

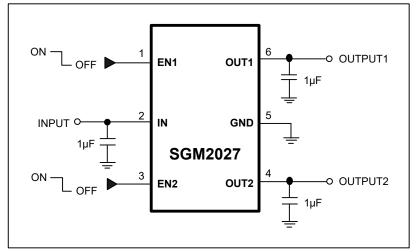
SGM2027 Dual, Low Dropout, 250mA LDO Regulator

GENERAL DESCRIPTION

The SGM2027 is a dual, low-power, low-dropout, CMOS linear voltage regulator. It operates from a 2.5V to 5.5V input voltage and delivers up to 250mA at each channel.

The SGM2027 is the perfect choice for low voltage, low power. The ground current is 190μ A (both LDO's enabled and active) that makes this part attractive for battery operated power systems. The SGM2027 also offers low dropout voltage (250mV at 250mA output) to prolong battery life in portable electronics.

Separate enable pins control each individual LDO output. The EN function allows the output of each regulator to be turned off independently, resulting in greatly reduced power consumption. Other features include a 10nA logic-controlled shutdown mode, current limit and thermal shutdown protection.

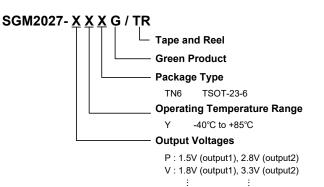

The SGM2027 is available in a Green TSOT-23-6 package. It operates over an ambient temperature range of -40°C to +85°C.

FEATURES

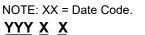
- Highly Accurate: ±2%
- Ultra-Low Dropout Voltage: 250mV at 250mA Output
- 190µA No-Load Supply Current
- Thermal-Overload Protection
- Output Current Limit
- 10nA Logic-Controlled Shutdown
- Operating Temperature Range: -40°C to +85°C
- Available in a Green TSOT-23-6 Package

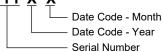
APPLICATIONS

Cellular Telephones Cordless Telephones PCMCIA Cards Modems MP3 Player Hand-Held Instruments Palmtop Computers Wireless LAN Portable/Battery-Powered Equipment


TYPICAL APPLICATION

PACKAGE/ORDERING INFORMATION


ORDERING NUMBER	V _{OUT1}	V _{OUT2}	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	PACKING OPTION
SGM2027-BYTN6G/TR	3.0V	3.0V	TSOT-23-6	-40°C to +85°C	S67XX	Tape and Reel, 3000
SGM2027-PYTN6G/TR	1.5V	2.8V	TSOT-23-6	-40°C to +85°C	S35XX	Tape and Reel, 3000
SGM2027-VYTN6G/TR	1.8V	3.3V	TSOT-23-6	-40°C to +85°C	S3BXX	Tape and Reel, 3000
SGM2027-WYTN6G/TR	1.2V	2.8V	TSOT-23-6	-40°C to +85°C	S3CXX	Tape and Reel, 3000
SGM2027-YYTN6G/TR	1.8V	2.8V	TSOT-23-6	-40°C to +85°C	S3EXX	Tape and Reel, 3000
SGM2027-AAYTN6G/TR	1.2V	1.8V	TSOT-23-6	-40°C to +85°C	S65XX	Tape and Reel, 3000
SGM2027-ACYTN6G/TR	2.8V	3.3V	TSOT-23-6	-40°C to +85°C	S43XX	Tape and Reel, 3000
SGM2027-ADYTN6G/TR	1.8V	3.0V	TSOT-23-6	-40°C to +85°C	S66XX	Tape and Reel, 3000


Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ORDER NUMBER

MARKING INFORMATION

ABSOLUTE MAXIMUM RATINGS

IN to GND	0.3V to 6V
Output Short-Circuit Duration	Infinite
EN to GND	0.3V to V_{IN}
OUT to GND	0.3V to (V _{IN} + 0.3V)
Power Dissipation, P _D @ T _A = 25°C	
TSOT-23-6	0.47W
Package Thermal Resistance	
TSOT-23-6, θ _{JA}	
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
НВМ	4000V
MM	400V

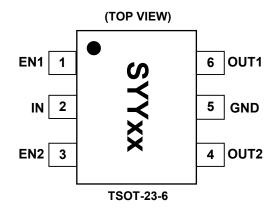
RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range	40°C to +85°C
-----------------------------	---------------

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

NOTE: The location of pin 1 on the SGM2027 is determined by orienting the package marking as shown.

PIN DESCRIPTION

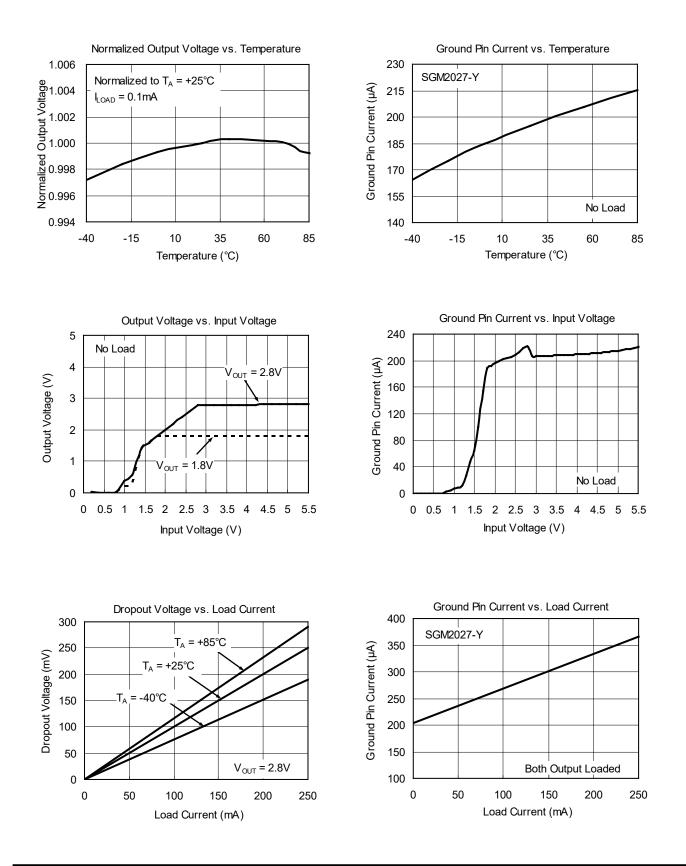
PIN	NAME	FUNCTION
1	EN1	On/Off Control 1. A logic low reduces the supply current to 10nA. If EN1 and EN2 are both low, both regulators and the reference turn off.
2	IN	Supply Input.
3	EN2	On/Off Control 2. A logic low reduces the supply current to 10nA. If EN1 and EN2 are both low, both regulators and the reference turn off.
4	OUT2	Channel 2 Output Voltage.
5	GND	Common Ground.
6	OUT1	Channel 1 Output Voltage.

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = V_{OUT (NOMINAL)} + 0.5V \text{ or } 2.5V \text{ (whichever is greater)}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ typical values are at } T_A = +25^{\circ}C, \text{ for each LDO unless otherwise noted.}$

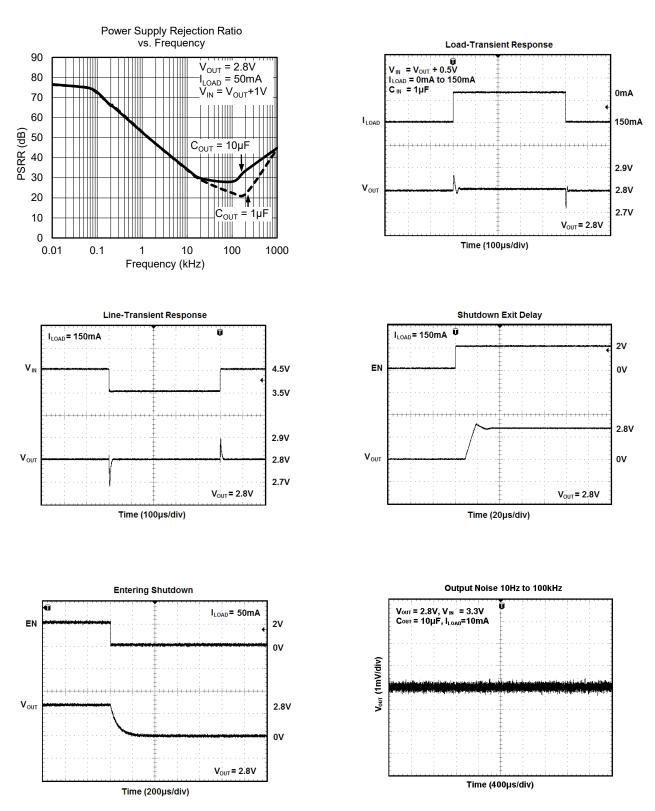
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Voltage	V _{IN}		2.5		5.5	V	
Output Voltage Accuracy		I _{OUT} = 0.1mA, T _A = +25°C	-2		+2	%	
Maximum Output Current ⁽³⁾				250			mA
Current Limit	I _{LIM}			310	500		mA
Ground Pin Current	Ι _Q	EN = 2V, both LDOs No L	oad		190	295	μA
Dropout Voltage ⁽¹⁾		I _{OUT} = 1mA			1		mV
		I _{OUT} = 250mA			250	350	
Line Regulation	$\frac{\Delta V_{\text{out}}}{\Delta V_{\text{in}} \times V_{\text{out}}}$	V_{IN} = 2.5V or (V_{OUT} + 0.5V) to 5.5V, I _{OUT} = 1mA			0.02	0.15	%/V
Load Regulation	$\frac{\Delta V_{\text{out}}}{\Delta I_{\text{load}} \times V_{\text{out}}}$	I_{OUT} = 0.1mA to 250mA, C_{OUT} = 1µF			0.004	0.01	%/mA
Power Supply Rejection Rate	PSRR	I _{OUT} = 50mA, C _{OUT} = 1μF, f = 100Hz			71		dB
Shutdown							
CNI Input Threadeld	V _{IH}	V _{IN} = 2.5V to 5.5V		1.5			v
EN Input Threshold	VIL					0.4	
EN Input Bias Current		EN = 0V or EN = 5.5V	T _A = +25°C		0.01	1	
EN Input bias Current	I _{B(SHDN)}	EN - 00 01 EN - 5.50	T _A = +85°C		0.01		μA
Chutdaum Cumplu Cumpat		EN1 = EN2 = 0.4V	T _A = +25°C		0.01	1	
Shutdown Supply Current	I _{Q(SHDN)}		T _A = +85°C		0.01		-μΑ
Shutdown Exit Delay ⁽²⁾		$C_{OUT} = 1\mu F$, No Load $T_A = +25^{\circ}C$			20		μs
Thermal Protection		-			•		-
Thermal Shutdown Temperature	T _{SHDN}				160		°C
Thermal Shutdown Hysteresis	ΔT_{SHDN}				15		°C

NOTES:

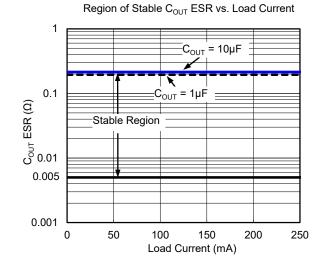

1. The dropout voltage is defined as V_{IN} - V_{OUT} , when V_{OUT} is 100mV below the value of V_{OUT} for $V_{IN} = V_{OUT} + 0.5V$. (Only applicable for $V_{OUT} = 2.5V$ to 3.3V)

2. Time needed for V_{OUT} to reach 95% of final value.

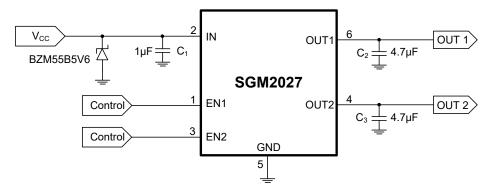
3. Each channel provides 300mA of maximum output current when the condition of dissipating heat is good.


TYPICAL PERFORMANCE CHARACTERISTICS

 $V_{IN} = V_{OUT (NOMINAL)} + 0.5V$ or 2.5V (whichever is greater), $C_{IN} = 1\mu$ F, $C_{OUT} = 1\mu$ F, $T_A = +25^{\circ}$ C, unless otherwise noted.


TYPICAL PERFORMANCE CHARACTERISTICS (continued)

VIN = VOUT (NOMINAL) + 0.5V or 2.5V (whichever is greater), CIN = 1µF, COUT = 1µF, TA = +25°C, unless otherwise noted.



APPLICATION NOTE

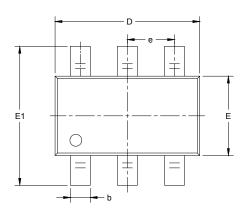
The SGM2027 is designed specifically to work with low ESR ceramic output capacitor with space-saving and performance in consideration. Using a ceramic capacitor which is at least 1μ F with ESR > $5m\Omega$ on the SGM2027 output ensures stability. The SGM2027 still works well with output capacitor of other types due to the wide stable ESR range. The following figure shows the curves of allowable ESR range ($5m\Omega$ to $200m\Omega$) as a function of load current for various output capacitor values.

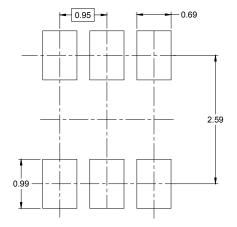
When LDO is used in handheld products, attention must be paid to voltage spikes which could damage SGM2027. In such applications, voltage spikes will be generated at charger interface and V_{BUS} pin of USB interface when charger adapters and USB equipments are hot-plugged. Besides this, handheld products will be tested on the production line without battery. Test engineer will apply power from the connector pin which connects with positive pole of the battery. When external power supply is turned on suddenly, the voltage spikes will be generated at the battery connector. The voltage spikes will be very high, and it always exceeds the absolute maximum input voltage (6.0V) of LDO. In order to get robust design, design engineer needs to clear up this voltage spike. Zener diode is a cheap and effective solution to eliminate such voltage spike. For example, BZM55B5V6 is a 5.6V small package Zener diode which can be used to remove voltage spikes in cell phone designs. The schematic is shown below.

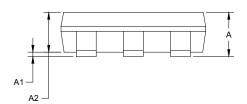
Page

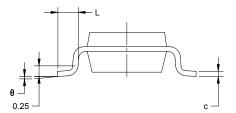
REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

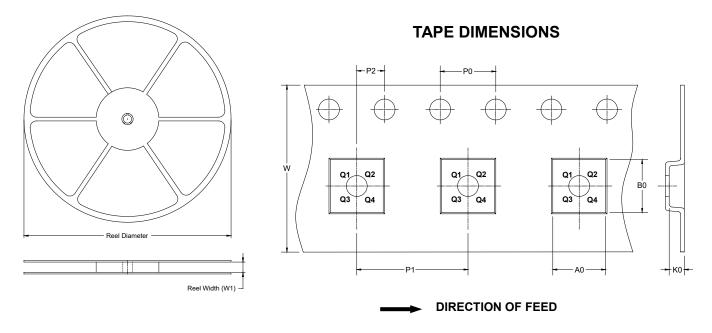

APRIL 2016 - REV.A.4 to REV.B


Changed Normalized Output Voltage vs. Temperature


PACKAGE OUTLINE DIMENSIONS


TSOT-23-6

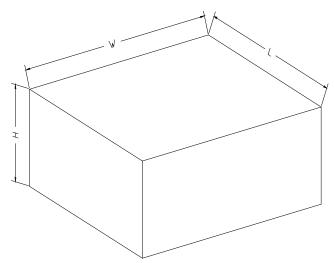
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol	-	nsions meters	Dimensions In Inches		
-	MIN	MAX	MIN	MAX	
А		1.000		0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.700	0.900	0.028	0.039	
b	0.300	0.500	0.012	0.020	
с	0.080	0.200	0.003	0.008	
D	2.850	2.950	0.112	0.116	
E	1.550	1.650	0.061	0.065	
E1	2.650	2.950	0.104	0.116	
e	0.950) BSC	0.037	BSC	
L	0.300	0.600	0.012	0.024	
θ	0° 8°		0°	8°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSOT-23-6	7″	9.5	3.20	3.10	1.10	4.0	4.0	2.0	8.0	Q3

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	DD0002

