure the encoder phase angle or manually enter the correct phase angle into Pr 3.25 (or Pr 21.20). Spurious Enc10 trips can be seen in very dynamic applications. This trip can be disabled by setting the overspeed threshold in Pr 3.08 to a value greater than zero. Caution should be used in setting the over speed threshold level as a value which is too lar may mean that an encoder fault will not be detected.
Enc11	Drive encoder trip: A failure has occurred during the alignment of the analog signals of a SINCOS encoder with the dig count derived from the sine and cosine waveforms and the comms position (if applicable). This fault is usually due to no on the sine and cosine signals.
161	Check encoder cable shield. Examine sine and cosine signals for noise.
Enc12	Drive encoder trip: Hiperface encoder - The encoder type could not be identified during auto-configuration
162	Check encoder type can be auto-configured. Check encoder wiring. Enter parameters manually.
Enc13	Drive encoder trip: EnDat encoder - The number of encoder turns read from the encoder during auto-configuration is ne power of 2
163	Select a different type of encoder.
Enc14	Drive encoder trip: EnDat encoder - The number of comms bits defining the encoder position within a turn read from th encoder during auto-configuration is too large.
164	Select a different type of encoder. Faulty encoder.
Enc15	Drive encoder trip: The number of periods per revolution calculated from encoder data during auto-configuration is eit less than 2 or greater than 50,000.
165	Linear motor pole pitch / encoder ppr set up is incorrect or out of parameter range i.e. Pr 5.36 = 0 or Pr 21.31 = 0. Faulty encoder.
Enc16	Drive encoder trip: EnDat encoder - The number of comms bits per period for a linear encoder exceeds 255.
166	Select a different type of encoder. Faulty encoder.
Enc17	Drive encoder trip: The periods per revolution obtained during auto-configuration for a rotary SINCOS encoder is not a power of two.
167	Select a different type of encoder. Faulty encoder.
ENP.Er	Data error from electronic nameplate stored in selected position feedback device
176	Replace feedback device
Et	External trip from input on terminal 31
6	Check terminal 31 signal Check value of Pr 10.32 Enter 12001 in Pr xx.00 and check for parameter controlling Pr 10.32 Ensure Pr 10.32 or Pr 10.38 (=6) are not being controlled by serial comms
	Data processing error: CPU address error

Safety Information	Product System Mechanical Electrical Getting Basic Running Optimization SMARTCARD Onboard Advanced Technical Diagnostics UL Listin Information configuration Installation Installation Started parameters the motor Optimization SMARTCARD Onboard Advanced Technical Diagnostics Information
Trip	Diagnosis
HF02	Data processing error: DMAC address error
	Hardware fault - return drive to supplier
HF03	Data processing error: Illegal instruction
	Hardware fault - return drive to supplier
HF04	Data processing error: Illegal slot instruction
	Hardware fault - return drive to supplier
HF05	Data processing error: Undefined exception
	Hardware fault - return drive to supplier
HF06	Data processing error: Reserved exception
	Hardware fault - return drive to supplier
HF07	Data processing error: Watchdog failure
	Hardware fault - return drive to supplier
HF08	Data processing error: Level 4 crash
	Hardware fault - return drive to supplier
HF09	Data processing error: Heap overflow
	Hardware fault - return drive to supplier
HF10	Data processing error: Router error
	Hardware fault - return drive to supplier
HF11	Data processing error: Access to EEPROM failed
	Hardware fault - return drive to supplier
HF12	Data processing error: Main program stack overflow
	Hardware fault - return drive to supplier
HF13	Data processing error: Software incompatible with hardware
	Hardware or software fault - return drive to supplier
HF17	Multi-module system thermistor short circuit or open circuit
217	Hardware fault - return drive to supplier
HF18	Multi-module system interconnect cable error
218	Parallel cable in wrong port. (Note in multi module systems, the drive with the trip code displayed indicates that the subsequent drive in the sequence has the physical fault) Hardware fault - return drive to supplier
HF19	Temperature feedback multiplexing failure
219	Hardware fault - return drive to supplier
HF20	Power stage recognition: serial code error
220	Hardware fault - return drive to supplier
HF21	Power stage recognition: unrecognised frame size
221	Hardware fault - return drive to supplier
HF22	Power stage recognition: multi module frame size mismatch
222	Hardware fault - return drive to supplier
HF23	Power stage recognition: multi module voltage rating mismatch
223	Hardware fault - return drive to supplier
HF24	Power stage recognition: unrecognised drive size
224	Hardware fault - return drive to supplier
HF25	Current feedback offset error
225	Hardware fault - return drive to supplier
HF26	Soft start relay failed to close, soft start monitor failed or braking IGBT short circuit at power up
226	Hardware fault - return drive to supplier

Safety Information	ProductSystemMechanicalElectricalGettingBasicRunningOptimizationSMARTCARDOnboardAdvancedTechnicalDiagnosticsUL ListingInformationconfigurationInstallationInstallationStartedparametersthe motorOptimizationOptimizationPLCparametersDataDiagnosticsUL Listing									
Trip	Diagnosis									
HF27	Power stage thermistor 1 fault									
227	Hardware fault - return drive to supplier									
HF28	Power stage thermistor 2 fault									
228	Hardware fault - return drive to supplier									
HF29	Control board thermistor fault									
229	Hardware fault - return drive to supplier									
HF30	DCCT wire break trip from power module									
230	Hardware fault - return drive to supplier									
HF31	Internal capacitor bank fan failure or a module has not powered up in a multi-module parallel drive									
231	Check the AC or DC power supply to all modules in a multi-module parallel drive If the AC or DC power supply is present, or if this is a single drive, then there is a hardware fault - return drive to the supplier									
HF32	Power stage - Identification and trip information serial code error									
232	Hardware fault - return drive to the supplier									
It.AC	Output current overload timed out (I ² t) - accumulator value can be seen in Pr 4.19									
20	Ensure the load is not jammed / sticking Check the load on the motor has not changed If seen during an autotune in servo mode, ensure that the motor rated current Pr 0.46 (Pr 5.07) or Pr 21.07 is ≤Heavy Duty current rating of the drive Tune the rated speed parameter (closed loop vector only) Check feedback device signal for noise Check the feedback device mechanical coupling									
lt.br	Braking resistor overload timed out (I ² t) – accumulator value can be seen in Pr 10.39									
19	Ensure the values entered in Pr 10.30 and Pr 10.31 are correct Increase the power rating of the braking resistor and change Pr 10.30 and Pr 10.31 If an external thermal protection device is being used and the braking resistor software overload is not required, set Pr 10.30 or Pr 10.31 to 0 to disable the trip									
L.SYnC	Drive failed to synchronize to the supply voltage in Regen mode									
39	Refer to the Diagnostics chapter in the Unidrive SP Regen Installation Guide.									
O.CtL	Drive control board over temperature									
23	Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure door filters Check ambient temperature Reduce drive switching frequency									
O.ht1	Power device over temperature based on thermal model									
21	Reduce drive switching frequency Reduce duty cycle Decrease acceleration / deceleration rates Reduce motor load									
O.ht2	Heatsink over temperature									
22	Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure door filters Increase ventilation Decrease acceleration / deceleration rates Reduce drive switching frequency Reduce duty cycle Reduce motor load									
Oht2.P	Power module heatsink over temperature									
105	Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure door filters Increase ventilation Decrease acceleration / deceleration rates									
	Reduce drive switching frequency Reduce duty cycle Reduce motor load									

Safety Information	uction Product System Mechanical Electrical Getting Basic Running Information Configuration Installation Installation Started parameters the motor Optimization Optimization Optimization Optimization Optimization Started PLC Parameters Data Diagnostics Information							
Trip	Diagnosis							
O.ht3	Drive over-temperature based on thermal model							
27	The drive will attempt to stop the motor before tripping. If the motor does not stop in 10s the drive trips immediately. Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure door filters Increase ventilation Decrease acceleration / deceleration rates Reduce duty cycle Reduce motor load							
Oht4.P	Power module rectifier over temperature or input snubber resistor over temperature (size 4 and above)							
102	Check for supply imbalance Check for supply disturbance such as notching from a DC drive Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure door filters Increase ventilation Decrease acceleration / deceleration rates Reduce drive switching frequency Reduce duty cycle Reduce motor load							
OI.AC	Instantaneous output over current detected: peak output current greater than 225%							
3	Acceleration /deceleration rate is too short. If seen during autotune reduce voltage boost Pr 5.15 Check for short circuit on output cabling Check integrity of motor insulation Check feedback device wiring Check feedback device mechanical coupling Check feedback signals are free from noise Is motor cable length within limits for that frame size? Reduce the values in speed loop gain parameters – Pr 3.10 , Pr 3.11 and Pr 3.12 (and servo modes only) Has offset measurement test been completed? (servo mode only)							
OIAC.P	Reduce the values in current loop gain parameters - Pr 4.13 and Pr 4.14 (closed loop vector and servo modes only) Power module over current detected from the module output currents							
104	Acceleration /deceleration rate is too short. If seen during autotune reduce voltage boost Pr 5.15 Check for short circuit on output cabling Check integrity of motor insulation Check feedback device wiring Check feedback device mechanical coupling Check feedback signals are free from noise Is motor cable length within limits for that frame size? Reduce the values in speed loop gain parameters – Pr 3.10 , Pr 3.11 and Pr 3.12 (closed loop vector and servo modes only) (closed loop vector RFC mode) Has offset measurement test been completed? (servo mode only) Reduce the values in current loop gain parameters – Pr 4.13 and Pr 4.14 (closed loop vector and servo modes only) (closed loop vector RFC mode)							
Ol.br	Braking transistor over-current detected: short circuit protection for the braking transistor activated							
4	Check braking resistor wiring Check braking resistor value is greater than or equal to the minimum resistance value Check braking resistor insulation							
Olbr.P	Power module braking IGBT over current							
103	Check braking resistor wiring Check braking resistor value is greater than or equal to the minimum resistance value Check braking resistor insulation							
OldC.P	Power module over current detected from IGBT on state voltage monitoring							
109	Vce IGBT protection activated. Check motor and cable insulation.							

Safety Information	duction Information configuration Installation Installation Started parameters the motor Optimization Optimiz
Trip	Diagnosis
O.SPd	Motor speed has exceeded the over speed threshold
7	Increase the over speed trip threshold in Pr 3.08 (closed loop vector and servo modes only) (closed loop vector RFC mode) Speed has exceeded 1.2 x Pr 1.06 or Pr 1.07 (open loop mode) Reduce the speed loop P gain (Pr 3.10) to reduce the speed overshoot (closed loop vector and servo modes only) (closed loop vector RFC mode) vector RFC mode)
OV	DC bus voltage has exceeded the peak level or the maximum continuous level for 15 seconds
2	Increase deceleration ramp (Pr 0.04) Decrease braking resistor value (staying above the minimum value) Check nominal AC supply level Check for supply disturbances which could cause the DC bus to rise – voltage overshoot after supply recovery from a notch induced by DC drives. Check motor insulation Drive voltage rating Peak voltage Maximum continuous voltage level (15s) 200 415 410 400 830 815 575 990 970 690 1190 1175 If the drive is operating in low voltage DC mode the overvoltage trip level is 1.45 x Pr 6.46.
OV.P	Power module DC bus voltage has exceeded the peak level or the maximum continuous level for 15 seconds
106	Increase deceleration ramp (Pr 0.04) Decrease braking resistor value (staying above the minimum value) Check nominal AC supply level Check for supply disturbances which could cause the DC bus to rise – voltage overshoot after supply recovery from a notch induced by DC drives. Check motor insulation Drive voltage rating Peak voltage A00 830 575 990 690 1190 1175 If the drive is operating in low voltage DC mode the overvoltage trip level is 1.45 x Pr 6.46.
PAd	
34	Keypad has been removed when the drive is receiving the speed reference from the keypad Install keypad and reset Change speed reference selector to select speed reference from another source
РН	AC voltage input phase loss or large supply imbalance detected
32	Ensure all three phases are present and balanced Check input voltage levels are correct (at full load) NOTE Load level must be between 50 and 100% for the drive to trip under phase loss conditions. The drive will attempt to stop the motor before this trip is initiated.
PH.P	Power module phase loss detection
107	Ensure all three phases are present and balanced Check input voltage levels are correct (at full load)
PS	Internal power supply fault
5	Remove any Solutions Modules and reset Hardware fault - return drive to supplier
PS.10V	10V user power supply current greater than 10mA
8	Check wiring to terminal 4 Reduce load on terminal 4
PS.24V	24V internal power supply overload
9	 The total user load of the drive and Solutions Modules has exceeded the internal 24V power supply limit. The user load consists of the drive's digital outputs, the SM-I/O Plus digital outputs, the drive's main encoder supply and the SM-Universal Encoder Plus encoder supply. Reduce load and reset Provide an external 24V >50W power supply Remove any Solutions Modules and reset
PS.P	Power module power supply fail
108	Remove any Solutions Modules and reset Hardware fault - return drive to supplier

Safety Information Product Information System configuration Mechanical Installation Electrical Installation Getting Started Basic parameters Running the motor Optimization SMARTCARD operation Onboard PLC Advanced parameters	Technical Diagnostics UL Listing Information
--	--

Trip	Diagnosis
PSAVE.Er	Power down save parameters in the EEPROM are corrupt
37	Indicates that the power was removed when power down save parameters were being saved. The drive will revert back to the power down parameter set that was last saved successfully. Perform a user save (Pr xx.00 to 1000 or 1001 and reset the drive) or power down the drive normally to ensure this trip does or occur the next time the drive is powered up.
rS	Failure to measure resistance during autotune or when starting in open loop vector mode 0 or 3
33	Check motor power connection continuity
SAVE.Er	User save parameters in the EEPROM are corrupt
36	Indicates that the power was removed when user parameters were being saved. The drive will revert back to the user parameter set that was last saved successfully. Perform a user save (Pr xx.00 to 1000 or 1001 and reset the drive) to ensure this trip does or occur the next time the drive is powered up.
SCL	Drive RS485 serial comms loss to remote keypad
30	Reinstall the cable between the drive and keypad Check cable for damage Replace cable Replace keypad
SLX.dF	Solutions Module slot X trip: Solutions Module type installed in slot X changed
204,209,214	Save parameters and reset
SL3.dF	Building automation interface slot trip
214,214	Module typed changed

Safety Information	Introduction	Product Information	System configuration	Mechanical Installation	Electrical Installation	Getting Started	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information

Trip	Diagnosis									
SLX.Er		•	Solutions Module in slot X has dete	ected a fault						
	Feedback module category Check value in Pr 15/16/17.50. The following table lists the possible error codes for the SM-Universal Encoder Plus, SM-Encoder Plus and SM-Resolver. See the <i>Diagnostics</i> section in the relevant Solutions Module User Guide for more information.									
	Error code	Module	Trip Description	Diagnostic						
	0	All	No trip	No fault detected						
	1	SM-Universal Encoder Plus & SM-Encoder Plus	Encoder power supply overload	Check encoder power supply wiring and encoder current requirement Maximum current = 200mA @ 15V, or 300mA @ 8V and 5V						
		SM-Resolver	Excitation output short circuit	Check the excitation output wiring.						
	2	SM-Universal Encoder Plus & SM-Resolver	Wire break	Check cable continuity Check wiring of feedback signals is correct Check supply voltage or excitation output level Replace feedback device						
	3	SM-Universal Encoder Plus	Phase offset incorrect while running	Check the encoder signal for noise Check encoder shielding Check the integrity of the encoder mechanical mounting Repeat the offset measurement test						
	4	SM-Universal Encoder Plus	Feedback device communications failure	Ensure encoder power supply is correct Ensure baud rate is correct Check encoder wiring Replace feedback device						
	5	SM-Universal Encoder Plus	Checksum or CRC error	Check the encoder signal for noise Check the encoder cable shielding						
	6	SM-Universal Encoder Plus	Encoder has indicated an error	Replace encoder						
	7	SM-Universal Encoder Plus	Initialisation failed	Check the correct encoder type is entered into Pr 15/16/17.1 Check encoder wiring Check supply voltage level Replace feedback device Change the setting of Pr 15/16/17.18 and manually enter the number of turns (Pr 15/16/17.09) and the equivalent number of lines per revolution (Pr 15/16/17.10)						
202,207,212	8	SM-Universal Encoder Plus	Auto configuration on power up has been requested and failed							
	9	SM-Universal Encoder Plus	Motor thermistor trip	Check motor temperature Check thermistor continuity						
	10	SM-Universal Encoder Plus	Motor thermistor short circuit	Check motor thermistor wiring Replace motor / motor thermistor						
	11	SM-Universal Encoder Plus	Failure of the sincos analog position alignment during encoder initialisation	Check encoder cable shield. Examine sine and cosine signals for noise.						
		SM-Resolver	Poles not compatible with motor	Check that the correct number of resolver poles has been set in Pr 15/16/17.15 .						
	12	SM-Universal Encoder Plus	Encoder type could not be identified during auto-configuration	Check encoder type can be auto-configured. Check encoder wiring. Enter parameters manually.						
	13	SM-Universal Encoder Plus	Number of encoder turns read from the encoder during auto- configuration is not a power of 2	Select a different type of encoder.						
	14 SM-Universal Encoder Plus enc from con 15 SM-Universal Encoder Plus revo data		Number of comms bits defining the encoder position within a turn read from the encoder during auto- configuration is too large.	Select a different type of encoder. Faulty encoder.						
			The number of periods per revolution calculated from encoder data during auto-configuration is either <2 or >50,000.	Linear motor pole pitch / encoder ppr set up is incorrect or out of parameter range i.e. Pr 5.36 = 0 or Pr 21.31 = 0. Faulty encoder.						
	16	SM-Universal Encoder Plus	The number of comms bits per period for a linear encoder exceeds 255.	Select a different type of encoder. Faulty encoder.						
	74	All	Solutions Module has overheated	Check ambient temperature Check enclosure ventilation						

Safety Information	Iction Product S Information con	System Mechanical figuration Installation	Installation S	tarted par	Basic rameters	Running the motor	Optimization	SMARTCARE operation	PLC	Advanced parameters	Data	Diagnostics UL Listin
Trip						Diagr	nosis					
SLX.Er	Solutions Mod	ule slot X trip: S	olutions M	lodule	in slot	X has d	etected a	fault				
	Check value in	pplications) mod Pr 15/16/17.50. T stics section in th User program s	he followir e relevant	ng table Solution Trij		ule User				lications a	and SM	Applications Lite.
	40	Unknown error			unnlier					4		
	40	Parameter does	-		appliel					+		
	42	Attempt to write	to a read-	only pa	ramete	r				1		
	43	Attempt to read	from a wri	te-only	parame	eter				1		
	44	Parameter valu	e out of rai	nge						1		
	45	Invalid synchro	nisation mo	odes						1		
	46	Unused]		
	47	Synchronisation		CTSync	c Maste	r						
	48	RS485 not in us								1		
	49	Invalid RS485 c	-							4		
	50	Maths error - di	-	ro or ov	erflow					4		
	51 52	Array index out Control word us	-							4		
	52	DPL program in		a with ta	araat					+		
	54	DPL task overru			aiyei					+		
	55	Unused								+		
	56	Invalid timer un	it configura	ation						1		
	57	Function block								1		
	58	Flash PLC Stor	age corrup	t						1		
	59	Drive rejected a	pplication	module	as Syr	nc maste	r			1		
202,207,212	60	CTNet hardwar	e failure. P	lease c	contact y	your sup	plier			1		
	61	CTNet invalid c	onfiguratio	n						1		
	62	CTNet invalid b	aud-rate							1		
	63	CTNet invalid n	ode ID									
	64	Digital Output o	verload									
	65	Invalid function	block para	meter(s	s)							
	66	User heap too l	arge									
	67	RAM file does r	not exist or	a non-l	RAM file	e id has	been spec	ified				
	68	The RAM file sp	pecified is i	not asso	ociated	to an ar	ray			1		
	69	Failed to update	e drive para	ameter	databa	se cache	e in Flash i	memory				
	70	User program d	lownloaded	d while	drive er	nabled						
	71	Failed to chang	e drive mo	de								
	72	Invalid CTNet b	uffer opera	ation								
	73	Fast parameter	initialisatio	on failur	e							
	74	Over-temperatu	ire									
	75	Hardware unav	ailable									
	76	Module type ca	nnot be re	solved.	Module	e is not re	ecognised					
	77	Inter-option mo	dule comm	is error	with mo	odule in	slot 1					
	78	Inter-option mo	dule comm	is error	with mo	odule in	slot 2					
	79	Inter-option mo	dule comm	is error	with mo	odule in	slot 3			T		
	80	Inter-option mo	dule comm	is error	with mo	odule un	known slo	t		1		
	81	APC internal er	ror							1		
	82	Communication	s to drive	faulty]		

Safety Information		System Mechanical Electrical Getting Basic Re Infiguration Installation Installation Started parameters the	unning Optimization SMARTCARD Onboard Advanced Technical Diagnostics UL Listing operation PLC parameters Data						
Trip			Diagnosis						
SLX.Er	Solutions Mo	dule slot X trip: Solutions Module in slot X	has detected a fault						
	Automation (I	/O Expansion) module category							
		I/O 120V and SM-I/O 24V Protected. See the	possible error codes for the SM-I/O Plus, SM-I/O Lite, SM-I/O Timer, SM- <i>Diagnostics</i> section in the relevant Solutions Module User Guide for						
	Error code	Module	Reason for fault						
	0	All	No errors						
000 00 7 040	1	All	Digital output overload						
202,207,212	2	SM-I/O Lite, SM-I/O Timer	Analog input 1 current input too high (>22mA) or too low (<3mA)						
	2	SM-I/O PELV, SM-I/O 24V Protected	Digital input overload						
	3	SM-I/O PELV, SM-I/O 24V Protected	Analog input 1 current input too low (<3mA)						
	J	SM-I/O 24V Protected	Communications error						
	4	SM-I/O PELV	User power supply absent						
	5	SM-I/O Timer	Real time clock communication error						
	74	All	Module over temperature						
SLX.Er	Solutions Mo	dule slot X trip: Solutions Module in slot X	has detected a fault						
	Fieldbus mod	ule category							
	Check value in Pr 15/16/17.50 . The following table lists the possible error codes for the Fieldbus modules. See the <i>Diagnostics</i> section in the relevant Solutions Module User Guide for more information.								
	Error code	Module	Trip Description						
	0	All	No trip						
	52	SM-PROFIBUS-DP, SM-Interbus, SM-DeviceNet, SM-CANOpen	User control word trip						
	58	SM-LON	Incorrect non-volatile storage						
	61	SM-PROFIBUS-DP, SM-Interbus, SM-DeviceNet, SM-CANOpen, SM- SERCOS, SM-LON	Configuration error						
	64	SM-DeviceNet	Expected packet rate timeout						
	65	SM-PROFIBUS-DP, SM-Interbus, SM-DeviceNet, SM-CANOpen, SM- SERCOS, SM-LON	Network loss						
	66	SM-PROFIBUS-DP	Critical link failure						
	00	SM-CAN, SM-DeviceNet, SM-CANOpen	Bus off error						
202,207,212	69	SM-CAN	No acknowledgement						
	70	All (except SM-Ethernet and SM-LON)	Flash transfer error						
	10	SM-Ethernet, SM-LON	No valid menu data available for the module from the drive						
	74	All	Solutions module over temperature						
	75	SM-Ethernet	The drive is not responding						
	76	SM-Ethernet	The Modbus connection has timed out						
	80	All (except SM-SERCOS)	Inter-option communications error						
	81	All (except SM-SERCOS)	Communications error to slot 1						
	82	All (except SM-SERCOS)	Communications error to slot 2						
	83	All (except SM-SERCOS)	Communications error to slot 3						
	84	SM-Ethernet	Memory allocation error						
	85	SM-Ethernet	File system error						
	86	SM-Ethernet	Configuration file error						
	87	SM-Ethernet	Language file error						
	98	All	Internal watchdog error						
		All	Internal watchoog enor						
	99	All							

Safety Information		System Mechanical Electrical Getting Basic Running Optimization SMARTCARD Onboard J figuration Installation Started parameters the motor Optimization SmartCARD Onboard p	Advanced Technical parameters Data	Diagnostics UL Listing Information						
Trip		Diagnosis								
SLX.Er	Solutions Mod	ule slot X trip: Solutions Module in slot X has detected a fault								
	SLM module category Check value in Pr 15/16/17.50. The following table lists the possible error codes for the SM-SLM. See the <i>Diagnostics</i> section SM-SLM User Guide for more information.									
	Error Code	Trip Description								
	0	No fault detected	-							
	1	Power supply overloaded SLM version is too low	-							
	2	DriveLink error	-							
	4	Incorrect switching frequency selected	-							
	5	Feedback source selection incorrect	-							
	6	Encoder error	-							
	7	Motor object number of instances error								
202,207,212	8									
	9	Performance object number of instances error	-							
	10	Parameter channel error	-							
	11	Drive operating mode incompatible	-							
	12 13	Error writing to the SLM EEPROM	-							
	13	Motor object type incorrect Unidrive SP object error	-							
	15	Encoder object CRC error								
	16	Motor object CRC error	-							
	17	Performance object CRC error								
	18	Unidrive SP object CRC error								
	19	Sequencer timeout								
	74	Solutions module over temperature								
SLX.HF	Solutions Mod	ule slot X trip: Solutions Module X hardware fault								
200,205,210		ns Module is installed correctly s Module to supplier								
SL3.HF	Building auton	nation interface: Module hardware fault								
210,210		ns Module is installed correctly s Module to supplier								
SLX.nF	Solutions Mod	ule slot X trip: Solutions Module has been removed								
203,208,213	Reinstall Solution	ns Module is installed correctly ons Module rs and reset drive								
SL3.nF		nation interface: Module has been removed								
213,213	Reinstall Solution	Ensure Solutions Module is installed correctly Reinstall Solutions Module Save parameters and reset drive								
SL.rtd	Solutions Mod	ule trip: Drive mode has changed and Solutions Module parameter routing i	s now incorrec	t						
215	Press reset. If the trip persis	ts, contact the supplier of the drive.								
SLX.tO	Solutions Mod	ule slot X trip: Solutions Module watchdog timeout								
201,206,211	Press reset. If the trip persists, contact the supplier of the drive.									
SL3.tO	Building auton	nation interface: Module watchdog timeout								
211,211	Press reset. If the trip persis									
t038	User trip defined in 2 nd processor Solutions Module code									
38	-	s program must be interrogated to find the cause of this trip								
t040 to t089	User trip defin	ed in 2 nd processor Solutions Module code								
40 to 89	SM-Application	s program must be interrogated to find the cause of this trip								

Safety Information	ction Product System Mechanical Electrical Getting Basic Running Optimization Configuration Installation Installation Started parameters the motor Optimization Optimization Optimization Optimization Determined operation PLC Parameters Data Diagnostics Information									
Trip	Diagnosis									
t099	User trip defined in 2 nd processor Solutions Module code									
99	SM-Applications program must be interrogated to find the cause of this trip									
t101	User trip defined in 2 nd processor Solutions Module code									
101	SM-Applications program must be interrogated to find the cause of this trip									
t112 to t160	User trip defined in 2 nd processor Solutions Module code									
112 to 160	SM-Applications program must be interrogated to find the cause of this trip									
t168 to t174	User trip defined in 2 nd processor Solutions Module code									
168 to 174	SM-Applications program must be interrogated to find the cause of this trip									
t216	User trip defined in 2 nd processor Solutions Module code									
216	SM-Applications program must be interrogated to find the cause of this trip									
th	Motor thermistor trip									
24	Check motor temperature Check thermistor continuity Set Pr 7.15 = VOLt and reset the drive to disable this function									
thS	Motor thermistor short circuit									
25	Check motor thermistor wiring Replace motor / motor thermistor Set Pr 7.15 = VOLt and reset the drive to disable this function									
tunE*	Autotune stopped before completion									
18	The drive has tripped out during the autotune The red stop key has been pressed during the autotune The SAFE TORQUE OFF (SECURE DISABLE) signal (terminal 31) was active during the autotune procedure									
tunE1*	The position feedback did not change or required speed could not be reached during the inertia test (see Pr 5.12)									
11	Ensure the motor is free to turn i.e. brake was released Check feedback device wiring is correct Check feedback parameters are set correctly Check encoder coupling to motor									
tunE2*	Position feedback direction incorrect or motor could not be stopped during the inertia test (see Pr 5.12)									
12	Check motor cable wiring is correct Check feedback device wiring is correct Swap any two motor phases (closed loop vector only)									
tunE3*	Drive encoder commutation signals connected incorrectly or measured inertia out of range (see Pr 5.12)									
13	Check motor cable wiring is correct Check feedback device U,V and W commutation signal wiring is correct									
tunE4*	Drive encoder U commutation signal fail during an autotune									
14	Check feedback device U phase commutation wires continuity Replace encoder									
tunE5*	Drive encoder V commutation signal fail during an autotune									
15	Check feedback device V phase commutation wires continuity Replace encoder									
tunE6*	Drive encoder W commutation signal fail during an autotune									
16	Check feedback device W phase commutation wires continuity Replace encoder									
tunE7*	Motor number of poles set incorrectly									
17	Check lines per revolution for feedback device Check the number of poles in Pr 5.11 is set correctly									
Unid.P	Power module unidentified trip									
110	Check all interconnecting cables between power modules Ensure cables are routed away from electrical noise sources									
UP ACC	Onboard PLC program: cannot access Onboard PLC program file on drive									
98	Disable drive - write access is not allowed when the drive is enabled Another source is already accessing Onboard PLC program - retry once other action is complete									

Safety Introduction Product System Mechanical Electrical Getting Basic Running Information Information Information Installation Installation Installation Started parameters Optimized	mization SMARTCARD Onboard Advanced Technical Diagnostics UL Listing parameters Data Diagnostics Information
--	--

Trip	Diagnosis									
UP div0	Onboard PLC program attempted divide by zero	Onboard PLC program attempted divide by zero								
90	Check program									
UP OFL	Onboard PLC program variables and function block calls using more than the allowed RAM space (stack overflo	w)								
95	Check program									
UP ovr	Onboard PLC program attempted out of range parameter write									
94	Check program									
UP PAr	Onboard PLC program attempted access to a non-existent parameter									
91	Check program									
UP ro	Onboard PLC program attempted write to a read-only parameter									
92	Check program									
UP So	Onboard PLC program attempted read of a write-only parameter									
93	Check program									
UP udF	Onboard PLC program un-defined trip									
97	Check program									
UP uSEr	Onboard PLC program requested a trip									
96	Check program									
UV	DC bus under voltage threshold reached									
1	Check AC supply voltage level Drive voltage rating (Vac) Under voltage threshold (Vdc) UV reset voltage (Vdc) 200 175 215V 400 350 425V									
	575 & 690 435 590V									

*If a tunE through tunE 7 trip occurs, then after the drive is reset the drive cannot be made to run unless it is disabled via the SAFE TORQUE OFF (SECURE DISABLE) input (terminal 31), drive enable parameter (Pr **6.15**) or the control word (Pr **6.42** and Pr **6.43**).

Safety	Introduction	Product		Mechanical		Getting		Running	Optimization	SMARTCARD		Advanced	Technical	Diagnostics	UL Listing
Information		Information	configuration	Installation	Installation	Started	parameters	the motor	-	operation	PLC	parameters	Data	J	Information

Table 15-2 Serial communications look-up table

No.	Trip	No.	Trip	No.	Trip
1	UV	40 to 89	t040 to t089	182	C.Err
2	OV	90	UP div0	183	C.dAt
3	OI.AC	91	UP PAr	184	C.FULL
4	Ol.br	92	UP ro	185	C.Acc
5	PS	93	UP So	186	C.rtg
6	Et	94	UP ovr	187	C.TyP
7	O.SPd	95	UP OFL	188	C.cPr
8	PS.10V	96	UP uSEr	189	EnC1
9	PS.24V	97	UP udF	190	EnC2
10	br.th	98	UP ACC	191	EnC3
11	tunE1	99	t099	192	EnC4
12	tunE2	100		193	EnC5
13	tunE3	101	t101	194	EnC6
14	tunE4	102	Oht4.P	195	EnC7
15	tunE5	103	Olbr.P	196	EnC8
16	tunE6	104	OIAC.P	197	EnC9
17	tunE7	105	Oht2.P	198	EnC10
18	tunE	106	OV.P	199	DESt
19	lt.br	107	PH.P	200	SL1.HF
20	It.AC	108	PS.P	201	SL1.tO
21	O.ht1	109	OldC.P	202	SL1.Er
22	O.ht2	110	Unid.P	203	SL1.nF
23	O.CtL	111	ConF.P	204	SL1.dF
24	th	112 to 160	t112 to t160	205	SL2.HF
25	thS	161	Enc11	206	SL2.tO
26	O.Ld1	162	Enc12	207	SL2.Er
27	O.ht3	163	Enc13	208	SL2.nF
28	cL2	164	Enc14	209	SL2.dF
29	cL3	165	Enc15	210	SL3.HF
30	SCL	166	Enc16	211	SL3.tO
31	EEF	167	Enc17	212	SL3.Er
32	PH	168 to 174	t168 to t174	213	SL3.nF
33	rS	175	C.Prod	214	SL3.dF
34	PAd	176	EnP.Er	215	SL.rtd
35	CL.bit	177	C.boot	216	t216
36	SAVE.Er	178	C.bUSY	217 to 232	HF17 to HF32
37	PSAVE.Er	179	C.Chg		
38	t038	180	C.OPtn		
39	L.SYnC	181	C.RdO		

	Introduction	Product		Mechanical		Getting	Basic	Running	Optimization	SMARTCARD		Advanced	Technical	Diagnostics	UL Listing
Information		Information	configuration	Installation	Installation	Started	parameters	the motor	optimization	operation	PLC	parameters	Data	Diagnoonoo	Information

The trips can be grouped into the following categories. It should be noted that a trip can only occur when the drive is not tripped or is already tripped but with a trip with a lower priority number.

Table 15-3 Trip categories

Priority	Category	Trips	Comments
1	Hardware faults	HF01 to HF16	These indicate fatal problems and cannot be reset. The drive is inactive after one of these trips and the display shows HFxx . The Drive OK relay opens and the serial comms will not function.
2	Non-resetable trips	HF17 to HF32, SL1.HF, SL2.HF, SL3.HF	Cannot be reset. Requires the drive to be powered down.
3	EEF trip	EEF	Cannot be reset unless a code to load defaults is first entered in Pr xx.00 or Pr 11.43.
4	SMARTCARD trips	C.boot, C.Busy, C.Chg, C.OPtn, C.RdO, C.Err, C.dat, C.FULL, C.Acc, C.rtg, C.TyP, C.cpr, C.Prod	Can be reset after 1.0s SMARTCARD trips have priority 5 during power-up
4	Encoder power supply trips	PS.24V, EnC1	Can be reset after 1.0s These trips can only override the following priority 5 trips: EnC2 to EnC8 or Enc11 to Enc17
5	Autotune	tunE, tunE1 to tunE7	Can be reset after 1.0s, but the drive cannot be made to run unless it is disabled via the SAFE TORQUE OFF (SECURE DISABLE) input (terminal 31), <i>Drive enable</i> (Pr 6.15) or the <i>Control word</i> (Pr 6.42 and Pr 6.43).
5	Normal trips with extended reset	OI.AC, OI.Br, OIAC.P, OIBr.P, OldC.P	Can be reset after 10.0s
5	Normal trips	All other trips not included in this table	Can be reset after 1.0s
5	Non-important trips	th, thS, Old1, cL2, cL3, SCL	If Pr 10.37 is 1 or 3 (i.e. bit 0 set to 1), the drive will stop before tripping
5	Phase loss	PH	The drive attempts to stop before tripping
5	Drive over-heat based on thermal model	O.ht3	The drive attempts to stop before tripping, but if it does not stop within 10s the drive will automatically trip
6	Self-resetting trips	UV	Under voltage trip cannot be reset by the user, but is automatically reset by the drive when the supply voltage is with specification

Although the UV trip operates in a similar way to all other trips, all drive functions can still operate but the drive cannot be enabled. The following differences apply to the UV trip:

- Power-down save user parameters are saved when UV trip is activated except when the main high voltage supply is not active (i.e. operating in Low Voltage DC Supply Mode, Pr 6.44 = 1).
- 2. The UV trip is self-resetting when the DC bus voltage rises above the drive restart voltage level. If another trip is active instead of UV at this point, the trip is not reset.
- The drive can change between using the main high voltage supply and low voltage DC supply only when the drive is in the under voltage condition (Pr 10.16 = 1). The UV trip can only be seen as active if another trip is not active in the under voltage condition.
- 4. When the drive is first powered up a UV trip is initiated if the supply voltage is below the restart voltage level and another trip is not active. This does not cause save power down save parameters to be saved at this point.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	Onboard	Advanced	Technical		UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

15.2 Alarm indications

In any mode an alarm flashes alternately with the data displayed on the 2nd row when one of the following conditions occur. If action is not taken to eliminate any alarm except "Autotune", "Lt" and "PLC" the drive may eventually trip. Alarms flash once every 640ms except "PLC" which flashes once every 10s. Alarms are not displayed when a parameter is being edited.

Table 15-4 Alarm indications

Lower display	Description
br.rS	Braking resistor overload
	I ² t accumulator (Pr 10.39) in the drive has reached lue at which the drive will trip and the braking IGBT is
Hot	Heatsink or control board or inverter IGBT over temperature alarms are active
	eatsink temperature has reached a threshold and the o O.ht2 if the temperature continues to rise (see the
	t temperature around the control PCB is approaching nperature threshold (see the O.CtL trip).
OVLd	Motor overload
	ccumulator (Pr 4.19) in the drive has reached 75% of ch the drive will be tripped and the load on the drive is
Auto tune	Autotune in progress
The autotune patternatively on	ocedure has been initialised. 'Auto' and 'tunE' will flash the display.
Lt	Limit switch is active
	limit switch is active and that it is causing the motor to forward limit switch with forward reference etc.)
PLC	Onboard PLC program is running
An Onboard PL will flash 'PLC'	C program is installed and running. The lower display once every 10s.

15.3 Status indications

Table 15-5 Status indications

Upper display	Description	Drive output stage
ACt	Regeneration mode active	
-	is enabled and synchronised to the	Enabled
supply.		
ACUU	AC Supply loss	
	letected that the AC supply has been	Enabled
	mpting to maintain the DC bus voltage	
by decelerating dc		
	DC applied to the motor	Enabled
	plying DC injection braking.	
dEC	Decelerating	Enabled
The drive is de	celerating the motor.	
inh	Inhibit	
	ibited and cannot be run.	Disabled
	le signal is not applied to terminal 31 or	Disabiou
Pr 6.15 is set to	0.	
POS	Positioning	Enabled
The drive is pos	sitioning/orientating the motor shaft.	Enabled
rdY	Ready	Disabled
The drive is rea	ady to be run.	Disabled
run	Running	Enabled
The drive is rur	nning.	Enabled
SCAn	Scanning	
	ive is enabled and is synchronising to	Enabled
the line.		
StoP	Stop or holding zero speed	
	ding zero speed.	Enabled
0	ive is enabled but the AC voltage is too	Lindbiod
	bus voltage is still rising or falling.	
triP	Trip condition	
	ripped and is no longer controlling the	Disabled
motor. The trip	code appears on the lower display.	

Table 15-6 Solutions Module and SMARTCARD status indications at power-up

Lower display	Description							
boot								
A parameter set is being transferred from the SMARTCARD to the drive during power-up. For further information, please refer to section 11.2.4 <i>Booting up from the SMARTCARD on every power up (Pr 11.4 = boot (4))</i> on page 151.								
cArd								
The drive is wri	ting a parameter set to the SMARTCARD during power-							
For further information, please refer to section 11.2.3 <i>Auto saving parameter changes (Pr 11.42 = Auto (3))</i> on page 151.								
loAding								
The drive is wri	ting information to a Solutions Module.							

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Introduction		configuration	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	Diagnostics	Information

15.4 Displaying the trip history

The drive retains a log of the last 10 trips that have occurred in Pr **10.20** to Pr **10.29** and the corresponding multi-module drive module number (Pr **6.49** = 0) or the trip time (Pr **6.49** = 1) for each trip in Pr **10.41** to Pr **10.51**. The time of the trip is recorded from the powered-up clock (if Pr **6.28** = 0) or from the run time clock (if Pr **6.28** = 1).

Pr **10.20** is the most recent trip, or the current trip if the drive is in a trip condition (with the module number or trip time stored in Pr **10.41** and Pr **10.42**). Pr **10.29** is the oldest trip (with the module number or trip time stored in Pr **10.51**). Each time a new trip occurs, all the parameters move down one, such that the current trip (and time) is stored in Pr **10.20** (and Pr **10.41** to Pr **10.42**) and the oldest trip (and time) is lost out of the bottom of the log.

If any parameter between Pr **10.20** and Pr **10.29** inclusive is read by serial communications, then the trip number in Table 15-1 *Trip indications* on page 276 is the value transmitted.

15.5 Behaviour of the drive when tripped

If the drive trips, the output of the drive is disabled so that the drive stops controlling the motor. If any trip occurs (except the UV trip) the following read only parameters are frozen until the trip is cleared. This is to help in diagnosing the cause of the trip.

Parameter	Description
1.01	Frequency/speed reference
1.02	Pre-skip filter reference
1.03	Pre-ramp reference
2.01	Post-ramp reference
3.01	Frequency slaving demand/Final speed ref
3.02	Speed feedback
3.03	Speed error
3.04	Speed controller output
4.01	Current magnitude
4.02	Active current
4.17	Reactive current
5.01	Output frequency
5.02	Output voltage
5.03	Power
5.05	DC bus voltage
7.01	Analog input 1
7.02	Analog input 2
7.03	Analog input 3

Analog and digital I/O

The analog and digital I/O on the drive continue to work correctly if a trip occurs, except the digital outputs will go low if one of the following trips occur: O.Ld1, PS.24V.

Drive logic functions

The drive logic functions (i.e. PID, variable selectors, threshold detectors, etc.) continue to operate when the drive is tripped.

Onboard PLC program

The Onboard PLC program continues to run if the drive is tripped, except if one of Onboard PLC program trips occur.

Braking IGBT

The braking IGBT continues to operate even when the output of the drive is not enabled (except if the low voltage DC supply is being used), but is only disabled if any of the following trips occurs or would occur if another trip had not already become active: OI.Br, PS, It.Br or OV.

Safety	Introduction	Product	System	Mechanical	Electrical	Getting	Basic	Running		SMARTCARD	Onboard	Advanced	Technical		UL Listing
Information	Introduction	Information	configuration	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

16 UL Listing Information

The Control Techniques UL file number is E171230. Confirmation of UL listing can be found on the UL website: www.ul.com.

16.1 Common UL information

Conformity

The drive conforms to UL listing requirements only when the following are observed:

- The drive is installed in a type 1 enclosure, or better, as defined by UL50
- The ambient temperature does not exceed 40°C (104°F) when the drive is operating
- The terminal tightening torques specified in section 5.13.2 *Terminal sizes and torque settings* on page 63.
- If the drive control stage is supplied by an external power supply (+24V), the external power supply must be a UL Class 2 power supply

Motor overload protection

The drive provides motor overload protection. The default overload protection level is no higher than 150% of full-load current (FLC) of the drive in open loop mode and no higher than 175% of full-load current (FLC) of the drive in closed loop vector or servo modes. It is necessary for the motor rated current to be entered into Pr **0.46** (or Pr **5.07**) for the protection to operate correctly. The protection level may be adjusted below 150% if required. Refer to section 10.3 *Current limits* on page 146 for more information. The drive also provides motor thermal protection. Refer to section 10.4 *Motor thermal protection* on page 146.

Overspeed Protection

The drive provides overspeed protection. However, it does not provide the level of protection afforded by an independent high integrity overspeed protection device.

16.2 Power dependant UL information

16.2.1 Unidrive SPMA

Conformity

The drive conforms to UL listing requirements only when the following is observed:

Fuses

Unidrive SPMA

 The UL-listed Ferraz HSJ (High speed J class) fuses are used in the AC supply. The drive does not comply with UL if any other fuses or MCBs are used in place of those stated.

For further details on fusing, refer to Table 6-15 Unidrive SPMA input current, fuse and cable size ratings on page 74.

Unidrive SPMU/C/D

- UL recognised semiconductor fuses type Ferraz type PSD size 32 660V (e.g. Ferraz designation 6,6 URD 32 0400 for a 400A 660Vac fuse) or SIBA UL recognised semiconductor fuses type URS SQB2 690Vac (e.g. Siba model number 20 627 31.400
- SPMD inverter models are supplied by SPMU or SPMC rectifiers only. The model does not comply with UL if any other fuses or MCBs are used in place of those stated.

For further details refer to Table 6-17 *Unidrive SPMC/U 400V input current, fuse and cable size rating* on page 74.

With reference to the above the fuse current rating should be taken from the column headed "Semiconductor IEC class aR". This semiconductor fuse must be used in series with a HRC type fuse to provide full circuit protection. For UL applications the applicable HRC type fuse to use is UL listed class J, with the current rating obtained from the column headed "HRC IEC class gG UL class J".

Field wiring Unidrive SPM

• Class 1 75°C (167°F) copper wire only is used in the installation

Field wiring connectors

Unidrive SPM

• UL listed wire connectors are used for terminating power circuit field wiring, e.g. Ilsco TA series

16.3 AC supply specification

The Unidrive SPM is suitable for use in a circuit capable of delivering not more than 100,000rms symmetrical Amperes at 528Vac rms maximum (400V drives) or 600Vac rms maximum (575V and 690V drives).

16.4 Maximum continuous output current

The drive models are listed as having the maximum continuous output currents (FLC) shown in Table 16-1 (see Chapter 14 *Technical Data* for details).

Table 16-1 Maximum continuous output current

Model	FLC (A)	Model	FLC (A)
SPMA14X1	205	SPMA16X1	125
SPMA14X2	236	SPMA16X2	144
SPMD12X1	192	SPMD14X1	205
SPMD12X2	248	SPMD14X2	246
SPMD12X3	312	SPMD14X3	290
SPMD12X4*	350	SPMD14X4*	350
SPMD12X4**	335	SPMD14X4**	335
SPMD16X1	125	SPMC/U 1402***	379
SPMD16X2	144	SPMC/U 2402***	2 x 345
SPMD16X3	168	SPMC/U 1601***	209
SPMD16X4	192	SPMC/U 2601***	2 x 185

* SPMD 1XX4 rating with rectifier undocked

** SPMD 1XX4 rating with rectifier docked

*** SPMC/U typical DC output current

16.5 Safety label

The safety label supplied with the connectors and mounting brackets must be placed on a fixed part inside the drive enclosure where it can be seen clearly by maintenance personnel for UL compliance.

The label clearly states "CAUTION Risk of Electric Shock Power down unit 10 minutes before removing cover".

16.6 UL listed accessories

- SM-Universal Encoder Plus
- SM-Resolver
- SM-PROFIBUS-DP SM-DeviceNet

SM-CANopen

SM-Keypad Plus

SM-I/O 24V Protected

SM-Keypad

SM-I/O Lite

SM-I/O PELV

SM-SERCOS

SM-DeviceNet
 SM-INTERBUS

SM-CAN

- SM-Encoder Plus 15-way D-type converter
- SM-I/O Plus
- SM-Applications
- SM-Applications Lite
- SIM-Applications LI
- SM-SLM
- SM-I/O Timer
- SM-I/O 120V
- SM-Applications Plus
- SM-Ethernet

Unidrive SPM User Guide Issue Number: 3

List of figures

Figure 2-1	Single half controlled SCR/thyristor8
Figure 2-2	Dual half controlled SCR/thyristor
Figure 2-3	Single diode rectifier
Figure 2-4	Dual diode rectifier
Figure 2-5	SPMA inverter schematic9
Figure 2-6	SPMA inverter schematic
Figure 2-7	Single input line reactor (INLX0X)/force
Figure 2-1	cooled (INLX0XW)10
Eiguro 2.9	Dual input line reactor (INLX1X)10
Figure 2-8	
Figure 2-9	Single output sharing choke (OTLX0X)
Figure 2-10	Dual output sharing choke (OTLX1X)10
Figure 2-11	Rectifier (SPMC and SPMU)
Figure 2-12	Drives (SPMA and SPMD)11
Figure 2-13	Input line reactor / output sharing choke
Figure 3-1	Features of the Unidrive SPM Modules
Figure 3-2	Typical drive rating labels
Figure 3-3	Control options available with Unidrive SPM20
Figure 3-4	Power options available for Unidrive SPM21
Figure 4-1	Layout for a Unidrive SPMA module operating
	on a 3-phase AC supply25
Figure 4-2	Layout for two or more Unidrive SPMA
	modules operating on a 3-phase AC supply26
Figure 4-3	Layout for an Unidrive SPMD module
	operating on a 3-phase supply27
Figure 4-4	Layout for an Unidrive SPMD module
	operating on a 3 phase supply with SPMU
	(uncontrolled) rectifier and softstart circuit28
Figure 4-5	Layout for two or more Unidrive SPMD
	modules operating on a 3-phase AC supply29
Figure 4-6	Layout for two Unidrive SPMD modules with a
	dual SPMC rectifier operating on a 3-phase
	AC supply
Figure 4-7	Layout for two Unidrive SPMD slave modules
	with a dual SPMC rectifier operating on a
	3-phase AC supply with a remote mounted
	control master pod31
Figure 4-8	Parallel control connections32
Figure 5-1	Location and identification of terminal covers34
Figure 5-2	Removing the terminal covers (Uni SPMA
	illustrated)35
Figure 5-3	Removing the Unidrive SPMC/U dual rectifier
	terminal covers and housing35
Figure 5-4	Removing the finger-guard break-outs
Figure 5-5	Unidrive SPM finger-guard grommets
Figure 5-6	Installation and removal of a Solutions Module 37
Figure 5-7	Installation and removal of a keypad
Figure 5-8	Mounting the control master pod on the drive38
Figure 5-9	Mounting the control slave pod on the drive38
Figure 5-10	Control master/slave pod and power module
	base plate connectors
Figure 5-11	Control master pod dimensions
Figure 5-12	Docking kit
Figure 5-13	Location of the docking kit when installed40
Figure 5-14	Surface mounting the Unidrive SPMA41
Figure 5-15	Surface mounting the Unidrive SPMD42
Figure 5-16	Surface mounting the Unidrive SPMC/U
-	(rectifier)42
Figure 5-17	Surface mounting the Unidrive SPMD with
0	SPMC/U (rectifier) and docking kit43
Figure 5-18	Through-panel mounting the Unidrive SPMA44
Figure 5-19	Through-panel mounting the Unidrive SPMD45
J I	

Figure 5-20	Through-panel mounting the Unidrive SPMC/U (rectifier)
Figure 5-21	Through-panel mounting the Unidrive SPMD with SPMC/U (rectifier) and docking kit
Figure 5-22	Unidrive SPM mounting bracket
Figure 5-23	Orientation of the Unidrive SPM mounting bracket
Figure 5-24	Location of top Unidrive SPMA surface mounting brackets
Figure 5-25	Installation of the Unidrive SPMC/U surface mounting brackets
Figure 5-26	Installation of the Unidrive SPMC/U through panel mounting brackets
Figure 5-27	Enclosure layout
Figure 5-28	Alternative enclosure layout: Undocked
i iguio o zo	Unidrive SPMD and SPMC
Figure 5-29	Altitude derate factor
Figure 5-30	Ambient temperature correction factor
Figure 5-31	Enclosure design example
Q	
Figure 5-32	Recommended enclosure design
Figure 5-33	Recirculation factor
Figure 5-34	Pressure drop
Figure 5-35	AC supply 400mm diameter blower
	performance
Figure 5-36	Removal of Unidrive SPMA/D fan (part 1) 55
Figure 5-37	Removal of Unidrive SPMA/D fan (part 2) 55
Figure 5-38	Removal of Unidrive SPMC/U fan
Figure 5-39	Example of IP54 (NEMA 12) through-panel layout
Figure 5-40	Option 2 for achieving IP54 (NEMA 12)
rigure o 40	through-panel mounting57
Figure 5-41	Option 3 for achieving IP54 (NEMA 12)
	through panel mounting58
Figure 5-42	Mounting the external EMC filter
Figure 5-43	External EMC filter 59
Figure 5-44	Multiple drive EMC filters60
Figure 5-45	Single input line reactor (INLX0X)61
Figure 5-46	Dual input line reactor (INLX1X)61
Figure 5-47	Single line input reactor force cooled (INLX0XW)
Figure 5-48	Single output sharing choke (OTLX0X)
Figure 5-49	Dual output sharing choke (OTLX1X)
Figure 5-50	Locations of the power and ground terminals
ligure o oo	on Unidrive SPM
Figure 6-1	Unidrive SPMA power connections
Figure 6-2	Unidrive SPMD & SPMC/U (rectifier) power connections
Figure 6-3	Unidrive SPMA ground connections
Figure 6-4	Unidrive SPMD ground connections
Figure 6-5	Unidrive SPMC/U ground connections
Figure 6-6	Unidrive SPMD and SPMC/U (rectifier)
Figure 0-0	ground connections
Figure 6-7	Input line reactor/output sharing choke
	dimensions
Figure 6-8	Softstart circuit configuration
Figure 6-9	Switching sequence for K1 and K270
Figure 6-10	Example of resistor overload characteristic 72
Figure 6-11	Example of tripping characteristic72
Figure 6-12	Location of the heatsink fan supply
	connections (SPMA & SPMD)73
Figure 6-13	Heatsink fan supply connections (SPMA & SPMD)

Figure 6-14	Cable construction influencing the capacitance 76
Figure 6-15	Preferred chain connection for multiple motors 76
Figure 6-16	Alternative connection for multiple motors77
Figure 6-17	Typical protection circuit for a braking resistor .78
Figure 6-18	Installation of grounding bracket (master/
	slave)79 Removal of internal EMC filter80
Figure 6-19	
Figure 6-20	General EMC enclosure layout showing ground connections81
Figure 6-21	Drive cable clearances
Figure 6-22	Feedback cable, twisted pair83
Figure 6-23	Feedback cable connections
Figure 6-24	Supply and ground cable clearance
Figure 6-25	Sensitive signal circuit clearance
Figure 6-26	Grounding the drive, motor cable shield and
0	filter
Figure 6-27	Grounding the motor cable shield
Figure 6-28	Shielding requirements of optional external
	braking resistor85
Figure 6-29	Grounding of signal cable shields using the
	grounding bracket86
Figure 6-30	Grounding of SPMC/U signal cables86
Figure 6-31	Connecting the motor cable to a terminal
F : 0.00	block in the enclosure
Figure 6-32	Connecting the motor cable to an isolator/
Eiguro 6.22	disconnect switch
Figure 6-33	Surge suppression for digital and unipolar inputs and outputs87
Figure 6-34	Surge suppression for analog and bipolar
riguie 0-04	inputs and outputs
Figure 6-35	Location of SPMC (rectifier) control terminals87
Figure 6-36	Single module control terminals and
i igulo o oo	descriptions
Figure 6-37	Parallel rectifier control terminals and
0	descriptions89
Figure 6-38	Status LED location
Figure 6-39	Location of the SPMA/D low voltage DC
	mode enable connections90
Figure 6-40	SPMA low voltage DC mode enable
	connections
Figure 6-41	SPMD low voltage DC mode enable
F ¹ 0 10	connections
Figure 6-42	Location of the RJ45 serial comms connector 92 Default terminal functions
Figure 6-43	Location of encoder connector
Figure 6-44 Figure 6-45	Start / stop control EN954-1 category B -
rigule 0-45	replacement of contactor
Figure 6-46	Category 3 interlock using electromechanical
r iguro o ro	safety contactors
Figure 6-47	Category 3 interlock using SAFE TORQUE
- gane e - i	OFF (SECURE DISABLE) with protected
	wiring
Figure 6-48	Use of contactor and relay to avoid the
	need for protected wiring100
Figure 7-1	SM-Keypad101
Figure 7-2	SM-Keypad Plus101
Figure 7-3	Display modes
Figure 7-4	Mode examples
Figure 7-5	Parameter navigation
Figure 7-6	Menu structure
Figure 7-7	Menu 0 copying
Figure 8-1 Figure 8-2	Menu 0 logic diagram
Figure 8-2 Figure 9-1	Minimum connections to get the motor
i igule 3-1	running in any operating mode

Figure 10-1	Motor thermal protection (Heavy Duty)146
Figure 10-2	Motor thermal protection (Normal Duty)146
Figure 10-3	Torque and rated voltage against speed147
Figure 11-1	Installation of the SMARTCARD149
Figure 11-2	Basic SMARTCARD operation149
Figure 12-1	Onboard PLC program scheduling155
Figure 12-2	Programming options for Unidrive SP
Figure 13-1	Menu 1 logic diagram166
Figure 13-2	Menu 2 logic diagram170
Figure 13-3	Menu 3 Open-loop logic diagram173
Figure 13-4	Menu 3 Closed loop logic diagram174
Figure 13-5	Menu 4 Open loop logic diagram178
Figure 13-6	Menu 4 Closed-loop vector logic diagram179
•	
Figure 13-7	Menu 4 Servo logic diagram
Figure 13-8	Menu 5 Open-loop logic diagram182
Figure 13-9	Menu 5 Closed-loop logic diagram
Figure 13-10	Menu 6 logic diagram187
Figure 13-11	Menu 7 logic diagram
U U	
Figure 13-12	Menu 8 logic diagram
Figure 13-13	Menu 9 logic diagram: Programmable logic195
Figure 13-14	Menu 9 logic diagram: Motorized pot and
	binary sum196
Figure 13-15	Menu 12 logic diagram200
Figure 13-16	Menu 12 logic diagram (continued)201
Figure 13-17	Open-loop brake function
Figure 13-18	Open-loop brake sequence202
Figure 13-19	Closed-loop brake function203
Figure 13-20	Closed-loop brake sequence
Figure 13-21	Menu 13 Open-loop logic diagram
Figure 13-22	Menu 13 Closed-loop logic diagram208
Figure 13-23	Menu 14 Logic diagram
Figure 13-24	Location of Solutions Module slots and their
	corresponding menu numbers215
Figure 13-25	SM-Universal Encoder Plus logic diagram216
Figure 13-26	SM-Resolver logic diagram220
Figure 13-27	SM-Encoder Plus logic diagram
Figure 13-28	SM-Encoder Output Plus logic diagram
Figure 13-29	SM-I/O Plus analog logic diagram
Figure 13-30	SM-I/O Plus digital logic diagram 1228
Figure 13-31	SM-I/O Plus digital logic diagram 2229
Figure 13-32	SM-I/O Lite & SM-I/O Timer digital I/O logic
	diagram231
Figure 13-33	SM-I/O Lite & SM-I/O Timer analog I/O logic
rigule to bo	diagram 232
F ¹ 10 0 1	0
Figure 13-34	SM-I/O Timer real time clock logic diagram232
Figure 13-35	SM-I/O PELV digital I/O logic diagram234
Figure 13-36	SM-I/O PELV digital input logic diagram235
Figure 13-37	SM-I/O PELV relay logic diagram
Figure 13-38	SM-I/O PELV analog input logic diagram235
Figure 13-39	SM-I/O PELV analog output logic diagram236
Figure 13-40	SM-I/O 24V Protected digital I/O logic
	diagram238
Figure 13-41	SM-I/O 24V Protected digital I/O logic
	diagram239
Figure 13-42	SM-I/O 24V Protected relay logic diagram239
Figure 13-43	SM-I/O 24V Protected analog output logic
	diagram
Figure 13-44	SM-I/O 120V digital input logic diagram241
Figure 13-45	SM-I/O 120V relay diagram242
Figure 13-46	SM-SLM logic diagram248
Figure 13-47	Digital input connections when Pr 6.04 is
J	set to 0 to 3
Figure 15-1	Keypad status modes
	Location of the status LED
Figure 15-2	LUCATION OF THE STATUS LED

List of tables

Table 3-1	SPMA 400V drive ratings (380V to 480V
Table 3-2	±10%)13 Paralleled SPMA 400V motor drive ratings
	(380V to 480V ±10%)13
Table 3-3	SPMA 690V drive ratings (500V to 690V
Table 3-4	±10%)13 Paralleled SPMA 690V motor drive ratings
	$(500V \text{ to } 690V \pm 10\%)$
Table 3-5	SPMD 200V drive ratings (200V to 240V
	±10%) based on AC supply voltage
Table 3-6	Paralleled SPMD 200V motor drive ratings (200V to 240V ±10%) based on AC supply
	voltage14
Table 3-7	SPMD 400V motor drive ratings (380V to
T	480V ±10%) based on AC supply voltage15
Table 3-8	Paralleled SPMD 400V motor drive ratings (380V to 480V ±10%) based on AC supply
	voltage
Table 3-9	SPMD 690V motor drive ratings (500V to
T 11 0 10	690V ±10%)
Table 3-10	Paralleled SPMD 690V motor drive ratings (500V to 690V ±10%) based on AC supply
	voltage
Table 3-11	Unidrive SPMC/U 400V ratings16
Table 3-12	Unidrive SPMC/U 690V ratings16
Table 3-13	Typical overload limits for all Unidrive SPM modules
Table 3-14	Encoders compatible with Unidrive SPM
Table 3-15	Solutions Module identification21
Table 3-16	Keypad identification23
Table 3-17 Table 3-18	Other options
Table 5-18	Mounting brackets
Table 5-2	Example data53
Table 5-3	Unidrive SPM air flow rates
Table 5-4 Table 5-5	Type of fan54 Unidrive SPM fan assembly part numbers55
Table 5-6	Description of fixings
Table 5-7	Quantity of nylon washers included in the kit
	boxes
Table 5-8 Table 5-9	Environment considerations
	when through-panel mounted
Table 5-10	Single drive EMC filter details58
Table 5-11 Table 5-12	Optional external EMC filter details59 EMC filters for multiple drive combinations60
Table 5-12 Table 5-13	Optional external EMC filter details
Table 5-14	Master/slave control and relay terminal data63
Table 5-15	Drive power terminal data63
Table 5-16	Optional external EMC Filter terminal data63
Table 6-1	Behaviour of the drive in the event of a ground (earth) fault with an IT supply67
Table 6-2	400V input line reactor ratings
Table 6-3	400V dual input line reactor ratings
Table 6-4	690V input line reactor ratings
Table 6-5 Table 6-6	690V dual input line reactor ratings68 400V output sharing choke ratings69
Table 6-7	600V output sharing choke ratings
Table 6-8	400V dual output sharing choke ratings69
Table 6-9	600V dual output sharing choke ratings
Table 6-10	DC bus capacitance and peak supply current values71

Table 6-11	Available resistors
Table 6-12	Allowable Softstart resistor range
Table 6-13	MCBs available from Control Techniques 72
Table 6-14	Supply fault current used to calculate
	maximum input currents
Table 6-15	Unidrive SPMA input current, fuse and cable
	size ratings
Table 6-16	Unidrive SPMD input current, fuse and cable
	size ratings
Table 6-17	Unidrive SPMC/U 400V input current, fuse
	and cable size rating
Table 6-18	Unidrive SPMC/U 690V input current, fuse
Table 6-19	and cable size ratings
	Maximum motor cable lengths (Unidrive
	SPMA)
Table 6-20	Maximum motor cable lengths (Unidrive
T.I.I. 0.04	SPMD)
Table 6-21	Braking transistor turn on voltage
Table 6-22	Minimum resistance values and peak power
T	rating for the braking resistor at 40°C (104°F) .78
Table 6-23	Second environment emission compliance 83
Table 6-24	Key to SPMC (rectifier) LEDs
Table 6-25	Key to SPMU (rectifier) LEDs90
Table 6-26	Connection details for RJ45 connector
Table 6-27	Isolated serial comms lead details
Table 6-28	The Unidrive SPM control connections
	consist of: 92
Table 6-29	Encoder types96
Table 6-30	Drive encoder connector details
Table 6-31	Feedback resolution based on frequency and
	voltage level
Table 7-1	Advanced menu descriptions 104
Table 7-2	Menu 40 parameter descriptions 104
Table 7-3	Menu 41 parameter descriptions
Table 7-4	Alarm indications 105
Table 7-5	Solutions Module and SMARTCARD status
	indications on power-up 105
Table 9-1	Minimum control connection requirements
	for each control mode 124
Table 9-2	Minimum control connection requirements
	for each mode of operation
Table 9-3	Parameters required for feedback device
	set-up
Table 9-4	Restrictions of drive encoder lines per
	revolution with software version V01.06.01
	and later
Table 9-5	Restrictions of drive encoder lines per
	revolution with software version V01.06.00
	and earlier
Table 10-1	Available switching frequencies
Table 10-2	Sample rates for various control tasks at
	each switching frequency
Table 11-1	SMARTCARD data blocks
Table 11-2	SMARTCARD codes
Table 11-2	Key to parameter table coding
Table 11-3	Trip conditions
Table 11-4 Table 11-5	SMARTCARD status indications
Table 13-1	Menu descriptions
Table 13-2	Key to parameter table coding
Table 13-3	Feature look-up table
Table 13-4	Definition of parameter ranges & variable
	maximums 162

	•• • • • • • • • • • • • • • • • • • • •
Table 13-5	Maximum motor rated current
Table 13-7	Active reference
Table 14-1	Maximum permissible continuous output
	current @ 40°C (104°F) ambient (SPMD
T.L. 44.0	drives in docked condition)
Table 14-2	Maximum permissible continuous output
	current @ 40°C (104°F) ambient (SPMD
T.L. 440	drives in undocked condition)263
Table 14-3	Maximum permissible continuous output
	current @ 50°C (122°F) ambient (SPMD
T	drives in docked condition)
Table 14-4	Maximum permissible continuous output
	current @ 50°C (122°F) ambient (SPMD
	drives in undocked condition)
Table 14-5	Unidrive SPMC/U maximum permissible
	ratings
Table 14-6	Losses @ 40°C (104°F) ambient (SPMD
Table 117	drives in docked condition)
Table 14-7	Losses @ 40°C (104°F) ambient (SPMD
Table 110	drives in undocked condition)
Table 14-8	Losses @ 50°C (122°F) ambient (SPMD
Table 110	drives in docked condition)
Table 14-9	Losses @ 50°C (122°F) ambient (SPMD
Table 14-10	drives in undocked condition)
Table 14-10	Unidrive SPMC/U losses @ 40/50°C (104/
	122°F) ambient
Table 14-11	Power losses from the front of the drive
Table 44.40	when through-panel mounted
Table 14-12	Input line reactor losses @ 40/50°C (104/
Table 44.40	122°F) ambient
Table 14-13	Output sharing choke losses @ 40/50°C
Table 14.14	(104/122°F) ambient
Table 14-14	IP Rating degrees of protection
Table 14-15 Table 14-16	NEMA enclosure ratings
Table 14-16 Table 14-17	Acoustic noise
Table 14-17 Table 14-18	Overall drive dimensions
	Overall drive weights
Table 14-19	Supply fault current used to calculate maximum input currents269
Table 14-20	Unidrive SPMA input current, fuse and cable
14-20	Uniunve SelviA input current, iuse and cable
	size ratings 260
Table 11-21	size ratings
Table 14-21	Unidrive SPMD input current, fuse and cable
	Unidrive SPMD input current, fuse and cable size ratings
Table 14-21 Table 14-22	Unidrive SPMD input current, fuse and cable size ratings
Table 14-22	Unidrive SPMD input current, fuse and cable size ratings
	Unidrive SPMD input current, fuse and cable size ratings
Table 14-22 Table 14-23	Unidrive SPMD input current, fuse and cable size ratings
Table 14-22 Table 14-23 Table 14-24	Unidrive SPMD input current, fuse and cablesize ratingsUnidrive SPMC/U 400V input current, fuseand cable size ratingUnidrive SPMC/U 690V input current, fuseand cable size ratings270Unidrive SPMC/U 690V input current, fuseand cable size ratings270400V input line reactor ratings270
Table 14-22 Table 14-23 Table 14-24 Table 14-25	Unidrive SPMD input current, fuse and cablesize ratings269Unidrive SPMC/U 400V input current, fuseand cable size rating270Unidrive SPMC/U 690V input current, fuseand cable size ratings270400V input line reactor ratings270400V dual input line reactor ratings270
Table 14-22 Table 14-23 Table 14-24 Table 14-25 Table 14-26	Unidrive SPMD input current, fuse and cablesize ratings269Unidrive SPMC/U 400V input current, fuseand cable size rating270Unidrive SPMC/U 690V input current, fuseand cable size ratings270400V input line reactor ratings270400V dual input line reactor ratings270690V input line reactor ratings270270270
Table 14-22 Table 14-23 Table 14-24 Table 14-25 Table 14-26 Table 14-27	Unidrive SPMD input current, fuse and cablesize ratings269Unidrive SPMC/U 400V input current, fuseand cable size rating270Unidrive SPMC/U 690V input current, fuseand cable size ratings270400V input line reactor ratings270400V dual input line reactor ratings270690V input line reactor ratings270690V dual input line reactor ratings270690V dual input line reactor ratings270690V dual input line reactor ratings270
Table 14-22 Table 14-23 Table 14-24 Table 14-25 Table 14-26 Table 14-27 Table 14-28	Unidrive SPMD input current, fuse and cablesize ratings269Unidrive SPMC/U 400V input current, fuseand cable size rating270Unidrive SPMC/U 690V input current, fuseand cable size ratings270400V input line reactor ratings270400V dual input line reactor ratings270690V input line reactor ratings270690V dual input line reactor ratings270690V dual input line reactor ratings270400V output sharing choke ratings271
Table 14-22 Table 14-23 Table 14-24 Table 14-25 Table 14-26 Table 14-27 Table 14-28 Table 14-29	Unidrive SPMD input current, fuse and cablesize ratings269Unidrive SPMC/U 400V input current, fuseand cable size rating270Unidrive SPMC/U 690V input current, fuseand cable size ratings270400V input line reactor ratings270400V dual input line reactor ratings270690V input line reactor ratings270690V dual input line reactor ratings270690V dual input line reactor ratings270600V output sharing choke ratings271600V output sharing choke ratings271
Table 14-22 Table 14-23 Table 14-24 Table 14-25 Table 14-26 Table 14-27 Table 14-28 Table 14-29 Table 14-29 Table 14-29 Table 14-30	Unidrive SPMD input current, fuse and cablesize ratings269Unidrive SPMC/U 400V input current, fuseand cable size rating270Unidrive SPMC/U 690V input current, fuseand cable size ratings270400V input line reactor ratings270400V dual input line reactor ratings270690V input line reactor ratings270690V dual input line reactor ratings270690V dual input line reactor ratings270600V output sharing choke ratings271600V output sharing choke ratings271400V dual output sharing choke ratings271
Table 14-22 Table 14-23 Table 14-24 Table 14-25 Table 14-26 Table 14-27 Table 14-28 Table 14-29 Table 14-29 Table 14-30 Table 14-31	Unidrive SPMD input current, fuse and cablesize ratings269Unidrive SPMC/U 400V input current, fuseand cable size rating270Unidrive SPMC/U 690V input current, fuseand cable size ratings270400V input line reactor ratings270400V dual input line reactor ratings270690V input line reactor ratings270690V dual input line reactor ratings270690V dual input line reactor ratings270600V output sharing choke ratings271600V output sharing choke ratings271600V dual output sharing choke ratings271600V dual output sharing choke ratings271600V dual output sharing choke ratings271600V dual output sharing choke ratings271600V dual output sharing choke ratings271
Table 14-22 Table 14-23 Table 14-24 Table 14-25 Table 14-26 Table 14-27 Table 14-28 Table 14-29 Table 14-29 Table 14-29 Table 14-30	Unidrive SPMD input current, fuse and cablesize ratings269Unidrive SPMC/U 400V input current, fuseand cable size rating270Unidrive SPMC/U 690V input current, fuseand cable size ratings270400V input line reactor ratings270400V dual input line reactor ratings270690V input line reactor ratings270690V dual input line reactor ratings270690V dual input line reactor ratings270600V output sharing choke ratings271600V output sharing choke ratings271600V dual output sharing choke ratings271600V dual output sharing choke ratings271600V dual output sharing choke ratings271Maximum motor cable lengths (Unidrive
Table 14-22 Table 14-23 Table 14-24 Table 14-25 Table 14-26 Table 14-27 Table 14-28 Table 14-29 Table 14-30 Table 14-31 Table 14-32	Unidrive SPMD input current, fuse and cable size ratings269Unidrive SPMC/U 400V input current, fuse and cable size rating270Unidrive SPMC/U 690V input current, fuse and cable size ratings270400V input line reactor ratings270400V dual input line reactor ratings270690V input line reactor ratings270690V dual input line reactor ratings270690V dual input line reactor ratings270690V dual input line reactor ratings271600V output sharing choke ratings271600V dual output sharing choke ratings271600V dual output sharing choke ratings271600V dual output sharing choke ratings271Maximum motor cable lengths (Unidrive SPMA)271
Table 14-22 Table 14-23 Table 14-24 Table 14-25 Table 14-26 Table 14-27 Table 14-28 Table 14-29 Table 14-29 Table 14-30 Table 14-31	Unidrive SPMD input current, fuse and cablesize ratingsUnidrive SPMC/U 400V input current, fuseand cable size ratingunidrive SPMC/U 690V input current, fuseand cable size ratings270Unidrive SPMC/U 690V input current, fuseand cable size ratings270400V input line reactor ratings270400V dual input line reactor ratings270690V dual input line reactor ratings270690V dual input line reactor ratings270400V output sharing choke ratings271600V dual output sharing choke ratings271600V dual output sharing choke ratings271Maximum motor cable lengths (UnidriveSPMA)271Maximum motor cable lengths (Unidrive
Table 14-22 Table 14-23 Table 14-24 Table 14-25 Table 14-26 Table 14-27 Table 14-28 Table 14-29 Table 14-30 Table 14-31 Table 14-32	Unidrive SPMD input current, fuse and cablesize ratingsUnidrive SPMC/U 400V input current, fuseand cable size ratingUnidrive SPMC/U 690V input current, fuseand cable size ratings270Unidrive SPMC/U 690V input current, fuseand cable size ratings270400V input line reactor ratings270400V dual input line reactor ratings270690V dual input line reactor ratings270690V dual input line reactor ratings270690V dual input line reactor ratings271600V output sharing choke ratings271600V dual output sharing choke ratings271600V dual output sharing choke ratings271Maximum motor cable lengths (UnidriveSPMA)271Maximum motor cable lengths (UnidriveSPMD)271
Table14-22Table14-23Table14-24Table14-25Table14-26Table14-27Table14-28Table14-29Table14-30Table14-31Table14-32Table14-33	Unidrive SPMD input current, fuse and cablesize ratings269Unidrive SPMC/U 400V input current, fuseand cable size rating270Unidrive SPMC/U 690V input current, fuseand cable size ratings270400V input line reactor ratings270400V dual input line reactor ratings270690V input line reactor ratings270690V dual input line reactor ratings270690V dual input line reactor ratings270600V output sharing choke ratings271600V output sharing choke ratings271600V dual output sharing choke ratings271600V dual output sharing choke ratings271Maximum motor cable lengths (Unidrive271SPMA)271Maximum motor cable lengths (Unidrive271Minimum resistance values and peak271
Table14-22Table14-23Table14-24Table14-25Table14-26Table14-27Table14-28Table14-29Table14-30Table14-31Table14-32Table14-33	Unidrive SPMD input current, fuse and cablesize ratings269Unidrive SPMC/U 400V input current, fuseand cable size rating270Unidrive SPMC/U 690V input current, fuseand cable size ratings270400V input line reactor ratings270400V dual input line reactor ratings270690V input line reactor ratings270690V dual input line reactor ratings270690V dual input line reactor ratings270600V output sharing choke ratings271600V output sharing choke ratings271600V dual output sharing choke ratings271Maximum motor cable lengths (Unidrive271Maximum motor cable lengths (Unidrive271Maximum motor cable lengths (Unidrive271Minimum resistance values and peak271Mover rating for the braking resistor at271
Table14-22Table14-23Table14-24Table14-25Table14-26Table14-27Table14-28Table14-29Table14-30Table14-31Table14-32Table14-33	Unidrive SPMD input current, fuse and cablesize ratings269Unidrive SPMC/U 400V input current, fuseand cable size rating270Unidrive SPMC/U 690V input current, fuseand cable size ratings270400V input line reactor ratings270400V dual input line reactor ratings270690V input line reactor ratings270690V dual input line reactor ratings270690V dual input line reactor ratings270600V output sharing choke ratings271600V output sharing choke ratings271600V dual output sharing choke ratings271Maximum motor cable lengths (Unidrive271SPMA)271Maximum motor cable lengths (Unidrive271Minimum resistance values and peak271Mover rating for the braking resistor at40°C (104°F)272272
Table14-22Table14-23Table14-24Table14-25Table14-26Table14-27Table14-28Table14-29Table14-30Table14-31Table14-32Table14-33Table14-34	Unidrive SPMD input current, fuse and cablesize ratings269Unidrive SPMC/U 400V input current, fuseand cable size rating270Unidrive SPMC/U 690V input current, fuseand cable size ratings270400V input line reactor ratings270400V dual input line reactor ratings270690V input line reactor ratings270690V dual input line reactor ratings270690V dual input line reactor ratings270600V output sharing choke ratings271600V dual output sharing choke ratings271600V dual output sharing choke ratings271Maximum motor cable lengths (Unidrive271SPMA)271Maximum motor cable lengths (Unidrive271Maximum resistance values and peak271power rating for the braking resistor at40°C (104°F)40°C (104°F)272Master drive control and relay terminal data272
Table14-22Table14-23Table14-24Table14-25Table14-26Table14-27Table14-28Table14-29Table14-30Table14-31Table14-32Table14-33Table14-34Table14-34	Unidrive SPMD input current, fuse and cablesize ratings269Unidrive SPMC/U 400V input current, fuseand cable size rating270Unidrive SPMC/U 690V input current, fuseand cable size ratings270400V input line reactor ratings270400V dual input line reactor ratings270690V input line reactor ratings270690V dual input line reactor ratings270690V dual input line reactor ratings270600V output sharing choke ratings271600V dual output sharing choke ratings271600V dual output sharing choke ratings271Maximum motor cable lengths (Unidrive271SPMA)271Maximum motor cable lengths (Unidrive271Minimum resistance values and peak271Mover rating for the braking resistor at40°C (104°F)272272

Table 14-38	SPMA (400V only) emission compliance273
Table 14-39	SPMA (690V only) emission compliance273
Table 14-40	SPMD (400V only) emission compliance273
Table 14-41	SPMD (690V only) emission compliance273
Table 14-42	Unidrive SPM and EMC filter cross reference 273
Table 14-43	EMC filters for multiple drive combinations273
Table 14-44	Optional external EMC filter details274
Table 14-45	Optional external EMC filter dimensions274
Table 14-46	Optional external EMC Filter terminal data274
Table 15-1	Trip indications276
Table 15-2	Serial communications look-up table
Table 15-3	Trip categories291
Table 15-4	Alarm indications292
Table 15-5	Status indications
Table 15-6	Solutions Module and SMARTCARD status
	indications at power-up292
Table 16-1	Maximum continuous output current294

Index

Symbols

+10V user output	94
+24V external input	94
+24V user output	

Numerics

0V common	
-----------	--

Α

AC supply contactor
AC supply requirements
Access
Access Level
Accuracy
Advanced menus
Advanced parameters158
Alarm
Alarm Indications
Altitude
Analog input 294
Analog input 3
Analog output 195
Analog output 2
Autotune

В

Basic requirements1	24
Braking	77
Braking Modes	55
Braking resistor values	72

С

Cable clearances	82
Cable lengths (maximum)	271
Cable size ratings	
Cable types and lengths	75
Catch a spinning motor	
Cautions	7
CD ROM file contents	24
Closed loop vector mode	17
Control connections	92
Control terminal specification	94
Cooling	
Cooling method	267
CTSoft	132
Current limit	114
Current limits	146
Current loop gains	139, 142, 144
Current ratings	

D

5	
DC bus paralleling DC bus voltage	
Deceleration 77, 109, 114, 117, 128, 129, 130, 131, 139	
172, 252, 255, 258	
Defaults (restoring parameter)	105
Derating	263
Destination parameter	92
Diagnostics	275
Digital I/O 1	95
Digital I/O 2	95
Digital I/O 3	95
Digital Input 1	
Digital Input 2	95
Digital Input 3	95
Dimensions (overall)	269
Display	101
Display messages	105
Drive enable	96
Drive features	17

Е

Electrical Installation	
Electrical safety	
Electrical terminals	
Electromagnetic compatibility (EMC) 33, 79, 272	
EMC - Compliance with generic emission standards	
EMC - General requirements	
EMC - Variations in the wiring85	
EMC filter dimensions (external, overall)	
EMC filter torque settings (external)274	
EMC filters (optional external)273	
Emission	
EN61800-3 (standard for Power Drive Systems)83	
Enclosure	
Enclosure Layout 49	
Enclosure sizing	
Encoder connections	
Encoder feedback limits147	
Encoder types	
Environmental protection	
External EMC filter	

F

Fast Disable	262
Feedback device cable shielding	82
Field weakening (constant power) operation	147
Fieldbus module category parameters	245
Fire protection	33
Fixed V/F mode	17
Fuse ratings	269
Fuse types	75

G

Getting Started	101
Ground connections	
Ground leakage	
Ground terminals	
Grounding bracket	79

Н

Hazardous areas
High speed operation147
Humidity

I

I/O module category parameters	227
Input current ratings	
Internal EMC filter	80
IP Rating (Ingress protection)	55, 267
Isolator/disconnect switch	
Items supplied with the drive	24

Κ

Keypad and display - installing / removal	37
Keypad operation	.101

L

Line power supply loss modes	258
Line reactors	267

Μ

Maximum speed / frequency				
Mechanical Installation				33
Menu 0				
Menu 01 - Frequency / speed reference				.166
Menu 02 - Ramps				.170
Menu 03 - Slave frequency, speed feedback	and	speed	b	
control				.173
Menu 04 - Torque and current control				.178
Menu 05 - Motor control				.182
Menu 06 - Sequencer and clock				.187
Menu 07 - Analog I/O				.189
Menu 08 - Digital I/O				.192
Menu 09 - Programmable logic, motorized po	ot and	d		
binary sum				.195
Menu 10 - Status and trips				.198
Menu 11 - General drive set-up				.199
Menu 12 - Threshold detectors and variable	selec	tors		.200
Menu 13 - Position control				.206
Menu 14 - User PID controller				.212
Menu 15, 16 and 17 - Solutions Module set-	qu			.215
Menu 18 - Application menu 1	· · · · · · · · · · · · · · · · · · ·			.251
Menu 19 - Application menu 2				.251
Menu 20 - Application menu 3				
Menu 21 - Second motor parameters				
Menu 22 - Additional Menu 0 set-up				.253
Menu structure				
Minimum connections to get the motor running	ng in	any		
operating mode				.126
Mode parameter				92
Model number				11
Monitoring				.116
Motor (running the motor)				.124
Motor cable - interruptions				86
Motor isolator/disconnect switch				
Motor map parameters				.136
Motor number of poles				
Motor parameters				
Motor rated current				
Motor rated current (maximum)				
Motor rated frequency				
Motor rated power factor				
Motor rated speed		136,	138,	141
Motor rated speed autotune		í	·····	.142
Motor rated voltage				
Motor requirements				
Motor thermal protection				
Motor winding voltage				
Mounting methods				
Multiple motors				

Ν

Nameplate description	
NEMA rating	
Notes	7

0

Onboard PLC Open loop mode Open loop vector mode Operating mode (changing) Operating modes Operating-mode selection Optimisation	
· •	
Options	
Output contactor Output frequency	
output noquonoj	

Ρ

Parameter access level	106
Parameter ranges	162
Parameter security	106
Parameter x.00	114
Planning the installation	
Position feedback	124
Position feedback module category parameters	216
Power dissipation	
Power ratings	
Power terminals	62
Precision reference Analog input 1	94
Product information	12

Q

Quadratic V/F mode	17
Quick start commissioning	128, 132
Quick start connections	

R

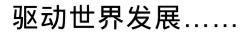
Ramps	114
Ratings	
Reactor current ratings	· · · ·
Reference modes	
Relay contacts	96
Residual current device (RCD)	79
Resistances (minimum)	78
Resolution	
RJ45 connector - connection details	92
Routine maintenance	63

			~~
SAFE TORQUE OFF			
Safety Information		7	, 33
Saving parameters			105
SECURE DISABLE			
Serial comms lead			
Serial communications connections			
Serial communications look-up table			
Serial communications port isolation			
Servo			
Single line descriptions			109
Slip compensation			
SMARTCARD operation			
SMARTCARD trips			
Solutions Module			
Solutions Module - installing / removal			
Speed feedback			
Speed limits			
Speed loop gains			
Speed range			268
Speed reference selection			114
Speed-loop PID gains			115
Start up time			
Starts per hour			
Status			
Status Indications			
Status information			
Stop modes			
Storage			
Supply requirements			
Supply types			. 67
Surge immunity of control circuits - long cables an	nd		
connections outside a building			. 86
Surge suppression for analog and bipolar inputs a			
Surge suppression for digital and unipolar inputs a			
Switching frequency			
SYPTLite	•••••	•••••	155
т			

т

S

-	
Technical data	
Temperature	
Terminal block in the enclosure	86
Terminal cover removal	33
Terminal sizes	63
Thermal protection circuit for the braking resistor	78
Torque modes	
Torque settings	
Trip	
Trip categories	
Trip History	
Trip Indications	


U

UL Listing Information	294
User Security	106

۷

Variable maximums Ventilation	
Vibration	
Voltage boost	115
Voltage mode	137

W	
Warnings	7
Weights	269

Control Techniques A leader in intelligent drives, drive systems & Solar PV energy

艾默生英国Control Techniques公司("Control Techniques")是欧洲工业电气驱动产品和系统控制的主要 制造商之一,其先进的数据技术包括交、直流驱动器和伺服控制器。我们,上海绿创自动化设备有限公司, 是Control Techniques公司的中国区代理商及售后维修服务中心。

关于艾默生CTI上海绿创

上海绿创自动化设备有限公司(原上海盛控)是一家高科技民营企业,位于上海闵行区七宝镇。

本公司为艾默生CT(Control Techniques)一级代理商&维修服务中心

ABB葆德一级代理商及全国技术服务中心

安川变频伺服全国重点分销中心

专业提供变频器维修, 直流调速器维修, 伺服驱动器维修, 伺服电机维修及相关技术服务等

如需了解详情,请你浏览网站。http://www.shlc-ct.com; 联系电话: 021-51093390

为了快速的获得服务与支持,您可以通过以下方式联系我们:

- 总机:+86-021-51093390
- 直线:+86-021-34172694
- 传 真:+86-021-51093390*8016 +86-021-64785447
- 地 址:上海市闵行区联明路 389号 A栋 411室 邮编 201101
- 网址:www.shk-ct.com
- 邮箱:shk@shk-ct.com

24×365小时全天候为用户电话支持、受理商务及技术咨询。

全国免费客服执线: 400-021-5108

本手册中的信息仅作指南之用,不具有任何合同性质。由于艾默生驱动与电机在不断对自己的产品进行发展完善, 因此不确保本手册信息的准确性。此外,艾默生驱动与电机保留随时修改产品的权利,修改详情恕不另行通知。

轻松一扫 即刻休验!