

MS 14 Series Exposed Linear Encoders with Singlefield Scanning

Ð

🛎 RSF Elektronik

CONTENTS

Description of Operating Principles /	
Design Advantages03	MS 14 MO/MK Dimensions, Accessories
Scanning Principle, Shielding, Pin Assignment 04	Accuracy09
Output Signals05	Product Directory
MS 14 with integrated Mounting Control06	Distribution Contacts, Adresses 12
MS 14 Technical Data07	

TERM-EXPLANATIONS

Grating Pitch (Interval)

A grating is a continuous series of lines and spaces printed on the scale. The width of one line and one space is called the pitch (sometimes referred to as the interval) of the grating. The lines and spaces are accurately placed on the scale.

Signal Period

When scanning the grating, the encoder head produces sinusoidal signals with a period equal to the grating pitch.

Interpolation

The sinusoidal signal period can be electronically divided into equal parts. The interpolation circuitry generates a square-wave edge for each division.

Measuring Step (Resolution)

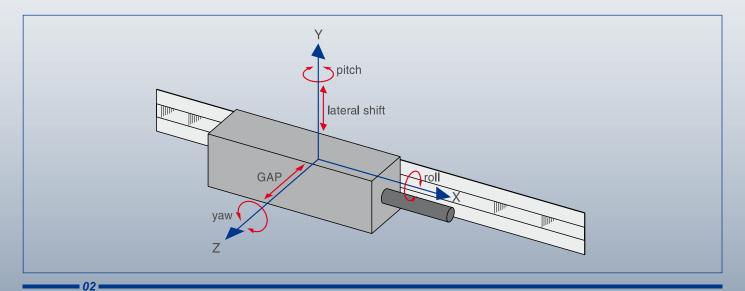
The smallest digital counting step produced by an encoder.

Reference Pulse (Reference Mark)

There is an additional track of marks printed next to the grating to allow a user to find an absolute position along the length of the scale. A one increment wide signal is generated when the encoder head passes the reference mark on the scale. This is called a "true" reference mark since it is repeatable in both directions. Subsequent electronics use this pulse to assign a preset value to the absolute reference mark position.

Error Signal

This signal appears when a malfunctioning encoder generates faulty scanning signals.


Accuracy

This is a fundamental characteristic, which is specified with an accuracy grade (e.g. $\pm 5 \ \mu m/m$).

Abbe Error

Measuring error due to lateral distance between the measuring system and the machining level.

Yaw Angle, Pitch Angle, Roll Angle, Lateral Shift, Airgap Mounting tolerances of the encoder head relative to the scale.

WHAT DO YOU REQUIRE IN AN EXPOSED LINEAR ENCODER?

- Contamination resistance
- Immunity against aging and temperature changes
- High traversing speed
- Large mounting tolerances
- Extremly small dimensions

The new MS 14 series meets all these requirements!

The trend today in motion control applications is for exposed Linear Encoder systems.

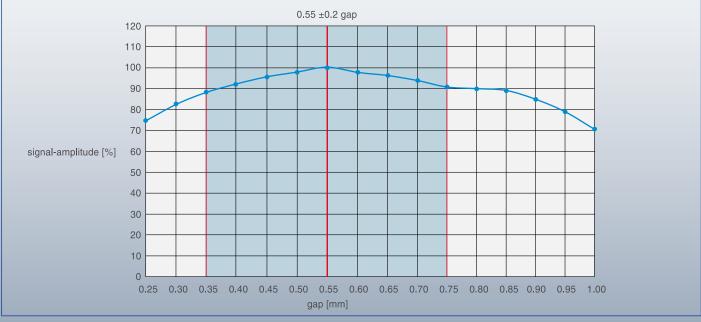
This is driven by steadily increasing demands for

- Higher traversing speed
- Higher operating cycles
- Lower mechanical backlash
- Zero frictional force induced by the encoder.

Only exposed, non-contact encoders fulfill all these requirements.

It is important for high resolution applications to minimize interpolation errors. Historically, the small grating periods used had the disadvantages of smaller mounting gaps and very tight overall mounting tolerances. The MS 14 encoders $\acute{}$ 40 μm grating period minimizes interpolation errors but can be mounted with a large mounting gap and liberal mounting tolerances.

A drawback of many exposed Linear Encoders is their sensitivity to dirt and contamination on the scale. The MS 14 encoders' unique optical design minimizes the effect of dirt and contamination normally associated with the exposed Linear Encoders. The MS 14 utilizes a unique scanning principle which allows high traversing speeds (up to 10 m/s), large mounting tolerances, and contamination on the scale.

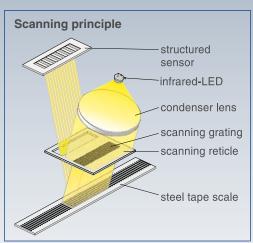

Reference marks, accurate and repeatable from both traversing directions, are standard.

A wide range of interpolation electronics, integrated into the encoder head, enable resolutions from 2 μ m to 100 nm. Square-wave signals via Line Driver RS 422, are provided at the output of the encoder head.

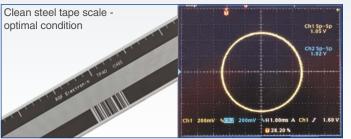
Units with sinusoidal output, 1 Vpp, are also available.

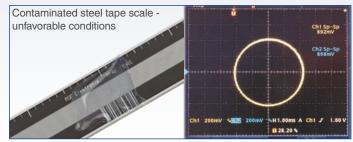
Due to recent advancements in technology, all of these benefits are now available in a small package design.

Signal amplitude vs. reading head gap


SCANNING PRINCIPLE

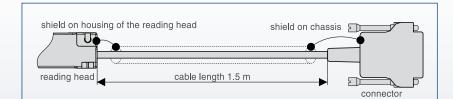
The model MS 14 incremental Linear Encoder works with the imaging, photoelectric measuring principle and a **singlefield reflective scanning** method.


The regulated light of an infrared LED is collimated by a condenser lens and passes through the grid of the reticle. After being reflected from the scale the infrared LED generates a periodic intensity distribution on the structured sensor.


The sensor generates high qualitiy sinusoidal signals which are highly insensitive to possible contaminations.

The regulation of the LED ensures a constant light output, guaranteeing stability in the case of temperature fluctuations as well as with long-run operation.

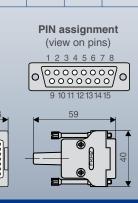
Effect of contamination on the quality and size of the measuring signal



High insensitivity to contamination by use of a new scanning principle.

SHIELDING, PIN ASSIGNMENTS

Shielded PUR-cable, Ø: 4.3 mm Bending radius fixed mounting: >10 mm, continuous flexing: >20 mm


Drag chain qualified Cables for use in vacuum applications are available on request.

Connector LD15 15-pin

Pin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Sinusoidal voltage signals 1 Vpp	nc	0 V sensor	nc	RI	A2	A1	+5 V sensor	+5 V	0 V	nc	nc	RI	A2	A1	nc
Square-wave signals via Line Driver	nc	0 V sensor	US	RI	T2	T1	+5 V sensor	+5 V	0 V	nc	nc	RI	T2	T1	nc

- Sensor: The sensor-pins are bridged with the particular power supply.

OUTPUT SIGNALS

Sinusoidal voltage signals 1Vpp

(drawing shows "positive counting direction") Two sinusoidal voltage signals A1 and A2 and one reference mark signal (all with inverted signals).

Power supply:+5V±5%, max.100mA (unloaded) **Track signals** (differential voltage A1 to $\overline{A1}$ resp. A2 to $\overline{A2}$): Signal amplitude 0.6 Vpp to 1.2 Vpp; typ. 1 Vpp (with terminating impendance Zo = 120 Ω between A1 to $\overline{A1}$ resp. A2 to $\overline{A2}$)

Reference mark

(differential voltage RI to $\overline{\text{RI}}$): Useable component 0.2 up to 0.85 V; typical 0.5 V (with terminating impedance Zo = 120 Ω between RI to $\overline{\text{RI}}$)

Advantage:

- High traversing speed with long cable lengths possible

Square-wave signals

(drawing shows "positive counting direction") With an interpolation electronics (for times -5, -10, -20, -25, -50 or -100) the photoelement output signals are converted into two square-wave signals that have a phase shift of 90°.

Output signals either can be "single ended" or Line Driver "differential" (RS 422). One measuring step reflects the measuring distance between two edges of the square-wave signals.

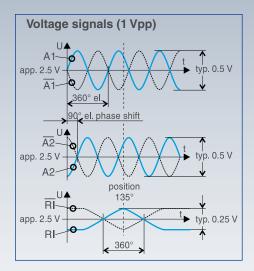
The controls/DRO's must be able to detect each edge of the square-wave signals. The minimum edge separation a_{min} is listed in the technical data and refers to a measurement at the output of the interpolator (inside the scanning head). Propagation-time differences in the Line Driver, the cable and the Line Receiver reduce the edge separation.

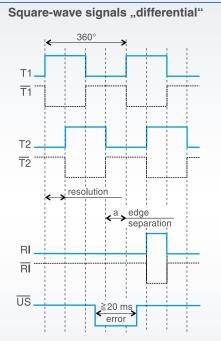
Propagation-time differences:

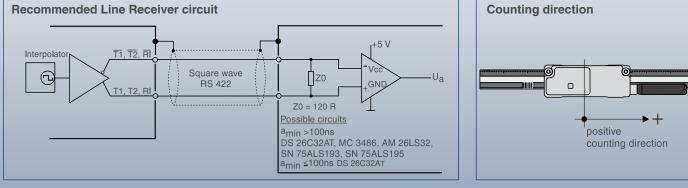
Line Driver:max. 10 nsCable:0.2 ns per meterLine receiver:max. 10 ns refered to the recommended Line Receiver circuit

To prevent counting errors, the controls/DRO's must be able to process the resulting edge separation.

Example:


a_{min} = 100 ns, 10 m cable 100 ns - 10 ns - 10 x 0.2 ns - 10 ns = 78 ns


Power supply: +5 V ±5%, max. 120 mA (unloaded)


Advantage:

Noise immune signals

- No further subdividing electronics necessary

🛎 RSF Elektronik

MS 14 WITH INTEGRATED MOUNTING CONTROL

Features:

- Easy mounting; No test box or oscilloscope needed
- The quality of the scanning signals is visible via a tricoloured LED directly at the reading head
- Permanent-control of the scanning signals over the whole measuring length
- Function-control of the reference impulse

LED-display to evaluate the "counting signals"

Amplitude- range sin cos	LED flashes	LED colour	Mounting is
1.35 V - 1.45 V	5x	•	insufficient
1.25 V - 1.35 V	4x	•	insufficient
1.15 V - 1.25 V	Зх		acceptable
1.05 V - 1.15 V	2x		good
0.95 V - 1.05 V	1x		best
0.85 V - 0.95 V	2x		good
0.75 V - 0.85 V	Зx		acceptable
0.65 V - 0.75 V	4x	•	insufficient
0.55 V - 0.65 V	5x	•	insufficient
0.45 V - 0.55 V	6x	•	insufficient
0.35 V - 0.45 V	7x	•	insufficient
<0.35 V	8x	•	insufficient

Function-control reference impulse (RI)

While passing the reference mark, the LED switches shortly into blue resp. red

- RI out of tolerance
- RI within tolerance

Note! The status display of the reference mark signal is switched off at higher velocities, in order to avoid permanent blinking. The information of the incremental signals would otherwise no longer be displayed.

Attention:

At MS 14 with square-wave signals, no analogue-signal switch-over for mounting control is provided

MS 14 TECHNICAL DATA

Reading head: 40 µm grating pitch

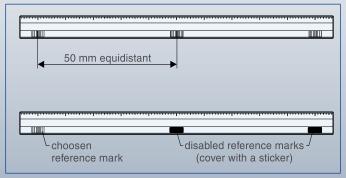
Scale model	Output signals	System resolution [µm]	Integrated interpolation	Max. velocity [m/s]	Max. output frequency [kHz]
MS 14.04	∕ 1 Vss	depending on external interpolation		10	250
					Edge separation amin
MS 14.64	л	2	times 5	6.4	300 ns
MS 14.74	л	1	times 10	3.2	300 ns
MS 14.44	л	0.5	times 20	2.4	200 ns
MS 14.54	л	0.4	times 25	1.92	200 ns
MS 14.84	л	0.2	times 50	1.92	100 ns
MS 14.94	л	0.1	times 100	0.96	100 ns

Permissible vibration:

150 m/s² (40 to 2000 Hz)

Permissible shock:

750 m/s² (8 ms)

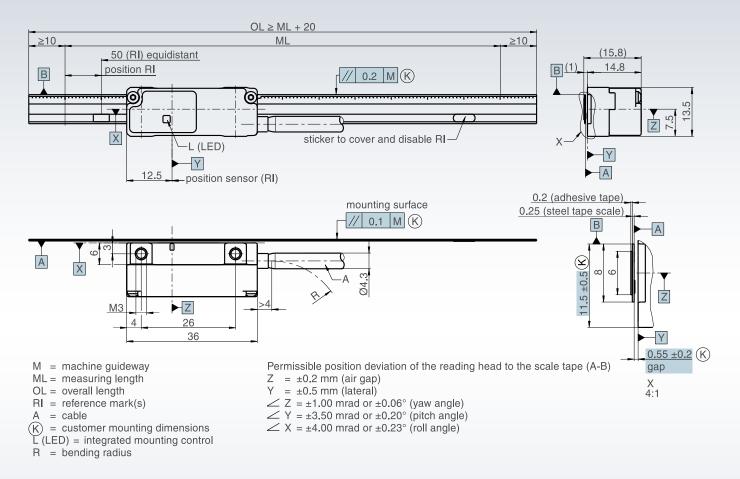

Permissible temperature:

-20 °C up to +70 °C (storage), 0 °C up to +55 °C (operation)

Scale unit

Mechanical features of the scale unit	
Grating carrier	steel
Grating pitch (T)	40 µm
Accuracy grades	±5, ±15 μm/m
Non-linearity	±3 μm/m
Maximum measuring length (ML)	20 000 mm
Reference marks (RI)	standard: 50 mm equidistant
	at any location, on request

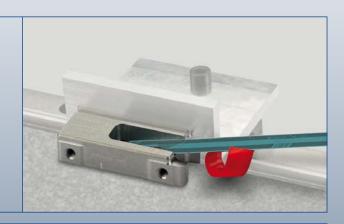
Pattern standard reference marks



MS 14 MO/MK

Version MO: Steel tape scale Version MK: Steel tape scale with adhesive tape

Dimensions, mounting tolerances:



Weight (approx.):

- Version MO: 16 g/m
 Version MK: 17 g/m
- + 12 g (reading head without cable)

Tape mounting tool TMT 14 MK (optional) For safe and precise mounting of the steel tape scale.

- Mount TMT 14 MK instead of the reading head MS 14
- Thread steel tape scale (version MK) and move along the scale length
- Remove TMT 14 MK, mount the reading head MS 14

ACCURACY

The accuracy of the Linear Encoder is classified with a "± tolerance" in μ m/m (e.g. ± 5 μ m/m).

The accuracy refers to any meter within the measuring length. For measuring lengths less than 1000 mm, the accuracy specification applies to the whole measuring length.

For best system accuracy, the encoder should be mounted near the machining level and as parallel as possible to the motion direction.

Example of a typical calibration chart for a MS 14 scale tape:

MESSPROTOKOLL • C/ Gerätetyp Type Type Serien-Nr. Serial-No.										
Serien-Nr. Serial-No.	ALIBRATION CH	ART • E1	ALONNAGE	1		Elektronik Ges.n	n.b.H.			
Serial-No. Serie-No.										
	X 1	23 4					MS1	4 Nr: X 12	3 456 789 01	
Anderungsindex Changeindex Indice de changement			Pos.	Error	-15	-10	-5	0	5	10 19
Auftrag Acknowledgement			(mm)	(µm)				1.1.1.1.1.1.1.1	.1.1.1.1.1.1.1	
Position-Nr.			+0	+0,2	1	1	1	4	1	1
Position-Nr. Position-No. Position-No.		_	+20 +40	-0,2 -0,4 -0,3				(
			+60 +80	-0.3			1)		
			+100 +120 +140	-0,5			1	(
			+160	+0,2)		
			+180 +200	-0,1 +0,3		1		S		
			+220 +240	+0,4				2		
DIN EN ISO	9001		+260	+0,5)		
Certificatio			+300 +320	+0,2				/		
SF Linear Encoders a		Die	+340 +360	-0,1			1	(
anufactured and insp		WU	+380	+0,4)		
ingent quality contro	a guidelines.	her	+420 +440	+0,3				1		
		indi	+440 +460 +480	+0,3				1		
e Linear Encoders a		Un	+500	+0,1 +0,2				1		
asured per the follo		Be	+520 +540 +560	+0,6 +0,5 +0,7				1		
nditions/equipment:		Läi Ge	+580	+0.2			1	2	1	
		pro	+600	+0.4)		
			+640 +660	+0,2				1		
Reference Temperat	ure 20°C	•	+680 +700	+0,4	-			1	1	
Humidity 50% Air Bearing guided		•	+720	+0,6						
Measuring Machine			+760	+0,3			1	1	1	1
Heidenhain Laserinte	erferometer	• 1	+780 +800	+0,3		1		5		
Type: ILM 1131		-	+820	-0,1				(
osition error: Error = Pos	Pos -	Po	+860 +880	-0,1 +0,1		1		1		
$p_{M} = position measuring matching m$		Po	+900 +920	+0.2	1	1		2		
es _E = position linear encoder		Po	+940 +960	-0,5				(
stom Data:		Curr	+980 +1000	-0,4				1		
stem Data: asuring Length:	1200 mm	Sys Me	+1020 +1040	-0.2			1	I I		
ating Pitch:	40 µm	Ma	+1060	+0,0)		
tput Signal:	1Vss	Aus	+1080 +1100 +1120	-0,1				Y		
pply Voltage: ble Outlet:	5V	Ven	+1140	-0.2	1					
ference Index (RI) Positio	nght III:	Kat Ref	+1160 +1180	+0,0			-	5		
Code:	99	Ref	+1200	-0,1						
curacy:	±5µm/m	Sys								
cification:		Dat								
			Max Abwei		±0,7µm ±0,7µm/1000mm		stal error	±0,7µm ±0,7µm/1000mm	Defaut maxi Precision du systeme	±0,7µm +0.7µm/1000mm
		10/00	Systemigen	auegkeit	±0,7μm/1000mm	System a	eccuracy	±0,7µm/1000mm	Precision du systeme	±0,7µm/1000mm
		10-010	Prüfer/check	enfoontrole	ur: R. Kraus		Dat	um/date/date: 07.02.2012		Zet/time/heure: 17:56
		2.1		NOTI VOLIDI VIL			so and	are sure sure. Treesarts		A THE MENTION OF THE T

PRODUCT DIRECTORY

MS 2x Series

Reflective scanning Linear Encoder with integrated mounting control (only MS 25, MS 26)

- Easy mounting; no test box or oscilloscope needed
- Quality of the scanning signals is directly visible at the reading head via a 3-coloured LED
- Two independent switch signals for individual special functions
 Position of reference mark
- I osition of reference mark selectable
 Uish inconsitivity accinct
- High insensitivity against contamination
- High traversing speed
- Integrated subdividing: up to times 100 interpolation
- Max. measuring length Glass scale: 3140 mm Steel tape scale: 20000 mm

MS 30, MS 31 Series Reflective scanning

Linear Encoder

- Two independent switch signals for individual special functions
- Position of reference mark selectable
- Small dimensions
- Easy mounting as a result of large mounting tolerances
- High traversing speed
- High insensitivity against
- contamination Integrated subdividing:
- up to times 100 interpolation Max. measuring length
- Glass scale: 3140 mm Steel tape scale: 11940 mm

MS 45 Series

Reflective scanning Linear Encoder with integrated mounting control

- Easy mounting; no test box or oscilloscope needed
- Quality of the scanning signals is directly visible at the reading head via a 3-coloured LED
- Small dimensions
- Easy mounting as a result of large mounting tolerances
- High insensitivity against contamination
- High traversing speed
- Integrated subdividing: up to times 100 interpolation
- Max. measuring length Steel tape scale: 30000 mm

MS 82 Series

- Interferential Linear Encoder Two switch tracks
- for individual special functions
- Non-contact reflective scanning
- High traversing speedSmall dimensions
- Scale unit: glass scale or ROBAX® glass cramic scale with phasse grating
- Max. measuring length Glass scale: 3140 mm Glass ceramic: 1540 mm

MSR 40

Modular Rotary Encoder with steel tape scale Different versions

- Full-circle or segment version
- Grating pitch: 200 μm
- Accuracy of the grating (stretched): ±30 µm/m
- High rotational speed resp. circumferential speed
- Integrated subdividing: up to times 100 interpolation

MSR 20

- Segment version
- Grating pitch: 40 µm
 Accuracy of the grating
- (stretched): ±15 µm/m
- High circumferential speed
- Integrated subdividing: up to times 100 interpolation

DG 118, DG 120

- Rotary Encoder for universal application
- Standard line/rev.: graduated from 100 to 5400

UFC 430

USB-Interface-Module

- USB-interface acc. to spec. 2.0
 Available inputs: 1 Vpp max.
- 200 kHz or TTL (RS 422) max. 500 kHz
- Interpolation: up to times 400 for measuring systems with output 1 Vpp and up to times 4 for measuring systems with square-wave Line Driver signals
- Three 15-pin Sub-D female connectors for 3 encoder inputs
- 32 Bit counter with preset and latch register

IFC 430R

- Encoder-interface-card
- PC interface board for quadrature encoder signal evaluation: times 1, -2 or -4
- Latch logic for measured values
 Three counter channels

 à 32 bit, one load and two latch registers for each channel
- PC bus
- Signal edge separation: up to 100 ns
- Demo program with examples and driver software

MSA 170 Series Sealed version

- Guided by ball bearings Distance-coded
- reference marks Mounting holes
- on the extrusion ends
- Max. measuring length: 520 mm

MSA 7xx, MSA 8xx

Series (small dimensions)

MSA 4xx, MSA 5xx

Series (large dimensions)

- Optimized thermal behavior Connection cable pluggable
- (optional) Sealed version
- Distance-coded reference marks
- Mounting holes at the ends or along the scale unit for improved vibration stability
- Max. measuring length: 3040 mm

MSA 374 Series

- With integrated guide rail system For application on presses bending machines and
- hydraulic cylinders
- Sealed version
- Roller bearing dual guided scanning carriage
- Free positionable switching magnets for special functions
- Distance-coded reference marks
- Mounting holes on the extrusion ends
- Max. measuring length: 720 mm

MSA 65x, MSA 35x

- Sealed Linear Encoders
- For retrofit of machine tools Large mounting tolerances
- Guided by ball bearings
- Distance-coded reference marks
- Two sets of sealing lips for additional contamination protection (only MSA 352)
- Mounting holes on the extrusion ends (MSA 650, MSA 35x)
- Mounting holes on top of the extrusion - improves vibration rating (MSA 651)
- Mounting supports (MSA 35x) Max. measuring lengths: MSA 650: 1740 mm MSA 651: 2240 mm MSA 35x: 3040 mm

DIT 10, DIT 30, DIT 48

- Precision Measuring Probes
- For universal applications
- Stroke length: 10, 30, 48 mm
- Mounting on shaft sleeve
- Mounting with two tapped holes on body (DIT 30, DIT 48)
- With cable lifter
- Integrated pneumatic lifter optional
- Sealing bellows optional (DIT 30, DIT 48)

Precision Graduations Cable Systems

- Length graduations on glass, chromium coated
- Length graduations on steel tape, gold coated or polished surface
- Circular graduations on glass, chromium coated
- Graticules
- Antireflex coatings
- Coatings

- Individual cable design
- Hybrid cable
- Trailing cable System solutions
- Function control

11

DISTRIBUTION CONTACTS

Austria Corporate Head Quarters	RSF Elektronik Ges.m.b.H. A-5121 Tarsdorf	France	HEIDENHAIN FRANCE sarl 2 Avenue de la Christallerie 92310 Sèvres 20 +33141143000 20 +33141143030 e-mail: info@heidenhain.fr
United Kingdom	HEIDENHAIN (GB) Ltd. 200 London Road Burgess Hill West Sussex RH15 9RD ☞ +44 (0)1444 238550 +44 (0)1444 870024 e-mail: sales@heidenhain.co.uk	Italy	HEIDENHAIN ITALIANA S.r.I. Via Asiago, 14 20128 Milano (MI)
Switzerland	RSF Elektronik (Schweiz) AG Vieristrasse 14 CH-8603 Schwerzenbach	Slovenia	RSF Elektronik prodaja, d.o.o. Jozeta Jame 14 SI-1210 Ljubljana +386 (0) 151988 80 xx +386 (0) 151988 80 e-mail: mail@rsf-elektronik.si
China	RSF Elektronik GmbH Tian Wei San Jie, Area A, Beijing Tianzhu Airport Industrial Zone Shunyi District 101312 Beijing P.R. China	Korea	HEIDENHAIN LTD. 201 Namsung Plaza, 9th Ace Techno Tower, 345-30, Gasan-Dong, Geumcheon-Gu, Seoul, Korea 153-782 +82(0)220287430 e-mail: info@heidenhain.co.kr internet: www.rsf.co.kr
USA	HEIDENHAIN CORPORATION 333 East State Parkway Schaumburg, IL 60173-5337 +18474901191 e-mail: info@heidenhain.com internet: www.rsf.net		

Date 12/2012 ■ Art.Nr. 827373-01 ■ Doc.Nr. D827373-01-A-01 ■ Technical adjustments in reserve!

Linear Encoders Digital Readouts Precision Graduations Cable Systems

Certified acc. to DIN EN ISO 9001 DIN EN ISO 14001