目、录
一、概述1
二、控制面板2
1. 主面板功能区2
三、油杯简介3
1. 油杯结构3
2. 油杯技术标准 3
3. 油杯使用3
4. 拆装油杯电极
5. 装入油样
6. 油杯清洗
(. 油朴土安拉木豕鉯
四、工作原理5
1. 仪器内部功能构造框图5
2. 介损测量原理图5
3. 工作原理6
4. 名词解释6
五、主要技术指标 7
六、主机操作8
1. 主菜单界面说明8
2. 仪器操作说明及注意事项9
3. 菜单操作详细说明10
七、仪器成套性14
八、运输、贮存15
九、开箱及检查15
十、其它15

一、产品概述

LYDY-V 型精密油介损及体积电阻率测试仪是用于绝缘油等液体绝缘 介质的介质损耗角及体积电阻率测试的一体化结构的高精密仪器。内部集 成了介损油杯、温控仪、温度传感器、介损测试电桥、交流试验电源、标 准电容器、高阻计、直流高压源等主要部件。其中加热部分采用了当前最 为先进的高频感应加热方式,该加热方式具备油杯与加热体非接触、加热 均匀、速度快、控制方便等优点。交流试验电源采用 AC-DC-AC 转换方式, 有效避免市电电压及频率波动对介损测试准确性影响,即便是发电机发电, 该仪器也能正确运行。内部标准电容器为 SF6 充气三极式电容,该电容的 介损及电容量不受环境温度、湿度等影响,保证仪器长时间使用后仍然精 度一致。

仪器内部采用全数字技术,全部智能自动化测量,多种模式测式,配备了大屏幕(320×240)触控式显示器,全中文菜单,每一步骤都有中文提示,测试结果可以打印输出,操作人员不需专业培训就能熟练使用。 郑重提醒:本公司提醒用户,该设备有高压输出,如果使用不当可能危及人身安全!

操作员在未仔细阅读使用说明书之前,严禁使用本仪器!

图一 控制面板图

1. 主面板功能区

- ① 微型打印机:完成输出数据打印;
- ② 总电源开关: 设备输入电源控制;
- ③ 触控式液晶显示屏: 主操作区, 设备各项目的设定以及测试操作(具体操作见"操作");
- ④ 状态指示区;
 - a) 高压灯 (红色): 如果灯亮,表示油杯上已经带高压电;
 - b) 加热灯(绿色): 如果灯亮,表示加热炉正在加热;如果灯闪烁,表示已接近 设定温度,正在恒温;灯灭时同样要注意油杯上的高温;
- ⑤ RS232 端口: 设备计算机控制串口, 通过计算机控制设备的运行;
- ⑥ 复位:初始化整机的全部控制;

1. 油杯结构

①油杯杯体,测量加压极③油杯内电极,测量测试极⑤油杯内电极,测量屏蔽极⑦温度接口

图二 油杯结构图
②油隙
④内电极固定钮
⑤测试端

2. 油杯技术标准

油杯采用三极式结构,完全符合 GB5654-85 标准,极间间距 2mm,可消除杂散电 容及泻漏对介损测试结果的影响。

3. 油杯使用

❶装入油杯:

将油杯平稳放入仪器加热炉内,保证油杯底部接触良好,以便有良好电接触和热接触,装入后应将测试线接好,黑色线是信号测试线,白色是温度测量线

❶取出油杯:

电话: 021-56774665 传真: 021-56774695

上海来扬电气科技有限公司

必须在断电情况下,先取下短的黑色、白色测量线后直接将油杯取出。

4. 拆装油杯电极

将内电极固定钮④旋松后可将内电极全部取出;同样,装入内电极后应将内电极固 定钮④旋紧。

5. 装入油样

将取出内电极的后油杯杯口朝上,然后将其向下轻斜约 60 度左右,再将装有 40ml 被试油样的量杯的杯口边缘碰到油杯杯口内壁,接着量杯慢慢轻斜,缓慢将油倒入, 注意尽可能不要在油中夹入气泡;完成后便可将内电极慢慢装入油杯,然后打拧好内电 极固定钮,再将整个装完油的油杯放入主机静止 15 分钟(这样可很好的将大部分气泡 排出;如不静止,将直接影响设备加压情况以及数据的准确);最后就可以运行主机。

注意:内电极系非常精密部件,取出、装入时一定动作缓慢,平稳,内外 电极间不要碰撞,以防破坏表面,导致整个油杯报废;

6. 油杯清洗

- 彻底清洗:测量前,应对油杯进行的清洗,这一步骤非常重要。因为绝缘油对极微小的污染都有极为敏感的反应。因此必须严格按照下述方法要点进行。
 - a. 完全拆卸油杯电极;
 - b. 用中性擦皂或洗涤剂清洗。磨料颗粒和磨擦动作不应损伤电极表面;
 - c. 用清水将电极清洗几次;
 - d. 用无水酒精浸泡各零件;

e. 电极清洗后,要用丝绸类织物将电极各部件的表面擦拭干净(别的布料会有绒 毛粘在电极上),并注意将零件放置在清洁的容器内,不要使其表面受灰尘及潮气的 污染;

f. 将各零部件放入100℃左右的烘箱内,将其烘干。

以油洗油:有时由于油样很多,所以在测量中往往会一个接一个油样进行测量。此时电极的清洗可简化。具体做法如下:

- a. 将仪器关闭,将整个油杯都从加热器中拿出,同时将内电极从油杯中取出;
- b. 将油杯中的油倒入废油容器内,用新油样冲洗油杯几次;
- c. 装入新油样;
- d. 用新油样冲洗油杯内电极几次, 然后将内电极装入油杯。

附说明:以油洗油的清洗方式可大大提高了测量速度,但如遇到特别脏的

油样或长时间不用时,应使用前面一种方式。

7. 油杯主要技术参数

(1)	高低压之间距离	2mm
(2)	空杯电容量	$60\pm 2PF$
(3)	最大测试电压	工频 2000V
(4)	空杯介损	tg $\delta < 1 \times 10^{-4}$
(5)	液体容量	约 40ml
(6)	电极材料	不锈钢
(7)	体积	70mm(D)×120mm (H)

四、工作原理

1. 仪器内部功能构造框图

图三 仪器内部功能构造框图

2. 介损测量原理图

图四 介损测量原理图

3. 工作原理

● 加热

仪器采用高频感应炉加热,启动加热后,温控 CPU 发出加热命令,同时采集油杯内部温度传感器的温度值,加热采用变功率控制和 PWM 控制两者相结合的控制方式。 在油样温度较低时,用大功率加热方式,这有利于缩短油样加热时间;待温度升至接近预设温度时,采用较小功率 PWM 加热方式,这样有利于油样加热均匀。

高频感应炉加热避免了发热块加热不均匀的现象。

● 控温

在实测温度接近预设温度时,温控 CPU 采用小功率 PWM 方式加热,采样温度值经 PID 运算,分析出最佳 PWM 控制占空比,使温度严格控制在预设温度误差范围以内。

● 介损测量

试验电压同时加在仪器内部标准电容器及油杯加压极上,测量电路对这两路信号进行 PGA 等控制后对两通道信号进行同步 AD 采样,将数字信号送 DSP(数字信号处理器),DSP 对其进行滤波、FFT 等运算后计算出 tgδ、C x 、ε等参数,送主控 CPU。

● 体积电阻率测量

直流高压试验电压加在油杯加压极上,经过测试回路,产生一微弱电流信号,该微 弱电流信号经测量电路放大后送进 AD 采样,将数字信号送 DSP (数字信号处理器), DSP 对其信号进行处理,计算出 Rx、ρ等参数,送主控 CPU。

4. 名词解释

N D HA NEW ST

0	试验源为 AC	tgδ	:	油样介质损耗角	角正切值;
		Cx	:	油样油杯的电容	序值;
					н на на т. 2

εr:相对介电常数,是根据电容值换算而得到的;

❶ 试验源为 DC Rx : 油样的绝缘电阻;

ρ :油样的体积电阻率,是根据绝缘电阻换算而得到的;

基于上述两种不同的试验电源对油样有不同的极化效应,因而重复测 试时,中间必须有足够的放电时间!否则数据不可靠!

五、主要技术指标

1	使用条件	-15℃∽40°	C RH<80%		
2	电 源	AC 220V±	10% 频率无限制		
3	交流高压输出	400V∽2200V ±2% 每隔 100V 50VA			
4	直流高压输出	200V∽600	$200V \sim 600V \pm 2\%$		
5	温控感应炉	最大功率5	500W		
6	温度控制范围	<100°C	<100°C		
7	温度控制误差	±0.5°C	±0.5℃		
8	温度测量分辨率	0.1°C			
9	控温时间	室温到 90℃ 小于 20min			
10	测量范围	tgδ Cx R	无限制 15PF-300PF 10M-10T		
11	分辨率		0.001% 0.01pF 0.01		
12	精 度		±(读数*0.5%+0.040%) ±(读数*0.5%+0.5PF) ±读数 * 10%		
13	相对介电常数	εr	根据 Cx 自动计算,精度同 Cx		
14	体积电阻率	ρ	根据 Rx 自动计算,精度同 Rx		
15	外形尺寸	450 (L) ×310 (W) ×360 (H)			
16	重量	18Kg			

六、主机操作

1.主菜单界面说明

图五 主菜单图

● 主控制项目

a) <时间设置>

功能:用于校准时钟、日历,此时钟在停电后会继续运行。

b) 〈数据管理〉

功能:用于查询以前实验的存储数据结果。

c) 〈参数设定〉

功能:用于设置恒温温度及介损测试电压。

d) <直接测试>

功能:不加热直接进行介损测试。

用途: 主要用于测试空杯介损及室温时油样介损。

e) <加热测试>

功能: 在加热到设定温度的整个过程中的任意时间段手动启动对设定项的测试。

用途: 主要用于需要掌握中间某温度段的介损值。

f) <自动测试>

功能:加热到油样温度达到设定温度后,设备系统将按照操作员预先的设定,自动完成 整个测试流程。

用途: 主要用于自动测试设定温度的介损值。

上海来扬电气科技有限公司

❶ 辅助功能项目

a) <日历>

显示位置: 主菜单界面左上角 (图五 "2012-03-28 10:50:31" 部分); 功能: 时间提示

b) <设备编号和出厂日期>

显示位置: 主菜单界面底部 (图五"设备编号: 612010 出厂日期: 20120615"部分); 功能: 指示设备信息

c) 〈实时温度状态指示区〉

显示位置: 主菜单界面右上角 (图五"18.6℃"部分);

功能:实时监控用户在参数设定中所设定恒温条件的温度;设置为外电极则显示油杯 外电极温度;设置为内电极则显示油杯内电极温度;设置为平均温则显示内外电极的平 均温度。

2.仪器操作说明及注意事项

- a) 仪器开始运行时,应先接地端接地,电源入口引入 AC220V 电源;
- b) 打开箱盖,可将油杯取出,加热及测试介损时,应将箱盖关上;
- c) 接通电源前,须保证箱盖内两根测量线,完好连接;
- d) 加热后的油杯上会有高温,如要取出油杯等物,应小心操作,以免灼伤;
- e) 启动测试后,油杯上会带高压电,严禁此时取杯;如要取油杯,请复位设备,断电 后取杯,操作应小心,以免触电;
- f) 箱盖具有合盖保护,打开盒盖时,会中断加热及中断高压;
- g) 如非必要,不得在测试过程中打开箱盖;
- h) 移动设备时应将油杯取出单独包装,以防止从中掉出打坏油杯。

3.菜单操作详细说明

❶ 时间设置

附属菜单-1

1、从主菜单界面按下"时间设置"菜单进入"附属菜单-1";

2、按增减键可调整需要的 设定操作;

3、调整完成后,应按下"保存"键,才能激活调整的数据;直接"返回",调整数据将无效;

4、不做操作,请按"返回", 退回主菜单界面。

❶ 数据管理

	日期	时间	测试项目	
000	2012-03-18	15:35	tgx and rx	
001	2012-03-18	16:30	only tgx	
002	2012-03-17	10:52	only rx	上面
003	2012-03-15	08:15	tgx and rx	上风
004	2012-03-11	15:36	tgx and rx	
005	2012-03-10	11:18	tgx and rx	
				下页
				返回

1、从主菜单界面按下"数 据管理"菜单进入"附属 菜单-2";

2、按"上页、下页"键可 选取测试存档的数据组;

3、查看存档测试数据组时,直接点击需要的数据组;

4、不做操作,请按"返回", 退回主菜单界面。

附属菜单-2

附说明:时间、日期为该数据组测试时的实时时间,测试项目的设定在"参数设定" 中设置。

❶ 数据管理附属菜单

 1、在"附属菜单-2"中, 直接点击需要的数据组进 入"附属菜单-3";

2、按"打印"键,可打印 出存档测试结果以及其它 信息:

3、不做操作,请按"返回", 退回上一级菜单。

附说明: HV 为测试电压, Tt 为测试时的温度状态。

● 参数设定

附属菜单-4

 1、从主菜单界面按下"参数设定"菜单进入"附属菜 单-4";

 2、直接点击需要设定项后 面的参数值进行选定操作;
 3、按增减键可调整需要的 设定操作;

4、调整完成后,应按下"保存"键,才能激活调整的数据;直接"返回",调整数据将无效;

5、不做操作请按"返回", 退回主菜单界面。

附说明:

1) 预设温度设置

方法:该设置项一般设置为"90℃",最高温度100℃;直接点击"90℃"文字上,按"↑、 ↓"进行温度设置。

用途:于"加热测试时",加热到设定预设温度时,停止加热,然后恒温;于"自动测试"时,当温度加热到预设温度时,设备将进行自动测试。

2) 恒温条件设置

方法:该设置项一般设置为"外电极",直接点击"外电极"或其它条件文字上,按"↑、↓"进行恒温条件切换。

用途:这是基于预设温度下的另一外加条件,此条件分:外电极、内电极及平均温三种; 外电极:该电极为加压极上的温度,为最为接近油温的温度;

内电极: 该电极为测试极上的温度;

平均温: 该温度是内、外电极的两组温度的平均值。

当设置为"外电极"时,主菜单界面的实时温度状态指示区显示的温度就为外电极的实时温度;而在"加热测试",当"外电极"温度达到"预设温度"时,设备会停止加热,将保持在预设温度点;"自动测试"时,将会在"外电极"温度达到"预设温度"的一瞬间启动测试。当设置内电极或平均温时,设备就会在相应条件下的运行。

3) HV (tgx) 设置

方法: 该设置项一般设置为"2000V"AC, 直接点击"XXXX(AC)"文字上, 按"↑、↓" 进行测试电压的调节。

用途:请注意该项为 tgx、Cx、 εr 的测试电压,在测试时,设备将按照设置的电压,进行加压测试。

4) HV (Rx) 设置

方法: 该设置项一般设置为"500V"DC, 直接点击"XXX(DC)"文字上, 按"↑、↓" 进行测试电压的调节。

用途:请注意该项为 Rx、ρ 的测试电压,在测试时,设备将按照设置的电压,进行加压测试。

5) 自动打印设置

方法:直接点击"开、关"文字上,按"↑、↓"进行自动打印的开启和关闭的切换。
 电话: 021-56774665 传真: 021-56774695
 第 12 页 共 16 页

上海来扬电气科技有限公司

用途: 基于"自动测试"模式下,测试完成后,是否自动打印数据的设置。

6) tgx Cx 选项设置

方法: 直接点击"开、关"文字上,按"↑、↓"进行该测试项的开启和关闭的切换。 用途:选择"开"时,当"直接测试"、"加热测试"及"自动测试"三种测试模式时,就都会对"tgx、 Cx、εr"测试项进行测试; 如选择"关"时,则不会对该测试项测试。

7) Rx、 ρ 选项设置

方法: 直接点击"开、关"文字上,按"↑、↓"进行该测试项的开启和关闭的切换。 用途: 选择"开"时,当"直接测试"、"加热测试"及"自动测试"三种测试模式时, 就都会对"Rx、ρ"测试项进行测试;如选择"关"时,则不会对该测试项测试。

注意:在所有的参数设置完成后,必须点击"保存",方可激活您的设定,否则将不能执行新的设定。

❶ 加热测试

 1、按下"加热测试"菜单 进入选项菜单,选择"开 始"进入"附属菜单-5";
 2、可在设定温度以内,任 意实时温度段,按下"测试"
 键进行测试;

3、测试数据出来后,按"打
 印"键,可测试结果以及其
 它信息;

4、终止操作,请按"返回", 退回主菜单界面。

附说明: 直接测试时,按下"直接测试"菜单进入选项菜单,选择"开始"进入测试中; 自动测试时,按下"自动测试"菜单进入选项菜单,选择"开始"进入智能自动测试中; 操作与之类似,不作说明。

附属菜单-5

❶ 测试结果

2012-03-20 10:58:34		18.6℃
tgx: 0.026% Cx: 137.12pF er: 2.285 HV: 2000V(AC)	RX: 0.8541E12Ω ρ: 5.7907E12Ω* HV: 500V(DC)	М
	打印 返回	ī

 1、测试完成后,设备自动 进入"附属菜单-6";
 2、按"打印"键,可测试
 结果以及其它信息;
 3、终止操作,请按"返回",
 退回主菜单界面

附属菜单-6

附说明: 当"参数设定"中 tg δ 、Cx 和 Rx、ρ都开启时,设备同时测试两组项目, 测试数据结果为"附属菜单-6"所示为两组;当"参数设定"中 tg δ 、Cx 和 Rx、ρ 任意一项关闭时,设备只测试开启项目,测试数据结果为开启项目的那一组。

七、仪器成套性

1	仪器主机	1台
2	油杯	1个
3	专用测试温感线(白色/短/两端接头)	1根
4	专用数据采集线(黑色/短/两端接头)	1根
5	送检专用 2KV 高压测试线 (黑色/长/两端夹子)	1根
	送检专用测试线(黑色/长/一端夹子/一端接头)	1根
6	专用量杯(50m1)	1个
7	AC220V 电源线	1根
8	使用说明书	1份
9	出厂检验报告/合格证	各1份
10	保险管、打印纸	备用

八、运输、贮存

1、运输

设备需要运输时,建议使用包装箱和减震物品,以免在运输途中造成不必要的损坏, 给您造成不必要的损失。

设备在运输途中不允许堆码排放。使用包装木箱时允许最高堆码层数为二层。 运输设备途中,仪器面板应朝上,不允许倒置。

2、贮存

设备应放置在干燥无尘、通风无腐蚀性气体的室内。在没有木箱包装的情况下,不允许堆码排放。

设备贮存时,面板应朝上,并在设备的底部垫防潮物品,防止设备受潮。

九、开箱及检查

1、开箱注意事项

开箱前请确定设备外包装上的箭头标志应朝上。开箱时请注意不要用力敲打,以免 损坏设备。开箱取出设备,并保留设备外包装和减震物品,既方便了您今后在运输和贮 存时使用,又起到了保护环境的作用。

2、检查内容

开箱后取出设备,应检查配件设施,如发现短少,请立即与本公司联系,我公司将 尽快及时为您服务。

十、其它

本产品整机保修一年,实行"三包"服务,终身维修,在保修期内凡属本公司设备 质量问题,提供免费维修。由于用户操作不当或不慎造成损坏,提供优惠服务。

我们将期待您对本公司产品提出宝贵意见,公司将对您所购买的设备建立用户档案, 以便给您的设备提供更快更优质的服务。

如您公司地址和联系方式变更请及时通知,以便让我们给您提供及时的跟踪服务。