

中华人民共和国国家标准

GB/T 13885—2003/ISO 6869:2000 代替 GB/T 13885—1992

动物饲料中钙、铜、铁、镁、锰、钾、钠 和锌含量的测定 原子吸收光谱法

Animal feeding stuffs—Determination of thecontents of calcium, copper, iron, magnesium, manganese, potassium, sodium and zinc—

Method using atomic absorption spectrometry

(ISO 6869:2000,IDT)

2003-11-01 发布

2004-05-01 实施

目 次

前																																						•••••		
1	范	围		• • • •	•••	••••	•••	•••	•••	•••	•••	•••	•••		•••	•••	•••	•••	• • • •			• • • •	• • •	• • • •	• • • •	•••	•••	•••	••••	• • •	••••	• • • •	••••	• • •	• • • •	• • • •	••••	••••	· • • • •	1
2	规	范	性	3 }	1	文件	٠.	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	• • • •		•••	• • • •	• • •	• • • •	• • • •	•••	•••	•••		•••	••••	••••	••••	• • •	• • • •		• • • •	••••	• • • • •	1
3	原	理		• • • •		••••	•••		•••	•••	•••	• • •	•••	••••	•••	•••	•••		• • • •	• • •	• • •	•••	• • • •	• • • •		•••	•••	•••		•••				• • •	• • • •	• • • •	• • • •			1
4	试	剂	和	容剂	友	••••	•••		•••	•••	•••	•••	•••	•••	•••	•••	•••		•••	• • •	•••	•••	• • •	• • • •	• • • •		•••	•••		•••	• • • •	••••	••••	• • •	• • •		••••	••••	• • • •	1
5	仪	器	设行	备	•••		•••		•••	•••	•••	• • •		•••	•••	•••			•••	• • •	• • •		• • •	• • • •	• • • •	•••	•••	••••					••••	• • • •	• • • •		••••	••••	••••	2
6	采	样			•••		•••	٠	٠	•••	•••	• • • •	•••	•••			•••			• • •		• • • •	• • • •	• • • •	• • • •	•••	•••	•••		•••			••••	•••	•••		•••	••••	• • • •	3
7	试	样	的f	制名	š	••••			•••	•••	•••	• • •	•••	•••	•••	•••	•••		•••	• • •	• • •	• • •	• • •	• • • •	• • • •			•••		•••	• • • •		••••	• • •	• • •		••••		• • • •	3
8	分	析	步	殩	•••		•••	•••	•••		• • • •	•••	•••	•••	•••	•••	•••	•••	•••	• • •	• • •	•••	• • • •	• • • •	• • • •			•••	• •	•••	••••	••••	••••	• • •	• • • •				• • • •	3
9	结	果	表	示			•••			•••	•••	•••	••••	••••		•••	•••		•••		• • •	•••	• • • •		• • • •	•••	•••	•••		٠	••••		••••	• • • •	• • • •				• • • • •	4
10	*	青石	的度	••••	•••	••••	••••		•••	•••	•••	•••	•••	•••	•••	•••			•	• • •	٠	• • • •	• • • •	•		•••	•••	••••		•••			••••	• • •	• • • •	· · · ·	•••		• • • •	4
10.	1	3	に野	室	间	试!	硷…		•••	•••	•••	•••	•••	••••	•••	•••	•••	•••	•••	• • •	•••	• • • •	• • • •	• • • •		•••	•••	•••		•••	••••						•••		• • • •	4
10.	2	1	£复	性	•••	••••	••••		٠	•••	•••	•••	•••	• • • •	•••	•••	•••	•••	•	• • •	• • •	• • • •	•••	• • • •	• • • •	•••	•••	•••				•••	• • • •		• • • •		• • • •		• • • •	5
10.	3	Ŧ	厚现	性	•••				•••	•••	•••	• • •		•••					•••	• • •	• • •	• • • •	• • • •			•••		•••		•••	• • • •								• • • •	5
11	ì	式引	金报	告	•••	••••	••••		•••					••••	•••	•••	•••	•••		• • •	٠.,		• • • •	• • • •	•••	•••	•••	•••		٠			••••	• • •	• • • •		•••			5
附:	录 .	Α	(资	料	性	附表	(系		实	验	室	间	试	验:	结	果	Ę	•••	•	• • •	• - •	• • • •	• • • •		••••	•••	•••	•••		•••	••••			• • • •	• • • •		•••		• • • • •	6
附:	录]	в	资	料	生	附昇	ŧ)]	IS	O 6	349	8:	19	998	3 7	寸	物	饲	料	늄	村	的	制	备		•••	•••	•••		•••	•••	•••	••••	••••					•••	11
参	老	文 甫	. 4			••••						٠			•••					٠.,	•••						•••				•••			•••					•••	14

前 言

本标准等同采用 ISO 6869:2000《动物饲料中钙、铜、铁、镁、锰、钾、钠和锌含量的测定-原子吸收光谱法》(英文版)。

- 本标准代替 GB/T 13885-1992《饲料中铁、铜、锰、锌、镁的测定方法 原子吸收光谱法》。
- 本标准等同采用了 ISO 6869:2000。
- 为便于使用,本标准做了下列编辑性修改:
- ---"本国际标准"--词改为"本标准";
- ---用小数点"."代替作为小数点的逗号",";
- 删除了国际标准的前言;
- ——引用了与 ISO 6869:2000 中引用的 ISO 3696:1987 相对应的 GB/T 6682—1992 《分析实验室 用水规格和试验方法》:
- ----增加了资料性附录 B 以方便使用。
- 本标准与 GB/T 13885-1992 的主要差异如下:
- ---修改了标准的名称;
- ——修改了标准溶液的制备方法;
- ——修改了样品的灰化时间;
- 一一增加了钙、钾和钠测定项目;
- ——修改了干扰抑制剂的内容。
- 本标准的附录 A、附录 B 为资料性附录。
- 本标准由国家质量监督检验检疫总局提出。
- 本标准由全国饲料工业标准化技术委员会归口。
- 本标准起草单位:农业部饲料质量监督检验测试中心(济南)、国家饲料质量监督检验中心(北京)。
- 本标准主要起草人:孟凡胜、宫玲玲、高建宁、丁庆华、董慕新、赵根龙。

动物饲料中钙、铜、铁、镁、锰、钾、钠 和锌含量的测定 原子吸收光谱法

1 范围

本标准规定了用原子吸收光谱方法测定动物饲料中钙(Ca)、铜(Cu)、铁(Fe)、镁(Mg)、锰(Mn)、钾(K)、钠(Na)、锌(Zn)含量的方法。

各元素含量的检测限如下:

K, Na:500 mg/kg:

Ca, Mg: 50 mg/kg;

Cu, Fe, Mn, Zn: 5 mg/kg.

本标准适用于所有动物饲料。

2 规范性引用文件

下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。

GB/T 6682-1992 分析实验室用水规格和试验方法(neg ISO 3696:1987)

1SO 6497 动物性饲料采样

ISO 6498 动物饲料试样的制备

3 原理

将试料放在马福炉 550℃±15℃温度下灰化之后,用盐酸溶解残渣并稀释定容,然后导入原子吸收分光光度计的空气-乙炔火焰中。测量每个元素的吸光度,并与同一元素校正溶液的吸光度比较定量。

4 试剂和溶液

除非另有规定,仅使用分析纯试剂。

- 4.1 水,应符合 GB/T 6682 三级用水。
- 4.2 盐酸: $c(HCl) = 12 \text{ mol/L}(\rho = 1.19 \text{ g/mL})$ 。
- 4.3 盐酸溶液:c(HCl)=6 mol/L。
- 4.4 盐酸溶液:c(HCl)=0.6 mol/L。
- 4.5 硝酸镧溶液:

溶解 133 g 的 La(NO₃)₃ · 6H₂O 于 1 L 水中。

如果配制的溶液镧含量相同,可以使用其他镧盐。

4.6 氢化铯溶液:

溶解 100 g 氯化铯(CsCl)于 1 L 水中。

如果配制的溶液铯含量相同,可以使用其他的铯盐。

4.7 Cu、Fe、Mn、Zn 的标准储备溶液:

取 100 mL水,125 mL 盐酸(4,2)干1 L容量瓶中,混匀。

称取下列试剂:

- ---392.9 mg 硫酸铜(CuSO4 5H2O);
- ——702.2 mg 硫酸亚铁铵[(NH₄)₂SO₄ FeSO₄ 6H₂O];
- ——307.7 mg 硫酸锰(MnSO₄H₂O);
- ----439.8 mg 硫酸锌(ZnSO4 7H2O);

将上述试剂加入容量瓶中,用水溶解并定容。

此储备液中 Cu、Fe、Mn、Zn 的含量均为 100 μg/mL。

注:可以使用市售配制好的适合的溶液。

4.8 Cu、Fe、Mn、Zn 的标准溶液:

取 20.0 mL 的储备溶液加入 100 mL 容量瓶中,用水稀释定容。

此标准液中 Cu、Fe、Mn、Zn 的含量均为 20 μg/mL。

该标准液当天使用当天配制。

4.9 Ca、K、Mg、Na 的标准储备溶液,

称取下列试剂:

- ----1,907 g 氯化钾(KCl);
- ——2.028 g 硫酸镁(MgSO₄ 7H₂O);
- ——2.542 g 氯化钠(NaCl)。

将上述试剂加入1 L 容量瓶中。

称取 2.497 g 碳酸钙(CaCO₃)放入烧杯中,加入 50 mL 盐酸(4.3)。

注意: 当心产生二氧化碳。

在电热板(5.4)上加热 5 min,冷却后将溶液转移到含有 $K \times Mg \times Na$ 盐的容量瓶中,用盐酸(4.4) 定容。

此储备液中 Ca、K、Na 的含量均为 1 mg/mL, Mg 的含量为 200 μg/mL。

注:可以使用市售配制好的适合溶液。

Ca、K、Mg、Na 的标准溶液:

取 25.0 mL 储备溶液(4,9)加入 250 mL 容量瓶中,用盐酸(4,4)定容。

此标准液中 Ca、K、Na 的含量均为 100 μg/mL, Mg 的含量为 20 μg/mL。

配制的标准液贮存在聚已烯瓶中,可以在一周内使用。

4.11 镧/铯空白溶液:

取 5 mL 硝酸镧(4.5)溶液、5 mL 氯化铯溶液(4.6)和 5 mL 盐酸(4.3)加人 100 mL 容量瓶中,用水定容。

5 仪器设备

所有的容器,包括配制校正溶液的吸管,在使用前用盐酸溶液(4.4)冲洗。如果使用专用的灰化皿和玻璃器皿,每次使用前不需要用盐酸煮。

实验室常用设备和专用设备如下:

- 5.1 分析天平, 称量精度到 0.1 mg。
- 5.2 坩埚:铂金、石英或瓷质,不含钾、钠,內层光滑没有被腐蚀,上部直径为 $4 \text{ cm} \sim 6 \text{ cm}$,下部直径 $2 \text{ cm} \sim 2.5 \text{ cm}$,高 5 cm 左右,使用前用盐酸(4.3)煮。
- 5.3 硬质玻璃器皿:使用前用盐酸(4.3)煮沸,并用水冲洗净。
- 5.4 电热板或煤气炉。
- 5.5 水浴锅。
- 5.6 马福炉:温度能控制在 550℃±15℃。

- 5.7 原子吸收分光光度计:波长范围在 8.6.1 和 8.7.1 有详细说明。带有空气-乙炔火焰和一个校正设备或测量背景吸收装置。
- 5.8 测定 Ca、Cu、Fe、K、Mg、Mn、Na、Zn 所用的空心阴极灯或无极放电灯。
- 5.9 定量滤纸。

6 采样

本标准未规定采样方法,建议采样方法按照 ISO 6497。

实验室收到有代表性的样品是十分重要的,样品在运输、贮存中不能损坏变质。

保存的样品要防止变质及其他变化。

7 试样的制备

按照 ISO 6498 的方法制备试样。见附录 B。

8 分析步骤

8.1 检测有机物的存在

用平勺取一些试料在火焰上加热。

如果试料融化没有烟,即不存在有机物。

如果试料颜色有变化,并且不融化,即试料含有机物。

8.2 试料

根据估计含量称取 1 g~5 g 制备好的试样,精确到 1 mg,放进坩埚(5.2)中。

如果试样含有机物,按8.3操作。

如果试样不含有机物,按8.4操作。

8.3 干灰化

将坩埚放在电热板或煤气灶(5.4)上加热,直到试料完全炭化(要避免试料燃烧)。将坩埚转到已在550℃温度下预热 15 min 的马福炉(5.6)中灰化 3 h,冷却后用 2 mL 水浸润坩埚中内容物。如果有许多炭粒,则将坩埚放在水浴上干燥(5.5),然后再放到马福炉中灰化 2 h,让其冷却再加 2 mL 水。

8.4 溶解

取 10 mL 盐酸(4.3),开始慢慢一滴一滴加入,边加边旋动坩埚,直到不冒泡为止(可能产生二氧化碳),然后再快速加入,旋动坩埚并加热直到内容物近乎干燥,在加热期间务必避免内容物溅出。用 5 mL盐酸(4.3)加热溶解残渣后,分次用 5 mL 左右的水将试料溶液转移到 50 mL 容量瓶。待其冷却后,然后用水稀释定容并用滤纸(5.9)过滤。

8.5 空白溶液

每次测量,均按照8.2、8.3和8.4步骤制备空白溶液。

8.6 铜、铁、锰、锌的测定

8.6.1 测量条件

按照仪器说明要求调节原子吸收分光光度计(5.7)的仪器条件,使在空气-乙炔火焰测量时的仪器 灵敏度为最佳状态。Cu、Fe、Mn、Zn的测量波长如下:

Cu:324.8 nm;

Fe:248.3 nm;

Mn:279.5 nm;

Zn:213, 8 nm.

8.6.2 校正曲线制备

用盐酸(4.4)稀释标准溶液(4.8),配制一组适宜的校正溶液。

测量盐酸(4.4)的吸光度、校正溶液的吸光度。

用校正溶液的吸光度减去盐酸(4.4)的吸光度以吸光度修正值分别对 Cu、Fe、Mn、Zn 的含量绘制校正曲线。

8.6.3 试料溶液的测量

在同样条件下,测量试料溶液(8.4)和空白溶液(8.5)的吸光度,试样溶液的吸光度减去空白溶液的吸光度。按第9章计算含量。

如果必要的话,用盐酸溶液(4.4)稀释试料溶液和空白溶液,使其吸光度在校正曲线线性范围之内。

8.7 钙、镁、钾、钠的测定

8.7.1 测量条件

按照仪器说明要求调节原子吸收分光光度计(5.7)的仪器条件,使在空气-乙炔火焰测量时的仪器 灵敏度为最佳状态。Ca、K、Mg、Na的测量波长如下:

Ca: 422. 6 nm:

K:766.5 nm;

Mg: 285, 2 nm;

Na:589.6 nm.

8.7.2 校正曲线制备

用水稀释标准溶液(4.10),每 100 mL标准稀释溶液加 5 mL的硝酸镧溶液(4.5),5 mL 氯化铯溶液(4.6)和 5 mL 盐酸(4.3)。配制一组适宜的校正溶液。

测量镧/铯空白溶液(4.11)的吸光度。

测量校正溶液吸光度并减去镧/铯空白溶液(4.11)的吸光度。以修正的吸光度分别对 Ca、K、Mg、Na 的含量绘制校正曲线。

8.7.3 试料溶液的测量

用水定量稀释试料溶液(8.4)和空白溶液(8.5),每 100 mL 的稀释溶液,加 5 mL 的硝酸镧(4.5), 5 mL 的氨化铯(4.6)和5 mL 故酸(4.3)。

在相同条件下,测量试料溶液和空白溶液的吸光度。用试料溶液的吸光度减去空白溶液的吸光度。 如果必要的话,用镧/铯空白溶液(4.11)稀释试料溶液和空白溶液,使其吸光度在校正曲线线性范 制之内。

9 结果表示

由校正曲线、试料的质量和稀释度分别计算出 Ca、Cu、Fe、Mn、Mg、K、Na、Zn 各元素的含量。 按照表 1 修约,并以 mg/kg 或 g/kg 表示。

含 量	修 约 到
5 mg/kg~10 mg/kg	0.1 mg/kg
10 mg/kg~100 mg/kg	1 mg/kg
100 mg/kg~1 g/kg	10 mg/kg
1 g/kg~10 g/kg	100 mg/kg
10 g/kg~100 g/kg	1 g/kg

表 1 结果计算的修约

10 精密度

10.1 实验室间试验

对实验室间方法的精密度说明列于附录 A。由这些试验得到的值,不适用于本附录 A 所给出之外的浓度范围和材料。

10.2 重复性

同一操作人员在同一实验室,用同一方法使用同样设备对同一试料在短时期内所做的两个平行样结果之间的差值,超过表2或表3重复性限γ的情况,不大于5%。

表 2 预湿料的重复性限(γ)和再现性限(R)

元繁	含量/(mg/kg)	γ	R
Ca	3 000~300 000	0.07× W	0, 20×₩
Cu	200~20 000	0.07× W	$0.13 \times \overline{W}$
Fe	500~30 000	0.06×W	0. 21 × ₩
K	2 500~30 000	0.09 $ imes \overline{m{W}}$	0, 26×₩
Mg	1 000~100 000	0.06×W	0. 14 $ imes \overline{W}$
Mn	150~15 000	0.08 $ imes \overline{W}$	0, $28 \times \overline{W}$
Na	2 000~250 000	0.09× W	0.26 $\times \overline{W}$
Zn	3 500~15 000	0.08 $ imes \overline{m{w}}$	$0.20 \times \overline{W}$

在: W 为网络来的千鸟值(mg/kg)。

表 3 动物饲料的重复性限(γ)和再现性限(R)

元 寮	含量/(mg/kg)	γ	R
Ca	5 000~50 000	0,07×₩	0, 28×W
Cu	10~100	$0.27 \times \overline{W}$	$0.57 \times \overline{W}$
Cu	100~200	$0.09 \times \overline{W}$	0.16×W
Fe	50~1 500	0.08 $ imes \overline{m{w}}$	0.32× W
К	5 000~30 000	0.09 $ imes \overline{m{w}}$	0. 28× W
Mg	1 000~10 000	$0.06 imes \overline{W}$	$0.16 \times \overline{W}$
Mn	15~500	$0.06 \times \overline{W}$	$0.40 \times \overline{W}$
Na	1 000~6 000	0.15 $ imes \overline{W}$	0. 23×W
2n	25~500	0. 11 $\times \overline{W}$	0, 19×₩

注: W 为两结果的平均值(mg/kg)。

10.3 萬现件

不同分析人员在不同实验室,用不同设备使用同一方法对同一试料所得到的两个单独试验结果之间的绝对差值,超过表 2 或表 3 再现性限 R 的情况,不大于 5%。

11 试验报告

试验报告要详细说明:

- ——对完成样品检验必需的所有资料;
- ——如果已知采样方法,要说明使用的采样方法;
- ---使用的标准;
- ——在本标准中没有规定的,以及能影响试验结果的任何细节;
- 试验结果:如果重复性已被校核,列出两个试验结果。

注:表 2 和表 3 指出的重复性限和再现性限对各元素和范围用一个计算式表示。在式中的系数是调查研究一些样品在指出范围中求得的一个平均值。在特殊情况下对特定样品特定元素的测定所得到的值较高,对这些样品没有考虑进去。大多数情况,这些偏差可能是由于样品的均匀度不好而至(见附录 A)。

附 录 A (资料性附录)

实验室间试验结果

开始于 1983 年,对混合饲料和预混合料由几个实验室间试验按 ISO 5725;1986 规定方法完成实验 方法的精密度。第一批试验的统计结果发表在参考文献。由于这些试验结果改进了方法。改进的方法的精密度是由两实验室试验确定的。

第一批 26 个实验室试验(1986~1987),由 7 个国家参加,样品有一个预混料,两个混合料,大麦,枯萎青贮,乳粉和猪粪。鉴于预混料结果不能令人满意,决定对预混料方法做修改,用补充实验室间试验制定预混料修改的方法的精密度。

第二批(1987~1988)试验,13 个实验室参加,试验研究了 8 个预混料(含有机物的 5 个)。两批实验室间试验结果统计汇总在表 A.1 至表 A.8。

					参	数。			
n_1	n ₂	n ₃	$\overline{W}/(\text{mg/kg})$	S _r /(mg/kg)	CV,/(%)	r/(mg/kg)	$S_R/(mg/kg)$	$CV_R/(\%)$	R/(mg/kg)
12	0	24	51000	1413	2.9	4000	5654	10.9	16000
12	2	22	292000	6007	2. 1	17000	16254	5.7	46000
12	2	22	136000	2120	1.6	6000	12367	9.0	35000
12	0	24	156000	2120	1, 3	6000	10247	6, 5	29000
12	2	22	11900	389	3. 2	1100	636	5.5	1800
12	2	22	3000	106	3.8	300	247	8. 6	700
12	0	24	7900	177	2. 1	500	530	6.9	1500
12	0	24	5700	141	2. 4	400	318	5. 9	900
21	8	34	592	62	10.4	175	179	30. 3	507
21	8	34	4860	130	2. 7	369	604	12.4	1710
21	10	32	7650	195	2, 6	552	753	9, 8	2130
21	6	36	13300	417	3. 1	1180	1484	11, 1	4200
21	2	40	33200	565	1, 7	1600	6855	20.6	19400
21	9	33	47400	1106	2. 3	3130	3424	7. 2	9690
	12 12 12 12 12 12 12 12 12 12 21 21 21 2	12 0 12 2 12 2 12 0 12 2 12 0 12 2 12 0 12 0	12 0 24 12 2 22 12 0 24 12 2 22 12 0 24 12 2 22 12 0 24 12 0 24 12 12 0 24 21 8 34 21 8 34 21 10 32 21 6 36 21 2 40	12 0 24 51000 12 2 22 292000 12 2 22 136000 12 0 24 156000 12 2 22 11900 12 2 22 3000 12 0 24 7900 12 0 24 5700 21 8 34 592 21 8 34 4860 21 10 32 7650 21 6 36 13300 21 2 40 33200	12 0 24 51000 1413 12 2 22 292000 6007 12 2 22 136000 2120 12 0 24 156000 2120 12 2 22 11900 389 12 2 22 3000 106 12 0 24 7900 177 12 0 24 5700 141 21 8 34 592 62 21 8 34 4860 130 21 10 32 7650 195 21 6 36 13300 417 21 2 40 33200 565	n_1 n_2 n_3 $\overline{W}/(mg/kg)$ $S_r/(mg/kg)$ $CV_r/(\%)$ 12 0 24 51000 1413 2.9 12 2 22 292000 6007 2.1 12 2 22 136000 2120 1.6 12 0 24 156000 2120 1.3 12 2 22 11900 389 3.2 12 2 22 3000 106 3.8 12 0 24 7900 177 2.1 12 0 24 5700 141 2.4 21 8 34 592 62 10.4 21 8 34 4860 130 2.7 21 10 32 7650 195 2.6 21 6 36 13300 417 3.1 21 2 40 33200 565 1.7 <td>n_1 n_2 n_3 \$\overline{W}\$ (mg/kg) \$S_c\$ (mg/kg) \$CV_c\$ (%) \$r\$ (mg/kg) 12 0 24 51000 1413 2.9 4000 12 2 22 292000 6007 2.1 17000 12 2 22 136000 2120 1.6 6000 12 0 24 156000 2120 1.3 6000 12 2 22 11900 389 3.2 1100 12 2 22 3000 106 3.8 300 12 0 24 7900 177 2.1 500 12 0 24 5700 141 2.4 400 21 8 34 592 62 10.4 175 21 8 34 4860 130 2.7 369 21 10 32 7650 195 2.6 552</td> <td>n_1 n_2 n_3 $\overline{W}/(mg/kg)$ $S_r/(mg/kg)$ $CV_r/(\%)$ $r/(mg/kg)$ $S_R/(mg/kg)$ 12 0 24 51000 1413 2.9 4000 5654 12 2 22 292000 6007 2.1 17000 16254 12 2 22 136000 2120 1.6 6000 12367 12 0 24 156000 2120 1.3 6000 10247 12 2 22 11900 389 3.2 1100 636 12 2 22 3000 106 3.8 300 247 12 0 24 7900 177 2.1 500 530 12 0 24 5700 141 2.4 400 318 21 8 34 592 62 10.4 175 179 21 8 34 4860 130 2</td> <td>n_1 n_2 n_3 $\overline{W}/(mg/kg)$ $S_r/(mg/kg)$ $CV_r/(\%)$ $r/(mg/kg)$ $S_R/(mg/kg)$ $CV_R/(\%)$ 12 0 24 51000 1413 2.9 4000 5654 10.9 12 2 22 292000 6007 2.1 17000 16254 5.7 12 2 22 136000 2120 1.6 6000 12367 9.0 12 0 24 156000 2120 1.3 6000 10247 6.5 12 2 22 11900 389 3.2 1100 636 5.5 12 2 22 3000 106 3.8 300 247 8.6 12 0 24 7900 177 2.1 500 530 6.9 12 0 24 5700 141 2.4 400 318 5.9 21 8 34 592 62</td>	n_1 n_2 n_3 \$\overline{W}\$ (mg/kg) \$S_c\$ (mg/kg) \$CV_c\$ (%) \$r\$ (mg/kg) 12 0 24 51000 1413 2.9 4000 12 2 22 292000 6007 2.1 17000 12 2 22 136000 2120 1.6 6000 12 0 24 156000 2120 1.3 6000 12 2 22 11900 389 3.2 1100 12 2 22 3000 106 3.8 300 12 0 24 7900 177 2.1 500 12 0 24 5700 141 2.4 400 21 8 34 592 62 10.4 175 21 8 34 4860 130 2.7 369 21 10 32 7650 195 2.6 552	n_1 n_2 n_3 $\overline{W}/(mg/kg)$ $S_r/(mg/kg)$ $CV_r/(\%)$ $r/(mg/kg)$ $S_R/(mg/kg)$ 12 0 24 51000 1413 2.9 4000 5654 12 2 22 292000 6007 2.1 17000 16254 12 2 22 136000 2120 1.6 6000 12367 12 0 24 156000 2120 1.3 6000 10247 12 2 22 11900 389 3.2 1100 636 12 2 22 3000 106 3.8 300 247 12 0 24 7900 177 2.1 500 530 12 0 24 5700 141 2.4 400 318 21 8 34 592 62 10.4 175 179 21 8 34 4860 130 2	n_1 n_2 n_3 $\overline{W}/(mg/kg)$ $S_r/(mg/kg)$ $CV_r/(\%)$ $r/(mg/kg)$ $S_R/(mg/kg)$ $CV_R/(\%)$ 12 0 24 51000 1413 2.9 4000 5654 10.9 12 2 22 292000 6007 2.1 17000 16254 5.7 12 2 22 136000 2120 1.6 6000 12367 9.0 12 0 24 156000 2120 1.3 6000 10247 6.5 12 2 22 11900 389 3.2 1100 636 5.5 12 2 22 3000 106 3.8 300 247 8.6 12 0 24 7900 177 2.1 500 530 6.9 12 0 24 5700 141 2.4 400 318 5.9 21 8 34 592 62

表 A.1 钙结果统计

a P1:预混合料;P2:预混合料;P3:预混合料;P01:含有机物预混料;P02:含有机物预混料;P03.含有机物预混料;P03.含有机物预混料;P05:含有机物预混料;B:大麦;WS:枯萎青贮;MFH;混合料 H;MP;乳粉;PF 猪粪;MFL;混合料 L。

 b_{n_1} :提供结果的实验室; n_2 :去除的数; n_3 :应用结果的数; \overline{W} ,样品的钙平均含量; S_r :重复性标准偏差; CV_r :重复性变异系数; r_1 重复性限; S_R :再现性标准偏差; CV_R :再现性变异系数;R:再现性限($R=2.8\times S_R$)。

表 A.2 铜结果统计

样品。						参	数。			
1年 100	n_1	n ₂	n ₃	$\overline{W}/(\mathrm{mg/kg})$	S,/(mg/kg)	CV,/(%)	r/(mg/kg)	$S_R/(mg/kg)$	$CV_R/(\%)$	R/(mg/kg)
P1	13	0	26	900	25	2, 7	70	64	7.0	180
P2	13	0	26	1 000	28	2.8	80	67	6.8	190
P3	13	0	26	17 400	212	1. 2	600	495	2. 9	1 400
P01	13	0	26	4 540	78	1.7	220	152	3. 3	430
P02	13	0	26	217	6.4	2.9	18	10	4.7	29
P03	13	2	24	1 050	57	5.4	160	141	13.5	400
P04	13	0	26	6 660	251	3. 8	710	293	4. 4	830
P05	13	0	26	39 100	495	1. 2	1 400	1 555	3.1	4 400
В	22	6	38	6	0.4	8. 4	1	1, 4	21.3	4
ws	22	4	40	14	1. 1	7.0	3	2.1	15.9	6
MFH	22	4	40	15	2. 1	14.5	6	3.5	23.8	10
MP	22	4	40	2	0.4	19. 4	1	1.4	61.7	. 4
PF	22	10	34	224	4. 9	2. 2	14	11	5.0	32
MFL	22	4	40	118	5.3	4.6	15	7.4	6.3	21
a,b 同	表 A	.1,	中 '	W 为样品的铜	平均含量。					

表 A.3 铁结果统计

						参	数。			
样品*	n_1	n ₂	n_3	₩/(mg/kg)	$S_r/(mg/kg)$	CV,/(%)	r/(mg/kg)	$S_R/(mg/kg)$	CV _R /(%)	R/(mg/kg
P1	12	2	22	7 500	141	1.9	400	565	7.3	1 600
P2	12	2	22	22 600	565	2. 5	1 600	1 555	6.9	4 400
P3	12	0	24	31 000	707	2. 4	2 000	2473	8. 5	7 000
P01	12	0	24	4 000	106	3.0	300	318	8.3	900
P02	12	0	24	500	18	3. 7	50	28	6.0	80
P03	12	0	24	9 600	212	2, 2	600	636	6. 7	1 800
P04	12	4	20	18 600	177	0.9	500	1 166	6. 2	3 300
P05	12	0	24	19 000	353	2. 6	1 000	2 120	11.1	6 000
В	21	4	38	79	2.8	3. 7	8	11	13.9	31
ws	21	8	34	599	10	1.7	29	70	11.6	197
MFH	21	2	40	362	59	16.2	166	85	23, 5	241
MP	21	4	38	8	2.5	30.5	7	5. 7	68.5	16
PF	21	4	38	3 430	86	2. 5	244	491	14.4	1 390
MFL	21	6	36	1 290	40	3, 1	113	111	8.6	315

表 A.4 镁结果统计

样品。	Ţ					参	数b			
样品*	n_1	n ₂	n ₃	$\overline{W}/(\mathrm{mg/kg})$	$S_r/(\text{mg/kg})$	CV _r /(%)	r/(mg/kg)	$S_R/(\mathrm{mg/kg})$	$CV_R/(\%)$	R/(mg/kg)
Pl	12	0	24	111 000	2 120	1.9	6 000	5 654	5, 2	16 000
P2	12	2	22	18 000	106	0.5	300	742	4. 2	2 100
P3	12	0	24	2 050	53	2. 5	150	152	7.4	430
P01	12	2	22	5 770	113	2.0	320	145	2.5	410
P02	12	2	22	1 640	28	1. 7	80	49	3. 2	140
P03	12	0	24	100	32	3. 2	90	67	6.6	190
P04	12	0	24	1 670	42	2.5	120	110	6.6	310
P05	12	2	22	1 650	28	1.6	80	71	4, 2	200
В	22	10	34	1 200	34	2.8	95	58	4, 8	163
ws	22	8	36	2 260	80	3. 5	226	128	5. 7	363
MFH	22	8	36	1 640	45	2. 7	126	120	7. 3	340
MP	22	4	40	1 250	94	7.5	265	147	11.8	417
PF	22	8	36	9 980	128	1. 3	362	576	5, 8	1 630
MFL	22	10	34	3 040	27	0.9	76	143	4, 7	405
a,b 同	表A	.1,	t中 i	₩ 为样品的镁	平均含量。					

表 A.5 锰结果统计

	T				******		un L			
样 品°	<u></u>				,	参	数。		,	
	n_i	n_2	n_3	$\overline{W}/(\text{mg/kg})$	S _r /(mg/kg)	CV,/(%)	r/(mg/kg)	$S_R/(\text{mg/kg})$	$CV_R/(\%)$	R/(mg/kg)
P1	13	0	26	2 600	71	3. 3	200	318	12.0	900
P2	13	0	26	4 800	106	2. 6	300	742	15. 6	2 100
P3	13	0	26	10 100	247	2. 4	700	883	8.8	2 500
P01	13	0	26	1 700	71	4, 2	200	212	12.6	600
P02	13	0	24	159	5	3. 1	14	18	11.2	50
P03	13	2	24	13 200	353	2.8	1 000	989	7.5	2 800
P04	13	4	22	4 870	78	1.6	220	166	3. 4	470
P05	13	0	26	5 600	141	2. 3	400	530	9.5	1 500
В	22	6	38	16	0.4	2.4	1	3, 2	19.8	9
ws	22	4	40	174	2.5	1. 4	7	14	8. 2	41
MFH	22	4	40	65	2.1	3. 1	6	11	17. 1	32
MP	22	8	36	1	0.4	26.6	1	0.7	52.0	2
PF	22	2	42	417	8. 1	2.0	23	66	15, 8	187
MFL	22	4	40	361	3.5	1.0	10	35	9.8	100
a,b 同	表 A	.1,‡	ţ 中 Ī	▼ 为样品的锰 ²	平均含量。		-		'	

表 A.6 钾结果统计

						参	数b			
样 品。	n_1	n_2	n ₃	₩/(mg/kg)	S,/(mg/kg)	CV,/(%)	r/(mg/kg)	$S_R/(mg/kg)$	$CV_R/(\%)$	R/(mg/kg)
P1	11	0	22	700	71	8.3	200	212	33.9	600
P2	11	0	22	570	120	21.4	340	212	37.5	600
P3	11	0	22	1 000	71	7.7	200	247	25.0	700
P01	11	2	20	3 700	141	3. 7	400	459	12.8	1 300
P02	11	0	22	10 000	247	2. 4	700	989	9.9	2 800
P03	11	0	22	2 400	71	3. 4	200	247	9.9	700
P04	11	2	20	14 900	495	3.3	1 400	777	5. 2	2 200
P05	11	0	22	3 900	141	3, 7	400	318	8. 1	900
В	17	2	32	4 850	118	2.4	334	746	15.4	2 110
ws	17	4	30	30 100	551	1.8	1 560	2 237	7.4	6 330
MFH	17	2	32	6 330	160	2.5	454	898	14.2	2 540
MP	17	2	32	17 100	583	3. 4	1 650	1 336	7. 8	3 780
PF	17	2	32	11 200	505	4.5	1 430	936	8. 3	2 650
MFL	17	6	28	17 800	746	4. 2	2 110	1 155	6.5	3 270

表 A.7 钠结果统计

						参	数。			
样品*	n_1	n ₂	n_3	$\overline{W}/(\text{mg/kg})$	S _r /(mg/kg)	CV,/(%)	r/(mg/kg)	$S_R/(\text{mg/kg})$	$CV_R/(\%)$	R/(mg/kg
P1	11	0	22	23 700	636	2.7	1 800	12 721	5.4	36 000
P2	11	2	20	5 900	212	3. 3	600	777	13, 5	2 200
P3	11	0	22	155 000	3 536	2. 3	10 000	9 187	5.9	26 000
P 01	11	0	22	33 900	1 025	3.0	2 900	2 155	6.4	6 100
P02	11	0	22	1 840	78	4.3	220	212	11.5	600
P03	11	2	20	680	120	17.6	340	120	17.9	340
P04	11	0	22	660	110	16.7	310	141	21. 3	400
P05	11	0	22	580	134	23.0	380	155	26, 8	440
В	15	8	22	117	10	8, 7	29	20	17.3	57
ws	16	6	26	3 830	187 ,	4.9	529	258	6. 7	729
MFH	15	4	26	1 240	84	6.9	238	170	13.7	480
MP	16	6	26	4 210	142	3. 4	402	246	5. 8	696
PF	16	2	30	1 890	119	6.3	336	309	16.4	875
MFL	16	2	30	5 650	375	6.6	1 060	406	7, 2	1 150

表 A.8 锌结果统计

D6 [7]				-		参	数。			
样品*	n_1	n ₂	n ₃	₩/(mg/kg)	S _r /(mg/kg)	CV,/(%)	r/(mg/kg)	S _R /(mg/kg)	$CV_R/(\%)$	R/(mg/kg)
P1	13	2	24	5 200	177	3. 1	500	353	7.1	1 000
P2	13	2	24	8 700	141	1.7	400	671	7.8	1 900
P3	13	4	22	14 600	318	2. 3	900	459	3. 2	1 300
P01	13	0	26	3 500	141	4.0	400	353	10.4	1 000
P02	13	0	26	260	21	7.6	60	39	15.0	110
P03	13	0	26	10 900	318	2. 9	900	1237	11.4	3 500
P04	13	2	24	10 000	247	2. 4	700	671	6.6	1 900
P05	13	2	24	11 900	283	2. 3	800	565	4, 9	1 600
В	22	8	36	29	1. 1	3. 4	3	2.8	9.4	8
ws	22	12	32	44	1.1	2. 1	3	1.8	4.3	5
MFH	22	6	38	47	3. 2	6. 5	9	3.9	8.3	11
MP	22	8	36	46	2. 1	4, 5	6	3. 2	7.0	9
PF	22	8	36	569	11	2.0	32	33	5. 8	94
MFL	22	6	38	106	3.5	3. 4	10	7.1	6.7	20
a,b 同	表 A	. 1, 1	其中 '	W 为样品的锌	平均含量。			1		

附 录 B (资料性附录) ISO 6498,1998 动物饲料试样的制备

Animal feeding stuffs—Preparation of test samples
ISO 6498 第2版 1998-11-01

B.1 范围

本标准规定了动物饲料(包括宠物食品)由实验室样品制备试样的方法。

B.2 引用标准

下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准不采用已过期或已被修订的标准。使用本标准的各方应探讨使用下列标准最新版本的可能性。对于未过期的标准,推荐采用该标准的最新版。

ISO 6492 动物饲料中脂肪含量的测定。

ISO 6496 动物饲料中水分和其他挥发性物质的测定。

B.3 术语和定义

本国际标准使用下列术语和定义。

B. 3. 1 实验室样品

从一批样品中缩分抽取的代表其质量状况的用于分析检验和其他检查的样品。

B. 3.2 试样

将实验室样品通过分样器或手工分样,必要时经磨样后的有代表性的样品。

B.3.3 试料

从试样或实验室样品取得的有代表性的物料。

B.4 原理

对于固体样品,实验室样品需经特定的步骤充分混合及分样以获得适当的试样。使用粉碎、研磨、 绞碎或均质等方法以使试样及试验样真实代表实验室样品。对于液体饲料,实验室样品经机械混合,混 匀后得到具有代表性的试样。

B.5 仪器设备

有些饲料易于失水或吸水,如有这种情况,需对结果加一校正因子(见 B. 7.2 和第 B. 8 章)。

注:粉碎机的筛网的大小不一定与检验用的大小相同。

- B.5.2 机械搅拌器或均质器。
- B. 5.3 绞碎机,配有4 mm 孔的板。
- B. 5. 4 绞碎装置,如杵或研钵。
- B.5.5 筛,筛孔为 1.00 mm、2.80 mm 和 4.00 mm 的金属网。
- B.5.6 分样器或四分装置,如圆锥分样器,具有分类系统的复合槽分样器,或其他能保证试样的组成具有相同分布的其他分样装置。

B.5.7 样品容器,能够保证试样成分不发生变化,避光,并有足够的容积。容器应密封良好。

B.6 采样

采样不是本国际标准的内容, ISO 6497 推荐了一种采样方法。

实验室收到的样品的真实性和代表性以及在传送和贮存时不发生损坏是十分重要的。 保存样品时应避免样品发生变质和变化。

B.7 步骤

注意:切记小心不要让设备污染样品。

B.7.1 样品粉碎

B.7.1.1 通则

粉碎样品可能导致失水或吸水,应制定一个限度(见 B. 7.2 和第 B. 8 章)。粉碎应尽可能快,并尽可能少暴露在空气中。如需要可先将料块打碎或碾碎成适当大小。每一步都应将样品充分混合。

B.7.1.2 细样

如果实验室样品能够完全通过 1.00 mm 的筛,则将之充分混合。用分样器或四分装置(B. 5.6)逐次分样直至得到需要量的试样(见 B. 7.9)。

B.7.1.3 粗样

- B. 7. 1. 3. 1 如果实验室内样品完全不能通过 1. 00 mm 的筛,而且能全部通过 2. 80 mm 的筛,将其充分混合,照 B. 7. 1. 2 逐次分样以制成适量的样品(见 B. 7. 9)。
- B. 7. 1. 3. 2 小心地在已清洁干净的粉碎机(B. 5. 1)中粉碎样品, 直至能全部通过 1.00 mm 的筛。

B.7.1.4 粗样

- B. 7. 1. 4. 1 如果实验室样品不能完全通过 2. 80 mm 的筛,仔细地在已清洁干净的粉碎机(B. 5. 1)中粉碎样品,直至能全部通过 2. 80 mm 的筛,充分混合。
- B.7.1.4.2 将粉碎过的实验室内样品用分样器依次分样得到检测所需的试样(见 B.7.9)。再将此样品用已清洁的粉碎机(B.5.1)中粉碎样品,直至能全部通过 1.00 mm 的筛。

B. 7.2 易于失水或吸水的样品

如果粉碎操作导致失水或吸水,采用 ISO 6496 的方法测定水分含量,使用此方法测定充分混匀的 实验室样品和制备的试样,从而对原样水分含量进行校正(见第 B.8 章)。

B.7.3 难粉碎的样品

如果实验室样品不能通过 1.00 mm 的筛从而使粉碎困难,在按 B.7.1.3.1 所述初混后或按 B.7.1.4.1所述预粉碎后立即取一部分样品。

按照 ISO 6496 的方法测定水分含量。用杵和研钵研磨样品或用其他方法使其能完全通过 1.00 mm的筛后干燥样品,再次测定制备的试样的水分从而将分析结果校正为原样的水分含量(见第 B,8 章)。

B.7.4 湿饲料如罐装或冷冻宠物食品

用机械搅拌器或均质器将实验室样品(可以是整份罐装或其他包装)均质,将均质化的样品充分混合,装人一清洁干燥的样品容器中,密封。应尽快进行实验,最好立即进行。否则应将试样储存于 0℃~4℃条件下。

B. 7.5 冷冻饲料

用适当的工具将实验室样品切或打碎成块,立即将其放入绞碎机(B. 5. 3),将绞碎的样品混合直至 渗出的液体完全均匀地混入样品。将样品装入清洁干燥的样品容器中,密封。应尽快进行实验,最好立 即进行,否则应将试样储存于 0 \mathbb{C} \sim 4 \mathbb{C} 条件下。

B.7.6 中等水分含量饲料

将实验室样品缓慢地通过绞碎机(B.5.3)。充分混合绞碎的样品,立即将之通过 4.00 mm 的筛,装 人清洁干燥的样品容器中,密封。

如果实验室样品无法绞碎,则用手工尽量混合和研磨好。

B.7.7 青贮饲料和液体样品

B.7.7.1 草料或谷类青贮饲料

如可能将全部的实验室样品通过粉碎机(B.5.1),或尽可能将其切碎,将其充分混合后将至少100 g 试样转人样品容器内(B.5.7)。

如果此实验室样品无法通过粉碎机或不能被充分切碎,则使其尽可能充分混合,然后按 ISO 6496 的方法测定水分含量。将此实验室样品干燥(例如在 $60 \degree \sim 70 \degree$ 鼓风烘箱中过夜),然后将样品通过粉碎机(B, 5, 1)。将样品充分混合后将至少100 g样品放人样品容器内。按照 ISO 6496 提供的方法测定制备的试样中的水分并对结果进行校正(见第 B, 8 章)。

B.7.7.2 液体样品包括鱼饲料

用一台机械搅拌器或均质器(B.5.2)混合实验室样品,以使所有的独立物质(骨粉,油等)能完全分散开。边摇边用勺、烧杯或大口吸管转移50 mL到100 mL样品到样品容器(B.5.7)中。

B.7.8 有特殊要求的样品

注 1: 有些测定需对试样特殊制备,这些特殊步骤见试验方法的有关章节。

对于需特殊精制程度的测定,需进一步研磨。在这种情况下,按 B. 7.1、B. 7.2 或 B. 7.3 所述制备 试样,但需按照要求的细度。

在有些情况下,应避免打碎或破坏实验室样品,例如测定颗粒硬度。

注 2: 如认为实验室样品是非均质的,例如分析真菌或药物添加剂,可能需要将所有样品研磨并分样至适当的试验量。

如样品是脂肪,制备试样时可能需加热和混合,有时需要预先抽提脂肪。可按 ISO 6492 进行。

如样品需做微生物检查,样品应在无菌条件下处理,这样才能保证微生物状况不发生变化。

B.7.9 试样的用量和储存

为全部测定准备足量的试样,应不少于 100 g,将之立即全部放入容器(B.5.7)中,并良好密封。 保存试样应使样品的变化最小,应特别注意避免样品暴露在阳光下及受到温度的影响。

B.8 校正因子

B. 8.1 通则

如果样品可能在粉碎或混合样品的过程中失水或吸水,就有必要使用校正因子对分析结果进行校正以获得原样的水分含量。如使用了脂肪提取亦同理。

B. 8.2 计算

用式(B.1)计算校正因子:

$$f = \frac{100\% - W_0}{100\% - W_1}$$
 (B.1)

式中:

f---校正因子;

W。——实验室样品水分的质量分数,以百分数表示,按 ISO 6496 进行测定;

W₁——制备的试样的水分的质量分数,以百分数表示,按 ISO 6496 进行测定。

B. 8.3 结果的校正

将分析结果乘以校正因子。

参考文献

- ISO 78-4: 1986, Layouts for standards-Part 4: Standard for atomic absorption spectrometric analysis.
- [2] ISO 5725:1986, Precision of test methods-Determination of repeatability and reproducibility for a standard test method by inter-laboratory tests.
- [3] ISO 5725-1:1994, Accuracy (trueness and precision) of measurement methods and results-Part 1: General principles and definitions.
- [4] ISO 5725-2:1994, Accuracy (trueness and precision) of measurement methods and results -Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method.
- [5] ISO 6497, Animal feeding stuffs-Sampling.
- [6] ISO 6956, Atomic absorption spectrometry-Introduction for use.
- [7] Ruig W G de. J. Assoc. Off. Anal. Chem., 1986,69,1009~1013.