

XP-MMB 万用表伴侣 Multimeter Buddy 用户手册 User's Manual

用户手册的注意事项:

- 本用户手册如有变动,恕不通知,随时更正,查阅时请以最新版本为准。 请参照封面最下方的用户手册版本号。
- 若用户发现用户手册中有错误、遗漏等,请与本公司联系。
- 本公司不承担由于用户错误操作所引起的事故和危害。
- 本用户手册所讲述的功能,不作为将产品用做特殊用途的理由。

XP-MMB 万用表伴侣 用户手册

Multimeter Buddy User's Manual

使用 MMB 前,请先阅读

安全须知

Introduction

XP-MMB万用表伴侣是一种用电池供电或外部 AC/DC 电源适配器供电的手持式 高精度信号源,可用于输出各种规格的工业信号。请参阅下表:"输出功能汇总"。

除了【表 1】中的功能以外, MMB 还具有以下特点和功能:

- ◆ 自动电源切换: 可通过接通外部 AC/DC 电源适配器持续工作, 无外接电源 时,使用电池供电(4节1.5VAA电池)。
- ◆ 电池电量监测:实时监测电池供电并提示用户当前电量。
- ◆ 保存常用输出:可存储和读取多达 64 组常用输出。
- ◆ 多信息液晶显示:含有输出值、信号类型、电源信息、内存信息等各种提示 内容:上下双排显示方便设置和调用常用输出值。
- ◆ 组合按键:不仅可通过数字键键入输出值,还可以通过方向键实现方便的输 出值调整。
- ◆ 红外通讯 ※: 通过红外隔离转换器与计算机实现双向通讯, 轻松实现仪表的 校准、设置和输出等各种功能。(※ 红外诵讯话配器需要单独购买)

功能	输出		
直流电压(DC V)	3 个档位: 100mV,1V,10V		
直流电流(DC mA)	2 种电流模式:输出(Source),模拟变送器(Sink)		
电阻	2 个档位:400Ω,4000Ω		
热电阻(RTD)	Pt100,Pt1000,Cu50 (支持 4 线制电阻输出, 详见【4.5 关于精度的说明】)		
热电偶	R, S, K, E, J, T, N, B		
脉冲	连续脉冲输出、脉冲计数模式输出: 2Hz~10kHz		
开关量	开关量连续输出、开关量计数输出: 2Hz~10kHz		
其他功能	24V 外供模式,内存,记录		

表 1 输出功能汇总

目 录

— .	汪怠事坝		1
二.	型号规格		2
Ξ.	技术规格		3
3.1	标准设备	列表	3
3.2	技术指标		4
四.	外形及接线		7
4.1	外形尺寸		7
4.2	液晶显示		8
4.3	按键说明		9
4.4	接线说明		11
4.5	关于精度	的说明	13
五.	使用前须知		15
5.1	使用前的	注意事项	15
5.2	电池使用:	须知	15
5.3	安装和更	换电池	16
5.4	电池电量	和供电状态指示	17
六.	仪表运行与摸	操作	18
6.1	开机/关机		18
6.2	操作构成		18
6.3	常规操作	说明	18
(6.3.1	开机	18
(6.3.2	切换输出信号类型	20
(6.3.3	修改并输出设定值(模拟量信号)	21
(6.3.4	步进跨距和方向键调整输出值(模拟量信号)	22
(6.3.5	输出直流电压	24
(6.3.6	输出直流电流	25

	6.3.7	模拟变送器输出(mA Sink)	26
	6.3.8	输出电阻	26
	6.3.9	热工:模拟热电阻输出	28
	6.3.10	热工:模拟热电偶输出	29
	6.3.11	频率类信号输出	32
	6.3.12	频率类信号:脉冲输出	36
	6.3.13	频率类信号: 开关量输出	. 37
	6.3.14	存储常用输出值	38
	6.3.15	读取常用输出值	39
6.4	参数设置:	说明	41
	6.4.1	密码校验	41
	6.4.2	参数设置	. 41
	6.4.3	输出校准	43
	6.4.4	查询仪表序列号及恢复出厂设置	48
七.	版本号信息		. 49

一. 注意事项

安全须知

为了避免触电、伤害、损坏 MMB 或其它设备,请严格遵守所有设备安全规程!

- 必须依照本用户手册(User's Manual)的规定使用 MMB。
- 使用前先检查 MMB, 如果 MMB 已经损坏, 请勿使用。
- 使用 MMB 前,请确定电池仓已关紧。
- 检查测试导线的连通性、绝缘是否损坏或导线金属是否裸露在外。应更换损坏的测试导线。
- 使用表笔等带金属触点的附件时,请勿接触金属部分。
- 除 mA Sink 档(模拟变送器输出)外,不要对输出端子施加任何电压,否则 会导致仪表损坏。
- 切勿在端子之间或任何端子和地线(接地点)之间施加 30V 以上的电压。
- 在输入端子之间施加 30V 以上的电压将导致 MMB 的出厂认证失效,并可能导致装置永久性损坏而无法使用。
- 输出不同信号时,必须使用正确的插口、模式和档位。
- 为避免损坏被测装置,确保在连接表笔导线之前,将 MMB 置于正确的模式。
 连接时,先连接 L 测试探头,再连接带电的 H 探头。断开连接时,则先断开带电的 H 探头,再断开 L 探头。
- 校准时,要求使用精度满足输出要求的测量仪器或设备测量输出,且保证校准环境的温度、湿度的要求。
- 特别注意使用环境的要求,切勿在爆炸性的气体、蒸汽或灰尘附近使用 MMB。
- 当仪表所在环境湿度低于 30%时,请在使用 MMB 前采取有效的防静电措施。
- 在转换到另一个输出信号类型之前,必须先将输出表笔与外接的目标装置间的连接断开。
- 在使用 mA 档(Source & Sink)以及电阻档(Ω)时,切换到此类信号或从 此类档位切换成其它信号时,在切换之前,必须先将电路的电源关闭。重新 连接好正确的电路后,将 MMB 切换成对应档位接入电路,再通电使用。
- MMB 专用的 AC/DC 电源适配器型号是 MPC-DK-9.5V,不得使用其它厂商的电源适配器,否则造成的使用问题和仪表损坏将导致 MMB 的出厂认证失

效。

- 每台 MMB 需要使用单独的 1 只专用的 AC/DC 电源适配器 MPC-DK-9.5V, 不能使用 1 只 AC/DC 电源适配器给多台 MMB 供电,否则会导致仪表输出功 能异常或损坏。
- MMB 专用的 AC/DC 电源适配器,只用于给 MMB 供电,请不要接其它负载, 不要与任何发热物体放置在一起。
- 如果您使用的是 MMB 专用的 AC/DC 电源适配器,长时间不使用本仪表时, 请拨下电源插头断开电源。实现对 MMB 彻底断电,避免长期通电造成 MMB 内部电路损坏。
- 在移动设备前,请先按电源键关机,断开输出表笔与目标设备的连接。如果您使用的是 MMB 专用的 AC/DC 电源适配器,请拨下电源插头断开电源。最后,拨出输出表笔线。将仪表和配件装入专用的携带箱。
- 不要让任何带电物体靠近输出端子,否则会造成内部电路的损坏。
- 不要让任何挥发性化学物质接触仪表。不要让仪表长期接触橡胶或塑料制品。
 小心不要让烙铁或任何其他发热物体接触到仪表。
- 一旦出现电池电量不足的提示,请尽快更换电池以避免可能导致的使用异常。
 在更换电池之前,必须先停止使用仪表。
- 打开电池仓更换电池之前,必须先将表笔从 MMB 上拆下来。
- MMB 只使用 AA(5号)1.5V 的电池,请确定电池安装正确。
- 在清洁仪表的按键和操作面板时,如果您使用的是 AC/DC 电源适配器,请 拔下电源插头断开电源。使用柔软,干净的布擦拭仪表的外表面。切勿使 MMB 内部进水。
- 不要拆开仪表,否则将导致 MMB 的出厂认证失效。
- 如果仪器在使用过程中开始冒烟、散发刺鼻气味,或出现任何其它异常问题,请立即按电源键关机并卸下电池。如果您使用的是 MMB 专用的 AC/DC 电源适配器,请拨下电源插头断开电源,同时断开输出表笔与目标设备的连接。然后,联系供应商检测仪表。

二.型号规格

MMB: Multimeter Buddy 万用表伴侣

三. 技术规格

3.1 标准设备列表

以下列表及【图 3.1】所示的设备均包括在您的整套 MMB 万用表伴侣及其相关配件的产品包装内:

● MMB 万用表伴侣 主机: 1 台

AC/DC 电源适配器:1 只 ※ 型号: MPC-DK-9.5V

● 表 笔 线: 3 支 型号: 黑色 MPC100AB 2 只

(长度 1.1 米) 红色 MPC100AR 1只

● 表 笔 夹: 3只 型号: 黑色 MPC103AB 2只

红色 MPC103AR 1只

● 电 池: 4 节 AA 电池 (1.5V)

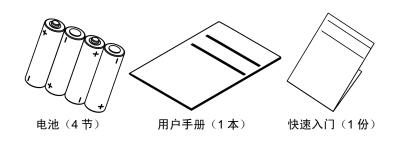
● 用户手册: 1本

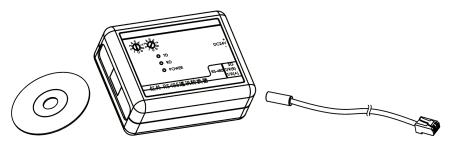
● 快速入门: 1份

● CD-ROM: 1 张 (内含:用户手册等说明的电子文档)

● 冷端传感器: 1 只 ※ 型号: MPC101A

● 红外-RS485 通讯转换器: 1 只 ※ 型号: MPC485IR104A


● 红外-USB 通讯转换器: 1 只 ※ 型号: MPCUSBIR105A


(※ 配件需要单独购买,具体使用说明请参照本用户手册及其单独的用户手册)

以下为部分配件的示意图

CD-ROM(1张) 红外-RS485 通讯适配器 ※(1只) 冷端传感器 ※(1只)

图 3.1 标准设备(部分)

3.2 技术指标

● 电 源: 4节AA(5号,1.5V)电池

以及直流供电:通过电源适配器 MPC-DK-9.5V 接 220V AC

● 显 示: 双排 5 位段式液晶,带各种指示符号,白色背光

工作环境: 温度 0℃~50℃,湿度≤80%R·H,无结露

储存环境: 温度-25℃~60℃,湿度≤90%R·H,无结露

● 工作海拔: ≤2000 米

● 震动冲击: 随机性 2g, 5~500Hz (1 米以下测试)

● 校准周期: 为保证精度,推荐校准周期为一年

● 预热时间: 推荐开机预热时间 15 分钟

● 仪表功耗: 功耗与输出信号类型及负载大小有关

使用 4 节标准 AA 1.5V 碱性电池供电:

24V DC/1k Ω 负载时,4 节 1.5V AA 碱性电池使用时间大约 4 小时 5V DC/10k Ω 负载时,4 节 1.5V AA 碱性电池使用时间大约 21 小时

● 输出精度: 见下表(应最少预热 10 分钟后使用)

(使用高精度设备对 MMB 进行校准时,环境温度应该控制在 25 ± 5 °C,相对湿度 35%~75% R·H,且预热 20 分钟以上)

功能	量程	设定范围	分辨力	精度(25±10℃每年) ±(%读数+偏差)	备注
	100mV	-10.00mV~110.00mV	10uV	±(0.01%+10uV)	
	1V	0~1.2000V	0.1mV	±(0.01%+0.1mV)	最大输出电流 0.25mA
٧	10V	0~12.000V	1mV	±(0.01%+2mV)	最大输出电流 2.5mA
		¦各档输出电阻≤0.5Ω, 于 470uF,100mV 档电		/ 档电容负载驱动能力不 动能力不小于 1uF	
mA Source	20mA	输出 0 ~ 24.000mA	1uA	±(0.02%+2uA)	负载能力 19V
mA Sink	-20mA	模拟变送器 0 ~ −24.000mA	1uA	±(0.02%+2uA)	外部供电 5~28V
	400Ω	0~400.00Ω	0.01Ω	±(0.015%+0.05Ω)	0.1~0.5mA 激励电流 精度中不包含引线电阻
电阻	40012	0~400.0002	0.0112	±(0.015%+0.1Ω)	0.5~3mA 激励电流 精度中不包含引线电阻
	4kΩ	0~4000.0Ω	0.1Ω	±(0.015%+0.3Ω)	0.05~0.3mA 激励电流 精度中不包含引线电阻
				-200~0℃: 0.3℃	
	Pt100	-200℃~850℃	0.1℃	0~400℃: 0.4℃	Pt100-385 温标
热				400~850℃: 0.5℃	Pt100、Cu50 为±1mA
电				-200~100℃: 0.2℃	激励电流 Pt1000 为±1mA 激励电
阻	Pt1000	-200℃~850℃	0.1℃	100~300℃: 0.3℃	流
				300~850℃: 0.4℃	精度中不包含引线电阻
	Cu50	-50°C~150°C	0.1℃	-50~150℃: 0.5℃	
	R	-40℃~1760℃	1℃	-40~100℃: 1.5℃	
		100 1100 0	. 0	100~1760℃: 1.1℃	
	S	-20℃~1760℃	1℃	-20~100℃: 1.5℃	
热		200000		100~1760℃: 1.1℃	采用 ITS-90 温标
电				-200~-100℃: 0.6℃	精度中不包含
偶	K	-200℃~1370℃	0.1℃	-100~400℃: 0.5℃	冷端补偿误差
				400~1200℃: 0.6℃	
				1200~1370℃: 0.7℃	
	Е	-200℃~1000℃	0.1℃	-200~-100℃: 0.5℃	

				-100~600℃: 0.5℃	
				600~1000℃: 0.4℃	
				-200~-100℃: 0.5℃	
	J	-200℃~1200℃	0.1℃	-100~800℃: 0.4℃	
				800~1200℃: 0.6℃	
	Т	-200℃~400℃	0.1℃	-200~400℃: 0.4℃	
				-200~-100℃: 0.6℃	
	N	-200℃~1300℃	0.1℃	-100~900℃:0.5℃	
				900~1300℃:0.6℃	
				400~600℃: 1.5℃	
	В	400℃~1800℃	1℃	600~800℃: 1.1℃	
				800~1800℃: 0.7℃	
1-A- Ada	100Hz	2.0Hz~100.0Hz	0.1Hz	±0.05Hz	1~10Vp-p 方波, 低电平
上 上 上 上 上 上 上 上 上	1kHz	100Hz~1000Hz	1Hz	±0.2Hz	为 0V,电平精度±10% 50%占空比
	10kHz	1.0kHz~10.0kHz	0.1kHz	±0.01KHz	负载>100kΩ
脉冲	100Hz				1~10Vp-p 方波, 低电平
计数	1kHz	10~99,999cycles	1cyc	±2 个字	为 0V,电平精度±10% 50%占空比
模式	10kHz				负载>100kΩ
开	100Hz		•		
关	1kHz			出、开关量计数输出,指	最大开关电流电压: +28V/50mA
量	10kHz				AIIIUC/VOYT
外供 电源	24V			±10%	最大输出电流 25mA, 有短路保护

表 3.1 各种信号的输出精度指标

注 1: 环境温度在 25±10℃之外的情况下,温漂系数为上述精度x(1/10)℃。

注 2: 电阻输出功能由于采用电子合成电阻的原理,因此,在向非恒流(4线制)、非双恒流(3线制)方式进行测量的仪器仪表提供电阻信号时,可能会导致测量仪器仪表显示波动大于使用物理电阻进行测量时的波动。此现象同于国外同类产品。

注 3: 电阻输出功能在向非恒流(4 线制)方式进行测量的仪器仪表提供电阻信号时,精度说明、相关的接线方法和注意事项请参照【4.4 接线说明】及【6.3.8 输出电阻】中的描述。

四. 外形及接线

4.1 外形尺寸

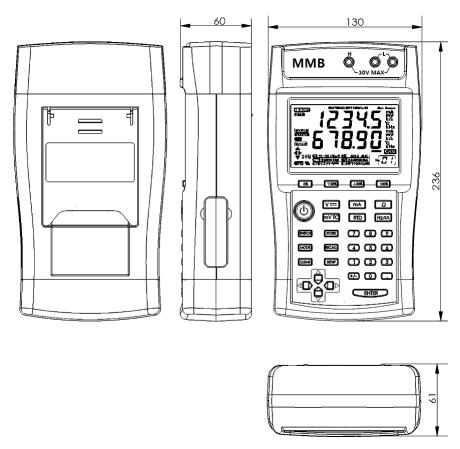


图 4.1 外形尺寸图 (单位: mm)

4.2 液晶显示

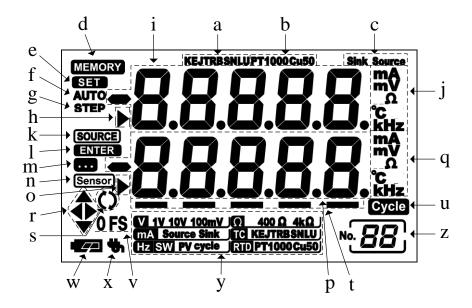


图 4.2 显示屏示意图

显示元素:

- a. 上一组输出的热电偶类型
- b. 上一组输出的热电阻类型
- c. 上一组输出的直流电流类型
- d. 存储/读取常用输出值标志
- e. 设定状态、已存储位置标志
- f. 冷端补偿启动标志
- g. 阶梯跨距输出指示标志
- h. 修改上排参数指示标志
- i. 上一组输出的设定值
- j. 上一组输出的设定值单位
- k. 输出标志
- I. 设定值输出状态标志
- m. 设定值正在进行输入指示标志

- n. 冷端传感器状态标志
- o. 修改下排参数指示标志
- p. 当前输出设定值
- q. 当前输出设定值单位
- r. 方向键生效指示标志
- s. 脉冲和开关量输出按键终止指示标志
- t. 方向键直接调整输出设定值的修改位指示标志
- u. 脉冲和开关量输出下计数模式标志
- v. 输出设定值达到上下限的指示标志
- w. 电池状态指示标志
- x. 供电方式指示标志
- y. 当前输出的信号类型
- z. 存储 / 读取常用输出值的存储位置

注:以上说明仅做为常规使用状态下的简介说明。具体在使用时的显示状态说明, 请以下面的仪表操作说明为准

4.3 按键说明

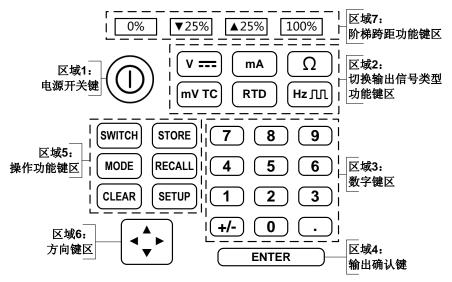


图 4.3 按键区示意图

区域	按键标识	按键名称	说明	
1	(1)	电源开关键	开/关机	
	٧	输出 V 键	选择直流电压输出功能,以及切换量程	
	mA	输出 mA 键	选择电流输出功能,以及切换量程	
2	Ω	输出电阻键	选择电阻输出功能,以及切换量程	
2	mV TC	输出 mV/TC 键	选择直流 mV 输出和热电偶输出功能	
	RTD	输出 RTD 键	选择热电阻输出功能	
	Hz	输出 Hz 键	选择脉冲、开关量输出	
	0 ~ 9	数字键	修改输出设定值	
3	•	小数点键	输入输出设定值的小数点	
	+/-	正负号键	改变输出设定值的正负	
4	ENTER	输出确认键	信号确认输出	
	SWITCH	参数切换键	在部分附加功能中实现修改值的切换 (如:脉冲和开关量输出,参数设置时等)	
	STORE	保存键	存储常用输出值 存储参数值	
5	RECALL	读取键	读取常用输出值	
	MODE	状态切换键	状态切换键 在参数设置时不保存退出设置状态 在脉冲、开关量输出时暂停输出	
	CLEAR	清零键	清零修改值	
	SETUP	设置键	进入参数设置状态	
6	▲ ▼	上下键	在模拟量信号输出时直接调整输出值 在常用值存储/读取时,调整存储/读取位置 在参数设置时调整参数大小	
	4 b	左右键	在模拟量信号输出时移动修改位 在参数设置时移动参数修改位	
	0%	0%输出键	输出对应模拟量信号的最小输出值	
7		25%减小键	以当前信号输出值为基础, 按量程的 25% 减小输出	
,	▲25%	25%增加键	以当前信号输出值为基础, 按量程的 25% 增大输出	
	100%	100%输出键	输出对应模拟量信号的最大输出值	

表 4.1 按键功能

4.4 接线说明

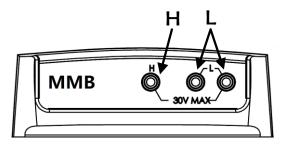


图 4.4 输出端子示意图

H: 输出信号:正输出端(+)

L: 输出信号:公共(-)端(2个端口)

请参照【图 4.5】所示,将红色表笔线插入 H 插孔,黑色表笔线插入 L 插孔。

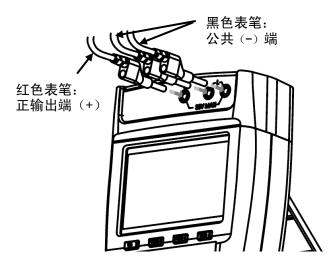


图 4.5 表笔接口示意图

● 输出各种信号对应的(+)(-)的接线方法,均为:

H: (+)

L: (-)

★ 请注意确保输出端子与目标设备连接的极性正确。

捡山 / 岸 口米刑	使用的	接线端子	
输出信号类型	(+)	(-)	
直流电压	Н	2 个 L 端口中的任一个	
直流电流	Н	2 个 L 端口中的任一个	
直流 mV & 热电偶	Н	2 个 L 端口中的任一个	
电阻 & 热电阻	Н	2 个 L 端口中的任一个	
2 线制	11		
电阻 & 热电阻	Н	2 个 L 端口都接	
3 线制	11	2 L 姉口印技	
电阻 & 热电阻	H 端口上叠加	2 个 L 端口都接	
4 线制	插两支表笔线	2 L 姉口印放	
脉冲信号	Н	2 个 L 端口中的任一个	
开关量信号	Н	2 个 L 端口中的任一个	

表 4.2 输出端子在不同信号类型下的接线方式

图 4.6 右侧接口示意图

参照【图 4.6】所示,从上到下的接口定义为:

- ① 冷端传感器接口 ※
- ② 红外通讯接口 ※
- ③ AC/DC 电源适配器插孔 ※
- (※ 配件需要单独购买,使用说明另附)
- 为确保安全,接线必须在断电后进行。且需防止接触带来的静电。

除 mA Sink 档(模拟变送器输出)外,不要对输出端子施加任何电压,否则会导致仪表损坏。

关于接线时的安全规定,请阅读前面的"安全须知"

4.5 关于精度的说明

● 四线制电阻的输出接线法:

MMB 支持向非恒流(4 线制)方式进行测量的仪器仪表提供电阻信号。此时的接线方法,除了按照【图 4.5】的接线方法连接 3 只表笔,还需要在图中所示的 "H: 正输出端(+)"上再插上一支红色表笔线(型号 MPC100AR,可单独购买),以便实现四线制电阻输出。

● 电阻输出时影响精度的因素:

电阻信号输出较敏感,影响输出精度的因素主要是指引线电阻,接触电阻等。 表笔线、表笔夹、与使用设备的整个回路电阻都会对输出精度造成影响。

因此,请务必使用型号为 MPC100AB (黑色) 和 MPC100AR (红色) 表笔线,型号为 MPC103AB (黑色) 和 MPC103AR (红色) 的表笔夹。

由于表笔线和表笔夹经常会插拔和反复夹持使用,这些经常性的插拔和夹持都会对接触电阻造成影响,因此建议定期对 MMB 进行校准。

在使用 MMB 时,还需要注意电阻档的激励电流范围以及对精度造成的影响。

本节关于电阻输出精度的说明,详见【6.3.8】节关于电阻输出的详细描述。

♠ MMB 作为工装组网使用的注意事项:

作为生产线上的校准和检验工装使用时,请注意以下问题:

● 供电:

每台 MMB 需要使用单独的 1 只专用的 AC/DC 电源适配器 MPC-DK-9.5V,不能使用 1 只 AC/DC 电源适配器给多台 MMB 供电,否则会导致仪表输出功能异常或损坏。

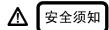
● 校准:

由于上述的精度影响因素,建议在工装上做现场本地校准。尤其是涉及电阻信号输出时,应以工装上电阻信号最终输出处的信号为准,做现场本地校准。

动态响应时间:

信号切换和改变输出值的动态过程中,信号会抖动。

因此,如果目标设备需要连续测量,需要在 MMB 信号切换和改变输出值后做一定延时(具体延时时间应根据实际使用时的信号稳定时间确定)。


● 组网:

MMB 用于工装时,可支持 RS485 组网状态下进行使用、调试和校准。请单独购买专用的红外-RS485 通讯转换器(型号: MPC485IR104A)。具体的配件使用说明以及组网用的上位机软件使用说明详见对应配件的用户手册《IrDA-RS485 Communication Adapter》。

五. 使用前须知

5.1 使用前的注意事项

使用仪表前,请认真阅读【章节一.注意事项】中的安全须知。

☆ 环境要求

使用地点的环境需满足技术指标中关于工作环境的描述:(温度 0℃~50℃,湿度≤80%R•H,无结露)

当使用地点的湿度低于 30%时,请采取有效的防静电措施防止静电的产生。

● 不要在以下环境中使用仪表:

直接暴露在阳光下或靠近热源。

周围有频繁的机械振动。

靠近任何干扰源,如高压设备或动力源。

周围有很强的电场或电磁场。

暴露大量的油烟、热蒸汽、灰尘或腐蚀性气体的环境下。

暴露于存在爆炸危险的易燃气体环境中。

- 避免仪表的环境温度或湿度发生突然改变。如果需要将仪表移到环境湿度差别很大、或温度差别很大的地方,在开机之前,请将仪表在新的环境下预热 半小时以上,以确保仪表正常工作。
- 环境温度和湿度对仪表输出精度造成的影响,请参照前一章节【3.2 技术指标】中关于精度的描述

5.2 电池使用须知

▲ 打开电池仓更换电池之前,必须先将表笔从 MMB 上拆下来。

⚠ 注意:

- 使用 MMB 之前,请确认电池仓盖是关紧的。
- 一旦出现电池电量不足的提示,请尽快更换电池以避免可能导致的使用异常。

在更换电池之前,必须先停止使用仪表。

- MMB 使用 AA 类(5 号)1.5V 的碱性电池、NiH 电池、锂电池等高容量电池,请确认电池正负极性的安装正确。
- 不要短路电池。
- 请勿拆开或加热电池。
- 请勿将电池投入火中。
- 更换电池时,请同时更换全部 4 节电池,并选用同一品牌同一型号的电池
- 如果长时间不使用 MMB, 请取出电池。

5.3 安装和更换电池

- 步骤 1:按电源键关机,拔下 AC/DC 电源适配器插头断开电源,同时断开输出表笔与目标设备的连接。将表笔从 MMB 上拆下来。然后再开始安装电池。
- 步骤 2: 支起 MMB 背面的仪表支架,利用隐藏在支架下方的电池仓开关打 开电池仓盖。
- 步骤 3: 安装 4 节 AA(5 号)1.5V 电池,电池的正负极性在电池仓底部有指示。
- 步骤 4: 安装完电池后, 重新装好电池仓盖, 卡紧。

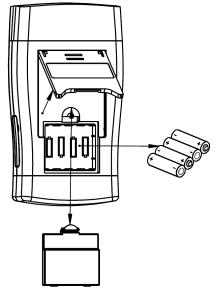


图 5.1 电池安装示意图

5.4 电池电量和供电状态指示

显示窗左下角的电池符号和电源插头符号用作指示当前电池电量以及供电状态:

仪表左下角显示如上图右侧所示的电源插头符号时:

表示 MMB 当前是由 AC/DC 电源适配器供电。

仪表左下角显示如上图左侧所示的电池符号时:

表示 MMB 当前是由电池供电的。电池符号根据电池电量而呈现不同的显示效果:

4

(一直点亮): 电池电量正常

4_

(一直点亮): 电池电量低于 60%

(一直点亮): 电池电量低于 30%, 但仍可以正常运行

(闪烁): 电池电量已经很低,请更换电池

- 具体的电池电量可能与显示存在细微差别,请以 MMB 的实际使用为准。
- 一旦 MMB 插上 AC/DC 电源适配器,并将电源适配器接通 220V AC 电源后, MMB 会自动切换为电源适配器供电。
- AC/DC 电源适配器只起到持续供电作用,不能给电池充电。
- 左下角的电池和电源状态指示符在任何情况下都会显示,后面不再针对这点做单独说明。

电量严重不足的电池会导致仪表使用异常,仪表如果使用的是电量不足的电池, 开机后,可能会显示"ERROR"字样、出现仪表复位、输出值跌落或跳变等异 常问题,因此,为保证仪表正常使用,请随时关注电池电量情况并及时更换电池。

仪表正常的按键操作会激活背光灯点亮,背光灯在无按键后的熄灭延时时间是根据参数"Lcd"决定的,可设为不点亮、按 1~998 秒延时熄灭或长亮;出厂默认设置为 10 秒;详见【6.4.2 仪表参数设置】中的介绍。

六. 仪表运行与操作

切勿在输入端子之间或任何端子和地线(接地点)之间施加30V以上的电压。

在输入端子之间施加 30V 以上的电压将导致 MMB 的出厂认证失效,并可能导 致装置永久性损坏而无法使用。

⚠ 除 mA Sink 档(模拟 4~20mA 变送器输出)外,不要对输出端子施加任何电 压, 否则会导致仪表损坏。

6.1 开机/关机

按住电源键(①)直到液晶显示亮起,松开电源键,仪表开机;

按住电源键(1)直到液晶显示熄灭,松开电源键,仪表关机。

6.2 操作构成

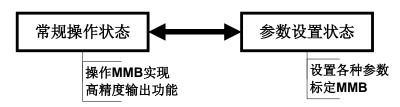
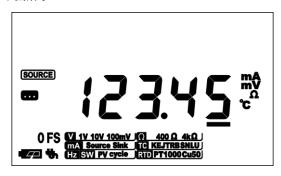


表 6.1 仪表操作划分

6.3 常规操作说明

仪表常规使用时,实现高精度信号源功能,主要显示当前输出信号状态,设定 值,随时配合按键实现信号类型切换和修改输出值。以及实现阶梯跨距输出、存储/ 读取常用输出等进阶功能。

以下以常规的使用顺序,循序渐进地讲解 MMB 的按键操作方法。


6.3.1 开机

按住电源键(①)直到显示亮起后松开,MMB 开机完毕。

↑ MMB 开机后,输出为空档位(即断路状态,无信号输出。保护后端电路)。

 MMB 开机后,默认显示上次关机前最后一次输出信号的信号类型、单位和信 号值,如下图所示:

开机显示画面("LoAd"参数设为 1) 图 6.1

- 注: (1) 开机后, 阶梯跨距输出状态的修改位初始化在最末位(如上图所示)。
 - (2) 如果开机回溯的上次关机信号输出值是对应信号类型的最小/最大 值,则左下角的 "0" / "FS" 会相应显示。
- ※ 指示符 SOURCE 以及左下角的电池和电源状态指示符在任何情况下都会显 示,后面不再针对这点做单独说明。
- 2. 若使用时希望开机不显示任何设定信息,可设置"LoAd"参数为 0,(详细设 置方法详见【6.4.2 仪表参数设置】) 开机后只显示一排"----", 如下图所示:

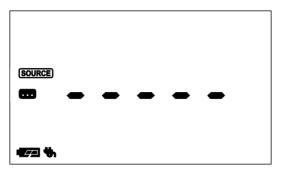


图 6.2 开机显示画面(LoAd 参数设为 0)

6.3.2 切换输出信号类型

根据输出需要,通过按 切换输出信号类型功能键区 内对应的信号类型按钮实现输出信号的切换。按下信号类型键后,切换当前输出变到对应的信号类型,并输出该信号类型下的首个信号子类型的默认输出值,【表 6.2】为按键说明:

(v ===	电压类型	1. <u>1V</u> 0~1.2000V 2. <u>10V</u> 0~12.000V 3. <u>24V回路电源</u>
mA	电流类型	1. <u>Source</u> mA输出 0~24.000mA 2. <u>Sink</u> 模拟变送器mA Sink 0~-24.000mA
Ω	电阻类型	1. <u>400Ω</u> 0Ω~400.00Ω 2. <u>4kΩ</u> 0Ω~4000.0Ω
mV TC	mV信号 和 热电偶类型	1. 100mV -10.00~110.00mV 2. KEJTRBSN 分别表示不同热电偶类型
RTD	热电阻类型 *	1. <u>PT100</u> -200.0°C~850.0°C 2. <u>PT1000</u> -200.0°C~850.0°C 3. <u>Cu50</u> -50.0~150.0°C
Hz ЛЛ	频率类型	1. <u>Hz</u> 脉冲输出 2.0Hz~10.0kHz 3个子档位 2. <u>SW</u> 开关量输出 2.0Hz~10.0kHz 3个子档位

表 6.2 切换信号类型按键的功能

信号类型	初始输出值
400 Ω 档	100 Ω
4K Ω 档	1K Ω
mA Source 档(直流 mA 输出)	0mA
mA Sink 档(模拟变送器)	0mA
mV 档	0mV
1V 档	0V
10V 档	0V
24V 外供电源档	0V

表 6.3 各信号类型的默认输出值

(切换信号后按照以上默认值输出的目的是:切换信号类型后,为了保证外部设备安全和本设备安全)

- 6.3.3 修改并输出设定值(模拟量信号)
- 1. 常规操作状态显示内容:

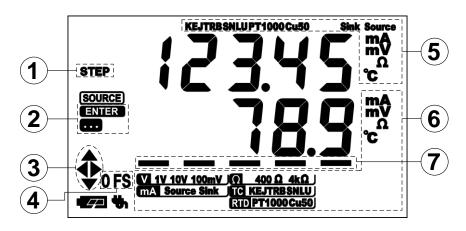


图 6.3 常规操作状态显示画面

上排数字: 上一次输出信号的大小

下排数字: 当前正在设定和修改的信号的大小

① 阶梯跨距输出状态的指示:

在 ENTER 状态下,按 阶梯跨距功能键区 内的按键 0% ▼25% ▲25% 100% 实现阶梯跨距增减输出值时,"STEP" 闪烁。

- ② 指示输出信号:
 - ••• : 表示正在修改当前设定值。

ENTER : 当按下输出确认键 **ENTER** ,实现对应设定值的信号输出后,显示此符号。

- ③ 方向键指示:配合部分功能,提示按键的修改操作。
- ④ 输出值到达当前信号类型的输出上下限指示: 到达下限显示"0":到达上限显示"FS"。
- ⑤ 上一次输出信号的信号类型和单位指示: 仪表每次按 **0~9 +/- 0 CLEAR** 修改信号大小时、或在 **ENTER**

状态下按 切换输出信号类型功能键区 的按键切换信号时,上一组输出信号的信号类型、单位和数值就会被上移到上排显示。

- ⑥ 指示当前设定的输出信号类型以及单位。
- ⑦ 在 **ENTER** 状态下,"__"符号位于下排 5 位数字下方,用来指示上下键 直接调整输出值的当前修改位:

按方向键(左右配合上下)可方便的实现在当前输出值基础上的直接修改。

2. 标准按键操作:

按照【6.3.2】所述方法切换到所需的信号类型后,通过按下列按键配合实现修改 并输出设定值:

0~9 +/- • 配合修改当前修改值(若修改值超出当前信号类型允许设置数值的上下限范围,则显示修改值直接变成对应的上下限)。

[CLEAR] 清零当前修改值。

ENTER)确认当前输入值并输出。

仪表每次按 **0~9 +/- • CLEAR** 键修改信号大小时、或在 **ENTER** 状态下按 切换输出信号类型功能键区 的按键切换信号时,上一组输出信号的信号类型、单位和数值就会被上移到上排显示。

(※ 频率类型信号除外: 在频率类型信号输出设置时,上排显示参数符号,下排显示设定值,具体设置方法详见【6.3.11~6.3.13】节)

在修改设定值时,显示状态为:

仪表按 ENTER 键确认输出后,显示状态为: ENTER

仪表按 ENTER 键确认输出时,小数点后在精度范围内不足的位数会自动补 0:

(作用:指示精度方便直观)

例 1: 在 0~1V 档位下键入: 1.23, 然后按 **ENTER** 键确认输出;

由于 0~1V 档的输入精度是 0.0001;

因此显示会由 1.23 变为 1.2300

6.3.4 步进跨距和方向键调整输出值(模拟量信号)

仪表在信号输出状态 **ENTER** 下,已经按设定值输出信号后,还可通过按

阶梯跨距功能键区 内的按键以及按方向键 [▲] [▼] [▼] [▶] 实现信号值的直接

调整。显示值会在下排随着输出值的增减实时刷新。

这种调整方式操作简单快捷,仅需按一个键就可以输出新的信号值,适合快捷的 微调信号大小或定量增减信号值。

1. 步进跨距输出:

阶梯跨距功能键区 内的按键:

0% 按当前信号输出的最小值输出(关于每种信号的最小值,可参照【表 3.1】中的"设定范围"一栏。

▼25% 以当前信号值为基础,按满量程的 25%跨度减小输出值(如果递减 25% 后低于最小值,则直接按最小值输出)。

▲25% 以当前信号值为基础, 按满量程的 25%跨度增大输出值(如果递增 25% 后高于最大值,则直接按最大值输出)。

100% 按当前信号输出的最大值输出(关于每种信号的最大值,可参照【表 3.1】中的"设定范围"一栏。

2. 方向键配合调整输出值:

通过 **▶** 键移动修改位,指示当前修改位的"_"符号位于下排 5 位数字下方,(如【图 4.2】中"t"所示)。

通过 ▲ ▼ 键增大或减小修改位的数值。

例 2: 当前在 mA Source 档已经输出 10.000mA,此时,通过按 **▶** 键将修改位移动到 10.<u>0</u>00 位置;此时每次按 **▲** 键,MMB 输出值增大 0.1mA,如: 10.100mA,10.200mA,10.300mA ·······

3. 输出失效判断:

↑ MMB 在常规操作状态下会实时监测输出状态,如果输出信号由于外部接线超 出负载范围等原因导致输出异常,MMB 会自动切换到空档输出以起到对 MMB 和外电路的保护作用。

当 MMB 保护功能启动,自动切换到空档输出时,

无论仪表处在 **ENTER** 或 ******** 状态,都会切换到 ******** 状态;同时,蜂鸣器鸣响 3 次,上排显示清空,起到提示作用。

以下章节【6.3.5~6.3.10】单独就不同的模拟量信号的输出操作进行了详细说明

6.3.5 输出直流电压

接线说明参照【4.4 接线说明】中的介绍:

正输出端(+): 接 H 端口

公共端(一): 接 L 端口中的任一个

步骤 1: 使用 **V** === 键切换到直流电压输出功能,并通过继续按此键在 1V 档、 10V 档、24V 外供电源档之间进行档位的切换,以及使用 **mV** 键切换 到直流 mV 输出功能。显示内容会有相应提示字符。切换信号后的默认输出值为 0V。

(注意:用 mV TC 键还可将信号切换为热电偶输出,详见【6.3.10】节)

步骤 2: 使用 **0~9 +/- • CLEAR** 键配合输入需要输出的电压值。如果设定值超过上/下限,显示会自动变换成上/下限值。在设定值修改时,显示状态为 •••

(使用 24V 外供电源档的功能时, 跳过此步骤)

- 步骤 3: 按 **ENTER** 键确认输出,显示状态变为 **ENTER** ,MMB 按当前设定 值输出电压信号。
- 步骤 4: 通过数字键输入新的电压设定值,上一组设定值将会被上移到上排显示。 在键入新的电压设定值的过程中,输出信号会维持上一组设定值的大小。
- 步骤 5: 仪表在信号输出状态 **ENTER** 下,可通过按 **0% ▼25% ▲25% 100%** 键实现信号值的阶梯跨距增减输出。显示值会在下排随着输出值的增减实时刷新。
- 步骤 6: 仪表在信号输出状态 **ENTER** 下,可通过按方向键 ▲ ▼ ▲ 实 现信号值的直接调整。显示值会在下排随着输出值的增减实时刷新。

信号类型	0	▼▲25%步进跨距值	100%
10V 档	0V	±3V	12V
1V 档	0V	±0.3V	1.2V
mV 档	-10mV	±30mV	110mV
24V 外供电源档	5	· 小供电功能,无需调整幅值	直

表 6.4 直流电压信号各档位上下限值 & 步进跨距功能说明

6.3.6 输出直流电流

接线说明参照【4.4 接线说明】中的介绍:

正输出端(+): 接 H 端口

公共端 (一): 接 L 端口中的任一个

- 步骤 1: 使用 **mA** 键切换到直流电流输出功能,并通过继续按此键在电流输出档 (mA Source)和模拟变送器档 (mA Sink)之间进行切换,显示内容会有相应提示字符。这里需要使用的是电流输出档,请切换显示到"mA Source"状态。切换信号后的默认输出值为 0mA。
- 步骤 2: 使用 **0~9 +/- • CLEAR** 键配合输入需要输出的电流值。如果设定值超过上/下限,显示会自动变换成上/下限值。在设定值修改时,显示状态为 •••
- 步骤 3: 按 **ENTER** 键确认输出,显示状态变为 **ENTER** ,MMB 按当前设定 值输出电流信号。
- 步骤 4: 通过数字键键入新的电流设定值,上一组设定值将会被上移到上排显示。 在键入新的电流设定值的过程中,输出信号会维持上一组设定值的大小。
- 步骤 5: 仪表在信号输出状态 **ENTER** 下,可通过按 **0% ▼25% ▲25% 100%** 键实现信号值的阶梯跨距增减输出。显示值会在下排随着输出值的增减实时刷新。
- 步骤 6: 仪表在信号输出状态 **ENTER** 下,可通过按方向键 ▲ ▼ ▲ 实 现信号值的直接调整。显示值会在下排随着输出值的增减实时刷新。

信号类型	0	▼▲25%步进跨距值	100%
mA Source 档 &	0mA	±4mA	24mA
mA Sink 档			

表 6.5 直流电流信号上下限值 & 步进跨距功能说明

6.3.7 模拟变送器输出 (mA Sink)

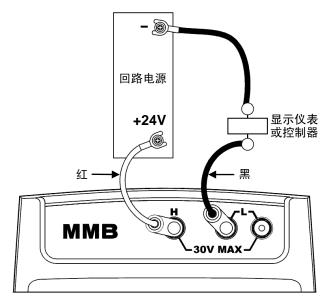


图 6.4 模拟变送器模式的接线方式

▲ 回路电源允许电压范围是: 5~28V DC

步骤 1: 使用 **MA d** 健切换到模拟变送器输出 (mA Sink) 功能, 通过继续按此键 可在电流输出档(mA Source)和模拟变送器档(mA Sink)之间进行切换, 显示内容会有相应提示字符。这里需要使用的是模拟变送器档,请切换显 示到"mA Sink"状态。切换信号后的默认电流值为 0mA。

步骤 2~6: 与【6.3.6 输出直流电流】的操作方法一样。

mA Sink 档的上下限设定值以及步进跨距值都与 mA Source 档一致。

6.3.8 输出电阻

- 注意事项:
 - MMB 的电阻输出适用于目标设备(测量仪表,如:电阻表)采用激励电流"I" 进行电阻测量的方式:

当 MMB 与此类设备连接时,根据来自目标设备的激励电流信号"I",在 MMB 的输出端子之间产生一个对应的电压 " $V = R \times I$ ",以此模拟产生一个对应的等价电阻 "R = V/I"。

因此,MMB只适用于配接此类测量方式的设备才能正确输出电阻信号。

- MMB 能接受的来自目标设备的激励电流信号"I"的允许范围是 0.1~3mA。
 不同电阻档位以及不同电阻范围,对激励电流的要求也有所区别,详见【表3.1】中关于电阻档精度与激励电流大小关系的详细描述。
- MMB 输出的电阻信号均不包含引线电阻。要输出精确的电阻信号,推荐使用3 线制或4 线制接法。
- MMB 的出厂校准是按照 4 线制接法进行校准的。
- ▼ 尽量减小目标设备端子之间的电容, 否则, 可能会导致 MMB 输出的电阻信号 不稳定。
- 电阻输出时影响精度的因素:

电阻信号输出较敏感,影响输出精度的因素主要是指引线电阻,接触电阻等。 表笔线、表笔夹、与使用设备的整个回路电阻都会对输出精度造成影响。因此,请务必使用型号为 MPC100AB (黑色)和 MPC100AR (红色)表笔线,型号为 MPC103AB (黑色)和 MPC103AR (红色)的表笔夹。

由于表笔线和表笔夹经常会插拔和反复夹持使用,这些经常性的插拔和夹持都会对接触电阻造成影响,因此建议定期对 MMB 进行校准。

接线说明参照【4.4 接线说明】中的介绍:

电阻接线方式	使用的接线端子		
电阻按线方式	正输出端(+)	公共端 (-)	
2 线制	Н	2 个 L 端口中的任一个	
3 线制	Н	2个L端口都接	
4 线制	H 端口上叠加插两支表笔线	2个L端口都接	

表 6.6 电阻档接线说明

步骤 1: 使用 Ω 键切换到电阻输出功能,并通过继续按此键在 400Ω 档、 $4k\Omega$ 档之间进行档位的切换;显示内容会有相应提示字符。切换信号后的默认输出值: 400Ω 档为 100Ω 、 $4k\Omega$ 档为 $1k\Omega$ 。

- 步骤 2: 使用 **0~9 +/- • CLEAR** 键配合输入需要输出的电阻值。如果设定值超过上/下限,显示会自动变换成上/下限值。在设定值修改时,显示状态为 ••• 。
- 步骤 3: 按 **ENTER** 键确认输出,显示状态变为 **ENTER** ,MMB 按当前设定 值输出电阻信号。
- 步骤 4: 通过数字键键入新的电阻设定值,上一组设定值将会被上移到上排显示。 在键入新的电阻设定值的过程中,输出信号会维持上一组设定值的大小。
- 步骤 5: 仪表在信号输出状态 **ENTER** 下,可通过按 **0% ▼25% ▲25% 100%** 键实现信号值的阶梯跨距增减输出。显示值会在下排随着输出值的增减实时刷新。
- 步骤 6: 仪表在信号输出状态 **ENTER** 下,可通过按方向键 ▲ ▼ **●** 实现信号值的直接调整。显示值会在下排随着输出值的增减实时刷新。

信号类型	0	▼▲25%步进跨距值	100%
400Ω档	0Ω	±100Ω	400Ω
4kΩ 档	0Ω	±1000Ω	4kΩ

表 6.7 电阻信号各档位上下限值 & 步进跨距功能说明

6.3.9 热工:模拟热电阻输出

⋒ 注意事项:

- 模拟热电阻与电阻输出原理相同。
- 输出不同温度段的精度有所不同。
- 关于精度、激励电流、引线电阻、温标等信息,详见【表 3.1】中热电阻档的 描述。
- MMB 输出的电阻信号均不包含引线电阻。要输出精确的电阻信号,推荐使用 3 线制或 4 线制接法。
- 步骤 1: 使用 RTD 键切换到热电阻输出功能,并通过继续按此键在 PT100 档、PT1000 档、Cu50 档之间进行档位的切换;显示内容会有相应提示字符。 切换信号后的默认输出值:

PT100 档为 100Ω (对应 0°C)、

PT1000 档为 1kΩ (对应 0°)、

Cu50 档位 100Ω。

- 步骤 2: 使用 **0~9 1-/- • CLEAR** 键配合输入需要输出的温度值(单位: ℃)。如果设定值超过上/下限,显示会自动变换成上/下限温度值。在设定值修改时,显示状态为 ••• 。
- 步骤 3: 按 **ENTER** 键确认输出,显示状态变为 **ENTER** ,MMB 按当前温度 值设定值输出热电阻信号。
- 步骤 4: 通过数字键键入新的温度设定值,上一组设定值将会被上移到上排显示。 在键入新的温度设定值的过程中,输出信号会维持上一组设定值的大小。
- 步骤 5: 仪表在信号输出状态 **ENTER** 下,可通过按 **0% ▼25% ▲25% 100%** 键实现信号值的阶梯跨距增减输出。显示值会在下排随着输出值的增减实时刷新。
- 步骤 6: 仪表在信号输出状态 **ENTER** 下,可通过按方向键 ▲ ▼ ▲ 实 现信号值的直接调整。显示值会在下排随着输出值的增减实时刷新。

信号类型	0	▼▲25%步进跨距值	100%
PT100	-200℃	±250 ℃	850℃
PT1000	-200℃	±250 ℃	850℃
Cu50	-50℃	±50°C	150℃

表 6.8 热电阻信号各档位上下限值 & 步进跨距功能说明

6.3.10 热工:模拟热电偶输出

冷端传感器的插拔操作需要先关机再进行,切勿在开机状态插拔冷端传感器。

- ♠ 注意事项:(冷端传感器(型号: MPC101A)的使用说明)
 - MMB 模拟热电偶输出时,如果不接冷端传感器,则输出的热电偶信号按照 0℃ 做为参考节点补偿的方式进行处理(即:不进行冷端补偿)。如果要采用非 0℃ 作为参考节点补偿的方式输出,需配接冷端传感器(型号: MPC101A,需单

独购买)。

- 冷端传感器测温范围: -55~+125℃
 - 其中,在-10~+85℃范围内,精度是±**0.**5℃

全量程范围的精度是±2℃

- 模拟热电偶的输出精度,详见【表 3.1】中热电偶档的描述,精度不包含冷端补偿。
- MMB 插上冷端传感器后,屏幕左下角的传感器状态标志"**Sensor**"会点 亮,如【图 4.2】中"n"所示。
- 重新开机、切换信号和档位后,默认的输出状态是不进行冷端补偿。请通过按 MODE 键切换为自动冷端补偿的方式输出。
- 步骤 1: 使用 mV TC 键切换到热电阻输出功能,并通过继续按此键在以下热电偶类型之间进行切换: K, E, J, T, R, B, S, N; 显示内容会有相应提示字符。切换信号后的默认输出值为 0mV (对应 0℃)。

 (注意: 用 mV TC 键还可将信号切换为直流电压 mV 输出,详见【6.3.5】节)。
- 步骤 2: 切换信号和档位后,默认的输出状态是不进行冷端补偿。请按 **MODE** 键 切换为自动冷端补偿的方式进行模拟热电偶输出。屏幕左上角的冷端补偿 状态标志 "AUTO"(如【图 4.2】中"f"所示)点亮,表示当前输出含有冷端补偿:如果不显示,则表明不含有冷端补偿。
- 步骤 3: 使用 **0~9 +/- • CLEAR** 键配合输入需要输出的温度值(单位: ℃)。如果设定值超过上 / 下限,显示会自动变换成上 / 下限温度值。在设定值修改时,显示状态为 ••• 。
- 步骤 4: 按 **ENTER** 键确认输出,显示状态变为 **ENTER** ,MMB 按当前温度 设定值输出热电偶信号。(当前输出是否进行了冷端补偿,可根据屏幕是否 显示 "AUTO"字符判断)。
- 步骤 5: 通过数字键键入新的温度设定值,上一组设定值将会被上移到上排显示。 在键入新的温度设定值的过程中,输出信号会维持上一组设定值的大小。
- 步骤 6: 仪表在信号输出状态 **ENTER** 下,可通过按 **0% ▼25% ▲25% 100%** 键实现信号值的阶梯跨距增减输出。显示值会在下排随着输出值的增减实时刷新。

步骤 7: 仪表在信号输出状态 **ENTER** 下,可通过按方向键 ▲ ▼ ■ 实现信号值的直接调整。显示值会在下排随着输出值的增减实时刷新。

步骤 8: 在热电偶输出状态下,可通过按**SWITCH**键切换成显示当前冷端传感器的测温值,如下图所示:

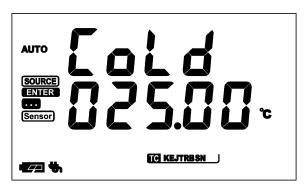


图 6.5 冷端温度显示状态

在冷端传感器的测温值的显示状态下,"Sensor"字符闪烁,上图标表示当前冷端测温值为 25℃

信号类型	0	▼▲25%步进跨距值	100%
K	-200.0℃	±400.0℃	1370.0℃
E	-200.0℃	±300.0℃	1000.0℃
J	-200.0℃	±350.0℃	1200.0℃
Т	-200.0℃	±150.0℃	400.0℃
R	-40℃	±450°C	1760 ℃
В	400℃	±350°C	1800℃
S	-20℃	±450°C	1760℃
N	-200.0℃	±375.0℃	1300.0℃

表 6.9 热电偶信号各档位上下限值 & 步进跨距功能说明

以下章节【6.3.11~6.3.13】介绍的是频率类型信号的输出操作

6.3.11 频率类信号输出

频率类信号的显示和操作方式比较特殊,请参照以下内容对 MMB 进行正确的操作,从而输出正确的脉冲或开关量信号。

频率类型信号分为以下几种:

信号类型	子类型
脉冲	连续脉冲
	脉冲计数模式
开关量	开关量连续输出
	开关量计数输出

表 6.10 频率类型信号的子类型

步骤 1: 使用 (Hz) () 健切换到频率类型信号输出功能,并通过继续按此键可在脉冲输出和开关量输出各自 3 个不同频率范围的档位间进行切换。

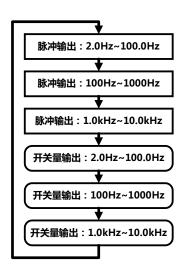


图 6.6 按 Hz M 键切换输出信号类型 & 切换档位

脉冲和开关量信号 3 个子档位的输出范围和精度请参照【表 3.1】。

步骤 2: 在频率类型信号操作状态下,按 SWITCH 键在修改的内容之间切换:

		可切换设置的参数			
信号类型	信号类型 子类型		脉冲幅值	脉冲个数	
		-F-	-Pv-	CYCLE *	
脉冲	连续脉冲	√	√	cont	
	脉冲计数模式	√	√	√	
开关量	开关量连续输出	4		cont	
	开关量计数输出	√		√	

表 6.11 频率类型信号的子类型

*: 脉冲个数默认设置为连续模式:显示 "cont",如希望按照计数模式输出脉冲或开关量,请将此参数设置为所需的 脉冲个数/开关次数 数值。

频率值 "-F-": 2.0 Hz ~100.0Hz

100 Hz ~1000Hz

1.0 kHz ~10.0kHz 三个档位

脉冲幅值 "-Pv-": 1.00V~10.00V

脉冲个数 / 开关次数 "CYCLE": 连续模式 cont (默认) 或

10~99999 cycle

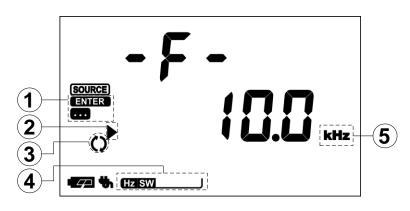


图 6.7 频率类型信号操作时的显示画面 1: 频率值修改

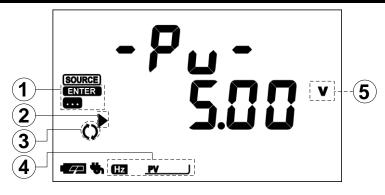


图 6.8 频率类型信号操作时的显示画面 2: 脉冲幅值修改

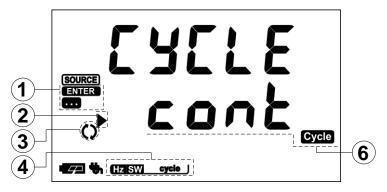


图 6.9 频率类型信号操作时的显示画面 3: 脉冲个数 (开关次数) 修改

- ① 指示输出信号:
 - . 表示正在修改当前设定值。

ENTER : 当按下输出确认键 ENTER ,实现对应设定值的信号输出后,显示此符号。

- ② 修改数据的提示符:下排数字左侧的▶箭头闪烁做为提示。
- ③ 在输出过程中,可通过按**MODE** 键停止输出,"**(')**"符号闪烁数次提示。
- ④ 指示当前设定的频率类输出信号类型和修改参数的类型:

Hz: 脉冲信号

SW: 开关量信号

PV: 脉冲幅值修改状态

cycle: 脉冲个数 (开关次数) 修改状态

- ⑤ 当前修改参数的单位。
- ⑥ 修改脉冲个数(开关次数)时: 下排显示 "cont" 表示连续模式; 下排显示数字时, Cycle 点亮 (表示计数模式)。
- 步骤 3: 使用 **0~9 +/- • CLEAR** 键配合输入需要输出的电压值。如果设定值超过上/下限,显示会自动变换成上/下限值。在设定值修改时,显示状态为 ••••

(修改脉冲个数 / 开关次数 "CYCLE"时,按 **CLEAR** 键的效果是回到 "cont"连续模式)

步骤 4: 按 **ENTER** 键确认输出,显示状态变为 **ENTER** ,MMB 按当前设定 进行输出。

(脉冲输出注意请务必设置脉冲幅值 "-Pv-"参数)

步骤 5: 在输出过程中,可通过按 MODE 键停止输出。

例 5: 输出频率为 8.2kHz,脉冲幅值为 5.5V 的脉冲方波信号,1000 个脉冲:

步骤 1: 在其它信号的常规操作状态下,按 **Hz III** 键切换到频率类信号操作状态, 再按 2 次 **Hz III** 键, 进入脉冲信号的 1.0kHz~10.0kHz 的频率档, 如【图 6.7】所示, (上排显示: "-F-")。

<u>步骤 2</u>: 在频率值修改状态下,使用**0~9** • **CLEAR** 键配合将频率值修改 为 8.2kHz。

<u>步骤 3</u>: 按 **SWITCH** 键切换到脉冲幅值修改状态,如【图 6.8】所示,(上排显示: "-Pv-"),使用 **0~9 ○ CLEAR** 键配合将脉冲幅值修改为 5.5V。

<u>步骤 4</u>: 再按 **SWITCH** 键切换到脉冲个数修改状态,如【图 6.9】所示,(上排显示: "CYCLE"),然后直接按数字键 **0~9** 将脉冲个数由 cont 连续模式改为 1000 个脉冲。

步骤 5: 按 **ENTER** 键确认并自动按照刚才的一系列设置实现输出。

章节【6.3.11】对频率类信号的输出做了整体介绍,下面的章节【6.3.12】&【6.3.13】则针对脉冲输出和开关量输出进行了详细的说明

6.3.12 频率类信号: 脉冲输出

MMB 输出脉冲信号的特性:

方波;占空比 50%;脉冲幅值 1~10 V_{p-p} ;低电平为 0V;电平精度±10%。 负载>100kΩ

- 步骤 1: 使用 **Hz III** 键切换到脉冲输出功能,并通过继续按此键在以下 3 个不同的频率范围的档位间进行切换:
 - 2.0 Hz ~100.0Hz 档 (默认显示 2.0Hz)、
 - 100 Hz ~1000Hz 档 (默认显示 100Hz)、
 - 1.0 kHz ~10.0kHz 档(默认显示 1.0kHz)。

显示下方会提示当前位于"**干**z"模式,(【图 4.2】中"y"所示)。

- 步骤 2: 首先,在上排显示 "-F-"时,使用 **0~9 CLEAR** 键配合输入需要输出脉冲的频率值(根据档位不同,频率单位有 Hz 和 kHz 两种,请参照右下角的显示提示)。如果设定值超过上/下限,显示会自动变换成上/下限频率值。
- 步骤 3: 使用 **SWITCH** 键切换当前修改内容为脉冲幅值: "-Pv-"(上排显示)。然后使用 **0~9 CLEAR** 键配合输入需要输出的脉冲的幅值(单位 V)。设置范围为 1.00V ~ 10.00V; 如果设定值超过上/下限,显示会自动变换成上/下限幅值。

(如果不修改脉冲幅值参数,默认按照 1V 幅值进行脉冲输出)。

- 步骤 4: 如果希望输出预设个数的脉冲信号,请继续使用 **SWITCH** 键切换当前修 改内容为脉冲个数: "CYCLE"(上排显示)。然后使用 **0~9 CLEAR** 键配合输入需要输出的脉冲个数,允许的设置范围为 10~99999。
 - (如果希望输出连续脉冲,请务必确保"CYCLE"参数设置为"cont",可在此参数设定时按**CLEAR** 键实现)。
- 步骤 5: 按 **ENTER** 键确认输出,显示状态由 变为 **ENTER** ,MMB 按 当前设定的脉冲频率值、幅值输出脉冲信号(连续脉冲 或 按照预设脉冲

个数输出的方法参照【步骤 4】)

步骤 6: MMB 在进行脉冲输出的过程中,可通过按 **MODE** 键停止脉冲输出,"**()**" 符号闪烁数次提示。

6.3.13 频率类信号: 开关量输出

MMB 输出开关量的特性:

最大开关电流电压: +28V / 50mA

- 步骤 1: 使用 **Hz III** 键切换到开关量输出功能,并通过继续按此键在以下 3 个不同的频率范围的档位间进行切换:
 - 2.0 Hz~100.0Hz 档 (默认显示 2.0Hz)、
 - 100 Hz ~1000Hz 档 (默认显示 100Hz)、
 - 1.0 kHz~10.0kHz档(默认显示 1.0kHz)。

显示下方会提示当前位于"SW"模式,(【图 4.2】中"y"所示)。

- 步骤 2: 首先,在上排显示 "-F-"时,使用 **0~9 CLEAR** 键配合输入需要输出开关量的频率值(根据档位不同,频率单位有 Hz 和 kHz 两种,请参照显示提示)。如果设定值超过上 / 下限,显示会自动变换成上 / 下限频率值。
- 步骤 3: 如果希望输出预设个数的开关量信号,请继续使用 **SWITCH** 键切换当前修改内容为开关次数: "CYCLE"(上排显示)。然后使用 **0~9 CLEAR** 键配合输入需要输出的开关次数,允许的设置范围为 10~99999。(如果希望进行开关量连续输出,请务必确保"CYCLE"参数设置为"cont",可在此参数设定时按 **CLEAR** 键实现)。
- 步骤 4: 按 **ENTER** 键确认输出,显示状态由 变为 **ENTER** ,MMB 按 当前设定的频率值进行开关量输出(开关量连续输出 或 按照预设开关次 数输出开关量信号的方法参照【步骤 3】)
- 步骤 5: MMB 在进行开关量输出的过程中,可通过按 MODE 键停止输出,"()" 符号闪烁数次提示。

37

6.3.14 存储常用输出值

MMB 可以存储多达 64 组常用输出。您可以将常用设定(信号类型和设定值)储存在 MMB 内置的存储器内,可随时方便的调用。

电池电量低的情况或更换电池不会对所储存的设定值有影响。

只有模拟量信号可以存储常用输出值,频率类信号不能存储。

1. 存储操作状态显示内容:

图 6.10 存储常用输出值的显示画面

上排符号: "SAVE"提示符

下排数字: 当前将要存储的信号设定值

① 当前状态指示:

MEMORY 闪烁,表示当前处于"存储"状态下。

② 当前存储位置已存储提示符:
如果当前编号的存储位置已经存储有数据,则 **SET** 符号闪烁提示。

③ 方向键指示:

闪烁提示当前存储位置 No.01 位置: ▲闪烁

No.02~No.63 位置: ▲ ▼闪烁

No.64 位置: ▼闪烁

- ④ 指示当前将要存储的信号类型以及单位。
- ⑤ 存储位置:

框内数字表示位置 1~64,随着按 ▲ ▼ ◆ 键来循环切换存储位置。

2. 存储按键操作:

一个完整的存储过程如下:

- (1) 在 **ENTER** 状态下,按 **STORE** 键,仪表切换到存储状态显示,显示内容如【图 6.10】所示。
- (2) 通过按 ▲ ▼ ▲ 康 键切换当前存储位置 1~64,位置数字显示在右下 角。上下键±1 个位置号,左右键±10 个位置号。
- (3) 选好存储位置后,按住**STORE** 键,直到显示退回到如【图 6.3】所示的常规操作状态(上排"SAVE"字样消失,闪烁的内容停止闪烁)。并且清零下排设定值,信号类型仍为存储时的信号类型。
- (4) 如果中途不想存储直接退回到常规操作状态,按 MODE 键即可。
- 例 3: 当前在 400 Ω 档已经输出 123.45 Ω。

此时,按 **STORE**键,显示进入 "SAVE"存储状态,按 ▲ ▼ ◀ ▶ 键将右下角所示的存储位置改为 50, 然后按住 **STORE**键,显示退回到常规操作状态,且清零下排设定值回零。

以上操作实现了将设定值存储到 No.50 位置。

6.3.15 读取常用输出值

按照前面所述的"存储常用输出值"功能存储的值,可以随时读取

1. 读取操作状态显示内容:

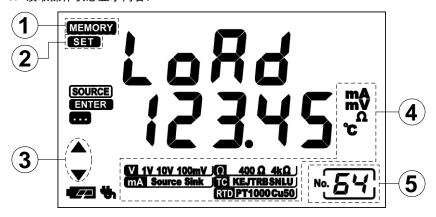


图 6.11 读取常用输出值的显示画面

上排符号: "LoAd" 提示符

下排数字: 当前存储位置已存储的信号设定值

① 当前状态指示:

MEMORY 闪烁,表示当前处于"读取"状态下。

- ② 当前存储位置已存储提示符:
 如果当前编号的存储位置已经存储有数据,则 **SET** 符号闪烁提示。
 (没有存储过数据的存储位置的下排显示为 "----")。
- ③ 方向键指示符:闪烁提示当前存储位置 No.01 位置: ▲闪烁;

No.02~No.63 位置: ▲▼闪烁

No.64 位置: ▼闪烁

- ④ 指示当前存储位置已存储的信号类型以及单位。
- ⑤ 存储位置: 框内数字表示位置 1~64, 随着按 ▲ ▼ ● 键来循环切换存储位置。

2. 读取按键操作:

一个完整的读取过程如下:

- (1) MMB 在正常操作时,按**RECALL**键,MMB 切换到读取状态显示:显示内容如【图 6.11】所示。
- (2) 通过按 【▲】▼ 【▲】 【▶】 键切换选择读取位置 1~64,位置数字显示在右下角。 随着切换读取位置,所选编号位置存储的存储值、信号类型和单位信息会实时 在下排显示刷新。如果当前内存位置没有数据,则会显示 "----"。
- (3) 选好需要读取的位置后,按**ENTER**)键,显示会自动退回到如【图 6.3】 所示的常规操作状态(上排"LoAd"字样消失,闪烁的内容停止闪烁),并 直接按照存储的数据进行输出。
- (4) 如果中途不想读取直接退回到常规操作状态,按 **MODE** 键即可。(显示值会清零,并且由于此时未进行读取操作,因此,退回常规操作状态后的输出信号举型仍为进入读取功能前的信号类型。)
- 例 4:按照【例 3】在 No.50 位置存储完成后。在常规操作状态下按 **RECALL** 键,显示进入 "LoAd" 存储状态,按 ▲ ▼ ◀ ▶ 键将右下角所示的存储 位置改为 50,然后按 **ENTER** 键,显示退回到常规操作状态,并按照存储的 123.45 Ω 输出电阻值。

40

6.4 参数设置说明

● 注意:在设置类画面下约1分钟无按键操作,MMB自动返回常规操作状态

6.4.1 密码校验

常规使用状态下,按住 SETUP 键 2 秒,进入密码校验状态,显示如下所示:

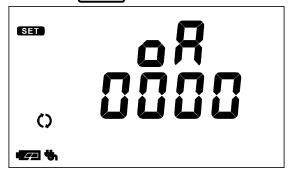


图 6.12 密码校验状态显示

上排:参数指示符 "oA": 密码

下排: 待校验的密码值

按 CLEAR 键,进入密码修改状态,对应修改位闪烁:通过按 🖊 ▶ 键移位,

按 ▲ ▼ 键修改设定值,按 STORE 键确认,密码正确则进入对应的参数组,

否则回到密码校验状态,显示回到【图 6.12】所示状态。

密码值:

8205: 讲入仪表参数设置状态

1111: 进入信号校准状态

9999: 查询机器序列号 Serial ID

● 操作 MMB 每次从密码校验状态回到常规使用状态后,MMB 进入空档位(即断路状态,无信号输出。保护后端电路),显示如【图 6.2】所示。

6.4.2 参数设置

密码为 8205,按 **STORE** 键确认,仪表进入参数设置状态。

1. 参数设置状态显示内容:

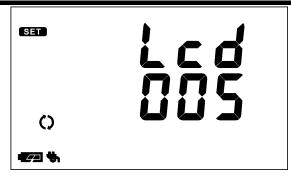


图 6.13 仪表参数设置状态 & 修改状态

上排:参数指示符下排:参数设定值

MMB 可设置的参数如下:

参数符号	参数名称	范围	默认值	备注
Lcd*	LCD 背光点亮时间(秒)	0~999	10	
LoAd*	开机是否恢复输出	0:否 / 1:是	1:是	
bEEP	按键音开关	0:无 / 1:有	1:有	
rESt*	自动关机时间(分)	1~999	999	
Co-iA*	冷端温度零点修正值	-99.9~99.9	0	
Co-Fi*	冷端温度满度修正值	0.000~2.000	1.000	

表 6.12 仪表参数

*Lcd: 背光时间单位为秒,设为 0,背光一直关闭。设为 999,保持一直点亮。

*LoAd: 0(否): 开机后仪表下排显示 "----"。

1 (是): 开机下排恢复显示上次关机前最后一次输出信号的信号类型和信号值(仅限模拟量信号,频率类型信号除外)。

*rESt: 自动关机单位为分钟,设为 999(出厂默认)时,表示屏蔽自动关机功能。

* Co-iA, Co-Fi:

这两个参数是配合热电偶冷端温度自动补偿输出使用的,需要配合外接的冷端传感器使用。如果不接传感器,参数不生效。

在进行冷端补偿时,可通过这两个参数对冷端补偿精度进行调校。

调校时应先进行零点修正,再进行满度修正。

生效的冷端温度值 = 零点修正前的冷端温度值 + Co-iA

生效的冷端温度值 = 满度修正前的冷端温度值 × Co-Fi

- 2. 参数设置的按键操作:
 - (1) 在仪表参数设置状态下,按 **SWITCH** 键,切换参数菜单
 - (2) 在仪表参数设置状态下,按 **CLEAR** 键,进入对应参数的仪表参数值修改状态,对应修改位闪烁:之后通过按 ▶ 键移位,按 ▼ 键修改设定值,按 **STORE** 键保存。
 - (3) 在仪表参数设置状态下,按住 **SETUP** 键 2 秒,可退回到常规操作状态。

6.4.3 输出校准

校准的环境条件: 环境温度: 25±5℃

相对湿度: 35%~75% R·H

预热: MMB 需在校准环境下开机预热 20 分钟以上

校准 MMB,需要使用精度等级高于 MMB 的高精度数字表,如六位半高精度数字表等。以确保精度的传递过程满足 MMB 输出精度的指标。

MMB 的每个信号输出档位都是依靠高低两个校准点进行输出精度校准的。

冷口光 型	校准点					
信号类型 和档位	低点 0 (L)		高点 FS(H)		备注	
₹₩₹⊒¶¥	参数符号	默认值	参数符	默认值		
直流电压 10V	10v-L	0.2V	10∨- H	12V		
直流电压 1V	1v-L	0.1V	1v-H	1.2V		
直流电压 mV	Ev-L	1mV	Ev-H	110mV		
直流电流输出 mA Source	Sou-L	1mA	Sou-H	9.5mA	高点采用 9.5mA 而不是 20mA,	
模拟变送器 mA Sink	Sin-L	1mA	Sin-H	9.5mA	是考虑到电流监测设备量程的一 到性问题	
电阻 400Ω	400L	0.5Ω	400н	400Ω	出厂时采用四线	
电阻 4kΩ	4000L	5Ω	4000н	4kΩ	制校准方式	

表 6.13 档位与校准点选取的出厂默认设置值

1. 输出校准参数菜单状态显示内容:

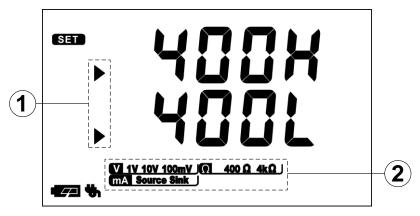


图 6.14 校准参数菜单状态

上排: 需校准的信号类型的高点参数

下排:需校准的信号类型的低点参数

① 修改数据的提示符:

上下排数字左侧的▶箭头指示当前的修改位置(校准高点进入上排参数,校准低点进入下排参数),哪排的▶箭头点亮并闪烁就表示修改哪排的设定值。

- ② 当前待校准的信号类型。
- 2. 校准值修改状态显示内容:

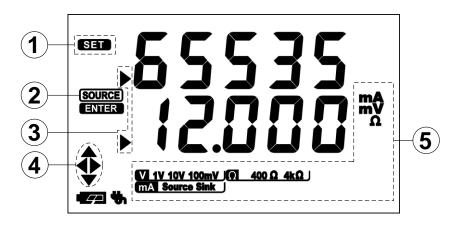


图 6.15 对应校准点的校准值修改状态

上排:需校准的信号类型的高/低点的 DA 码值(0~65535)

下排:需校准的信号类型的高/低点的对应物理量值。详见【表 3.1】

- ① 修改提示符:
 - 闪烁的 **SET** 符号,表示当前处在校准值修改状态。
- ② 确认码值输出提示符:

当每次按下输出确认键 **ENTER** 后,实现对应设定值的信号输出后, **SOURCE** 符号会点亮并闪烁几次,以便提示当前 MMB 已按设置的码值进

③ 修改数据的提示符:

行输出。

上下排数字左侧闪烁的▶箭头指示当前的修改位置(修改 DA 码值进入上排参数,修改对应物理量值进入下排参数),哪排的▶箭头点亮并闪烁就表示修改哪排的设定值。

- ④ 提示当前修改值需要使用方向键修改。
- ⑤ 当前校准点的信号类型和单位。

在校准之前,请参照【表 4.2】中的接线方式,将 MMB 与校准用的高精度数字表连接好,电阻信号的校准,可根据实际需求,自行选择 2 线制、3 线制、4 线制接线方式。

- 步骤 1: 参照【6.4.1】节,将密码设为 1111,确认后,仪表进入输出校准状态,显示如【图 6.14】所示。
- 步骤 2: 按 切换输出信号类型功能键区 的按键 V mVTC mA Ω 切换 到所需校准的信号类型和档位,对应参数菜单参照【表 6.13】。
- 步骤 3: 在所需校准的信号类型和档位下通过按 **SWITCH** 键,切换对应信号类型下的高、低校准点(H/L)。上下排显示的"▶"提示符用来指示当前的修改位置,显示如【图 6.14】所示。
- 步骤 4: 按 **CLEAR** 键,进入对应信号类型下的高或低校准点的校准值修改状态。显示如【图 6.15】所示。
- 步骤 5: 在校准值修改状态下,通过按 **SWITCH** 键,切换修改当前校准点的 DA 码值(上排参数)或 修改对应物理量值进(下排参数)。
- 步骤 6: 首先修改下排的物理量值: 按 **0~9 +/- . CLEAR** 键配合修改当

前校准点的物理量值。如果设定值超过上/下限,显示会自动变换成上/下限值。在设定值修改时,显示状态为 •••• 。

- 步骤 7: 然后修改上排的 DA 码值: 按 ▲ ▼ 键移位, 按 ▲ ▶ 键修改设定值, 修改位闪烁, 按 CLEAR 键清零, 在 0~65535 的范围内可任意修改。
- 步骤 8: 按输出确认键 **ENTER** ,仪表按照修改的 DA 码值进行输出。 待输出稳定后,检查测量 MMB 输出信号的高精度数字表上的测量值是否 与"步骤 6"中设置的当前校准点的物理量值一致。

反复重复"步骤 7", 微调 DA 输出码值, 使输出值最接近测量显示值。

- 步骤 9:按住 **STORE**]键,直到显示退回到如【图 6.14】所示的校准参数菜单状态 (不同信号类型退回各自的校准参数菜单状态),当前校准点的校准参数保存生效。
- 步骤 10: 如果中途希望不保存校准数据,直接退出校准修改状态,按**MODE** 键即可。显示直接退回【图 6.14】所示的校准参数菜单状态。
- 步骤 11: 在校准参数菜单状态下,按住 **SETUP** 键 2 秒,可退回到常规操作状态。

例 6: 尝试准确校准 mV 档的高点校准值 100mV:

<u>步骤 2</u>: 根据上下排数字左侧闪烁的▶箭头的指示,选择当前的校准点:通过按 **SWITCH** 键选择修改上排所示的 mV 信号高点校准值。

步骤 3: 按 CLEAR 键进入 mV 信号高点校准值修改状态。

步骤 4: 根据上下排数字左侧闪烁的▶箭头的指示,选择当前的修改内容:通过按 SWITCH 键选择修改下排所示的物理量值,并通过按 0~9 +/- • CLEAR 键将高点物理量值修改为 100mV。

步骤 5: 按 SWITCH 键选择修改上排所示的 DA 码值,通过按 【●】键移位,按 【●】键修改 DA 码值,按输出确认键 ENTER 输出相应的 mV 值。

步骤 6: 通过观察测量 MMB 的 mV 输出的高精度数字表,检查测量到的 mV 值是否等于 100mV,以最接近 100mV 时的 DA 码值为准。按住 **STORE** 键,直到显示退回到 mV 信号校准参数菜单状态。mV 档高点校准完毕。

※ 以上信号校准不包含频率类信号的校准。频率类信号的频率值无需校准,涉及到脉冲信号的脉冲幅值,以10V电压档的校准结果为准。

校准注意事项:

- (1) 校准低点和高点的选取要根据所需输出信号的实际范围确定比较合适。一般可以设置成所需输出信号的实际范围的 10%为低点,90%为高点。
- (2) 输出信号为 mV 信号时,校准时低点请选择 0mV 以上,推荐值为 1mV;不要选择 0 mV 值做为校准点:因为 MMB 及外部校准设备均会受到热电偶效应的影响。
- (3) 热电阻信号和热电偶信号无需单独校准,其精度依赖于电阻档和直流电压 mV 档的校准精度,详见下面的对应表格:

信号类型	信号类型	依赖的校准信号
热电阻	PT100	电阻 400Ω档
	PT1000	电阻 4kΩ档
	Cu50	电阻 400Ω档
热电偶	K/E/J/T/R	直流电压 mV 档
	/B/S/N	鱼流电压 IIIV 饲

表 6.14 校准热工类信号实际所需校准的信号类型

- (4) 在热工类信号输出时(热电阻、热电偶),对应的所依赖的校准信号的校准低点和高点的选取,应该参照【表 3.1】所示的每种信号的允许设定的温度范围。例如:如果需要输出 K 型热电偶全程的-200.0℃~1300.0℃范围。应查 K 型热电偶分度表,得到该温度范围对应的 mV 值范围-5.89mV~52.41mV。校准所需的mV 信号的低点和高点就可以用这个 mV 值范围作为参考。比如高点 53mV,低
- (5) 为提高输出精度,校准低点和高点应该尽量靠近所需的输出范围。
- (6) 在校准电阻档时,由于电阻输出功能采用电子合成电阻的原理,DA 码值接近 0 的部分所输出的电阻值为负值,用高精度数字表可以测量到这一负电阻值。请在标定后检查 0 Ω 点,请勿在 0 Ω 点出现负电阻值,否则可能会导致实际使用时出现问题。
 - 电池电量过低时,请勿进行校准,否则可能导致精度偏差较大。
 - ★ 校准时,为确保安全,接线必须在断电后进行。

点 1mV 进行标定。

6.4.4 查询仪表序列号及恢复出厂设置

参照【6.4.1】节,将密码设为 9999,确认后,可查询到每台 MMB 唯一的机器序列号 Serial ID,显示如【图 6.16】所示。

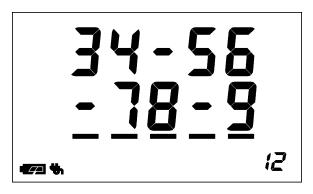


图 6.16 机器序列号的查询状态

上图中所示的机器序列号为 12-34-56-78-9, 每台 MMB 均有其唯一的序列号

仪表序列号的用途:

当 MMB 出现故障,或有使用的相关问题需要向厂家咨询时,可以将查询到的仪表序列号回复给厂家,以便提供厂家追溯仪表的出厂信息。

参照【6.4.1】节,将密码设为7310,确认后,仪表进入恢复出厂状态询问界面:

图 6.17 恢复出厂状态的询问界面

上排: 指示符 "init" 初始化

下排:是否恢复出厂状态: 0:不恢复, 1:恢复

按 **CLEAR** 键,进入恢复出厂状态的参数修改状态,数字"0"闪烁;然后通过按 ▲ ▼ 键将闪烁的数字修改为"1";按 **STORE** 键确认之后闪烁位不再闪烁。

按住电源键 ① 直到仪表显示熄灭,使仪表关机。等待几秒种后,再按住电源键 ① 直到显示亮起后松开。

此时, MMB 的重新开机实现:将备份参数区的参数恢复到主参数区。仪表参数恢复到【表 6.12】中的默认值状态:并清空常用输出存储器。

然后,可正常操作使用 MMB,无需再对 7310 参数进行干预。

● 恢复出厂设置这一功能请慎重使用!

七. 版本号信息

计算机通过通讯可读出 MMB 主机的版本号(请单独购买红外-RS485 通讯转换器或红外-USB 通讯转换器)。详细指令集请参照通讯转换器的用户手册中的通讯协议部分。

MMB 主机版本号与功能升级项目参照:

◆ MMB-V2.0: 不含热电偶冷端温度自动补偿功能; 电阻档输出下限电阻值为 0.5 Ω; 通讯正确接收到同步命令后,输出保持在当前输出状态。

◆ MMB-V2.1: 加入了热电偶冷端温度自动补偿功能; 电阻档输出下限电阻值升级为 0 Ω; 通讯正确接收到同步命令后,输出会切换到空档位。

- ※ MMB 其他功能以及配件说明:
 - MMB 支持采用非 0℃作为参考节点补偿的方式进行热电偶信号输出。需单独购买冷端传感器(型号: MPC101A)。
 - MMB 可支持 RS485 组网使用,需单独购买红外-RS485 通讯转换器(型号:

MPC485IR104A)。使用说明详见《MMB 红外-RS485 通讯转换器用户手册》

● MMB 支持通过"红外-USB 通讯转换器"与电脑实现 1 对 1 通讯。可通过通讯操作 MMB,包括校准在内的全部使用功能。需单独购买红外-USB 通讯适配器(型号: MPCUSBIR105A)。具体使用说明请参照本用户手册及其单独的用户手册。

(随时更正,查阅时请以最新版本为准)