

目录

第一章	概述	1
1.1	功能特点	1 -
1.2	前面板描述	2 -
1.3	后面板描述	2 -
1.4	键盘功能描述	3 -
1.5	指示灯描述	4 -
1.6	菜单描述	4 -
	1.6.1 主菜单描述	4 -
	1.6.2 模式与参数设定菜单描述	5 -
	1.6.3 瞬态测试菜单描述	5 -
	1.6.4 序列测试菜单描述	6 -
1.7	液晶显示信息描述	6 -
1.8	远程编程	9 -
第二章	功能与特性	10 -
2.1	本地和远程控制	10 -
2.2	主要功能	10 -
2.3	基本测试功能	10 -
	2.3.1 定电流测试	11 -
	2.3.1.1 电流设定范围	11 -
	2.3.1.2 立即电流值	11 -
	2.3.1.3 触发电流值	12 -
	2.3.1.4 瞬态电流值	12 -
	2.3.1.5 软件电流保护	12 -
	2.3.2 定电压测试	12 -
	2.3.2.1 电压设定范围	13 -
	2.3.2.2 立即电压值	13 -
	2.3.2.3 触发电压值	13 -
	2.3.2.4 瞬态电压值	13 -
	2.3.3 定电阻测试	13 -
	2.3.3.1 电阻设定范围	14 -
	2.3.3.2 立即电阻值	14 -
	2.3.3.3 触反电阻值	14 -
	2.3.3.4 瞬念电阻值	15 -
	2.3.4 足切举测试	15 -
	2.3.4.1 切率设定氾固	16 -
	2.3.4.2	16 -
2.4	2.3.4.3	16 -
2.4) 11 法体 七十	16 -
	4.4.1 仕決力入	1 / -
	4.4.4 以117月入	- 18 -
	4. 1. 3 m农力入	20 -

2.5	序列测试	21 -
2.6	电池放电容量测试	22 -
2.7	短路测试	23 -
2.8	触发功能	23 -
2.9	输入控制	24 -
	2.9.1 负载输入的打开与关闭	24 -
	2.9.2 启动电压和启动电压锁定	24 -
	2.9.3 定电压模式电流限制	25 -
	2.9.4 电流上升速率	25 -
	2.9.5 电流下降速率	26 -
2.10)测量功能	26 -
2.11	保存和调用	27 -
2.12	?读取远程错误	28 -
2.13	9 状态报告	28 -
2.14	I 保护功能	28 -
	2.14.1 清除异常锁定状态	28 -
	2.14.2 过电压	29 -
	2.14.3 过电流	29 -
	2.14.4 过功率	29 -
	2.14.5 过温度	29 -
	2.14.6 极性反接	30 -
2.15	5 其他辅助功能	30 -
	2.15.1 触发功能选择	30 -
	2.15.2 旋钮使能	30 -
	2.15.3 按键声音	30 -
第三章	安装	31 -
3.1	初始检查	31 -
3. 2	环境和安置	31 -
3.3	上电自检	31 -
3.4	后面板连接	32 -
3.5	前面板连接	33 -
3.6	使用连接	33 -
第四章	本地操作	35 -
4.1	本地控制描述	35 -
4.2	前面板主要操作	35 -
4.3	电子负载与电源连线	36 -
4.4	负载输入打开/关闭	36 -
4.5	基本测试	36 -
	4.5.1 定电流测试	36 -
	4.5.2 定电压测试	37 -
	4.5.3 定电阻测试	39 -
	4.5.4 定功率测试	40 -
4.6	短路测试	36 -
4.7	瞬态测试	36 -

4.7.1 连续方式瞬态测试	43 -
4.7.2 脉冲方式瞬态测试	44 -
4.7.3 翻转方式瞬态测试	45 -
4.8 序列测试	46 -
4.8.1 序列编辑	47 -
4.8.2 序列数据的修改, 增加, 插入, 删除操作	49 -
4.8.3 序列测试功能启动和停止	50 -
4.9 电池放电容量测试	51 -
4.10 载保存和调用	52 -
4.11 负载保护状态清除	53 -
4.12 负载错误信息	54 -
4.13 负载触发	54 -
4.14 电子负载主菜单	54 -
4.14.1 加载缺省值	55 -
4.14.2 短路测试	55 -
4.14.3 启动电压锁定及启动电压	55 -
4.14.4 定电压模式电流限制值	56 -
4.14.5 定电流模式电流上升速率及电流下降速率	56 -
4.14.6 触发功能选择	57 -
4.14.7 旋钮功能	58 -
4.14.8 按键声音	58 -
4.14.9 通信接口	58 -
第五章 远程操作	58 -
5.1 通信端口	58 -
5.1.1 RS232	58 -
5.1.2 USB	58 -
5.1.3 GPIB	58 -
5.2 流控制选择	58 -
5.3 远程控制指示灯	58 -
5.4 发送一个远程设置命令	59 -
5.5 返回数据	59 -
5.6 远程编程命令	59 -
5.6.1 基本测试模式	59 -
5.6.2 瞬态值	59 -
5.6.3 可编程电流保护	59 -
5.7 定电流模式的例子	60 -
5.8 定电压模式的例子	60 -
5.9 定电阻模式的例子	60 -
5.10 连续方式瞬态测试的例子	60 -
5.11 脉冲方式瞬态测试的例子	61 -
主要技术参数	61 -

第一章 概述

ARRAY 372X 系列电子负载是亚锐电子研制的新一代高性能可编程电子负载。本电子负载 不但提供有强大的测试功能和友好的人机界面,而且还可配备 RS232、USB、GPIB 接口,支持 SCPI 可编程仪器标准指令和 Labview 开发平台。广泛适用于航空航天、船舶制造、汽车电子、 太阳能电池、燃料电池等科研和生产领域。

如无特殊说明,本手册中出现的"电子负载"或"负载"均表示 ARRAY 372X 系列电子负载。

1.1 功能特点

ARRAY372X系列电子负载主要功能和特点如下:

- 定电流、定电压、定电阻、定功率四种基本测试功能,CCL、CCH、CV、CRL、CRM、 CRH、CPV、CPC八种基本工作模式。
- 采用17 bits D/A转换器和24 bits A/D转换器,极大地提高了设定和测量分辨率。100kHz 的D/A转换速率,全面提升高速性能。
- 最低全电流工作电压小于0.6V(3720/3721),配合专用低电压测试选件,即使在0V输入 电压下也可达到最大电流,尤其适用于燃料电池和太阳能电池等新能源的测试应用。超 强保护功能,有效应对复杂的测试环境。
- 创新设计的定功率CPV和CPC模式,有效提高了定功率模式的实用性。
- 纯硬件电路实现定电阻功能,极大地提升了电阻模式的动态响应。
- 高速瞬态测试功能,最高测试频率可达50kHz。
- 强大的序列测试功能,最小步长10微秒,最大步长99999.99999秒,循环次数可自由设定, 并可链接至其他序列,实现更为复杂的测试过程。
- 特制螺旋顶杆接线端子,操作方便,尤其适合大电流测试。
- 具备短路测试、电池放电容量测试等辅助功能。
- 高效智能散热系统,确保设备长时间满功率无故障连续工作。
- 自动打开/关闭功能,有效简化测试操作。
- 旋钮和数字键盘相结合,操作更方便。
- 存储/调用功能,可保存多组常用设置。
- 支持SCPI可编程仪器标准指令,并提供上位机软件和对Labview的支持。

1.2 前面板描述

- 液晶显示屏
 功能键
 电源开关
 外触发输入端子
 电压检测端子
 输入端子
 旋钮
 数字及第二功能复合键
 指示灯
 第二功能切换键
 左、右键
 上、下键
- 注: 上、下键在基本测试模式可用于切换显示负载状态与实际功率。
- 1.3 后面板描述

- ① 交流输入插座 ② 110V/220V 电压选择开关 ③ 保险丝 ④ RS232 接口
- 5 GPIB 或 USB (选配) 6 出风口

1.4 键盘功能描述

键盘按键主要分为功能键、数字及第二功能复合键和方向键三类。在复合键中,左上方黑体字体为第一功能,右下方蓝色字体为第二功能。例如:按键 **①** 的"0"为第一功能,"Local"为第二功能。如需使用其第二功能,应先按 **2nd** 键,然后再按相应的复合键。

表 1-1 按键说明:

0 Local	数字 0/本地键
1 Save	数字 1/保存键
2 Recall	数字 2/调用键
3 Error	数字 3/错误代码显示键
4 Start	数字 4/序列启动键
5 Stop	数字 5/序列停止键
6 Battery	数字 6/电池容量测试键
7 Insert	数字 7/插入键
8 Delete	数字 8/删除键
9 List	数字 9/序列操作键
■ Trigger	小数点/触发键
Clear Prot Clear	清除或退出/保护清除键
Menu	主菜单键
Tran	瞬态菜单键
Set	设置键
Input on/off	输入打开/关闭键
Enter	确认键
	左移键
	右移键

	上移键
	下移键
2nd	第二功能切换键

1.5 指示灯描述

表 1-3 指示灯指示说明:

REM	当用户设置负载为远程控制时常亮(绿色),本地控制时熄灭
err	有错误发生时常亮(红色),否则熄灭

1.6 菜单描述

1.6.1 主菜单描述

按^{Menu}键进入主菜单。主菜单内容见下表:

功能及参数		说明	
Load Default		恢复默认值	
Yes *No		是 否	
Short		短路模式	
On *Off		打开 关闭	
Von Latch		带载电压锁定	
On *Off		打开 关闭	
Von Point		带载电压值设定	
0.000v		带载电压值	
CV Curr Limit		定电压模式电流限制值	
40.00A		电流限制值	
Curr Rise Rate		定电流模式电流上升速率	
4.000A/us		电流上升速率值	
Curr Fall Rate		定电流模式电流下降速率	
4.000A/us		电流下降速率值	
Trig Function		触发功能选择	
*Tran List		瞬态测试 序列测试	
Knob		旋钮功能	
*On Off		打开 关闭	
Key Sound		按键声音	
*On Off		打开 关闭	
Interface		通讯端口选择	
*RS232 USB GPIB		RS232 USB GPIB	
RS232 端口	Baud Rate 2400 4800 *9600 19200 38400	波特率设置 2400 4800 9600 19200 38400	

	Parity Check *None Even Odd	奇偶校验 无校验 偶校验 奇校验
	Data Bit *8 7	数据位 8 位 7 位
	Stop Bit *1 2	停止位 1 位 2 位
	Flow Control *On Off	流控制 打开 关闭
USB 端口		选择 USB
GPIB 端口	GPIB Address 5	GPIB 地址 地址值

注: 主菜单中参数除旋钮(Knob)、按键声音、接口配置以外,其它参数关机时不做保存。 如需保存,请使用组合键^{2nd} + ¹_{swe}或者*sav 命令。负载每次开机都会自动调用保存在位置 0 的参数。

1.6.2 模式与参数设定菜单描述

在基本模式下,按^{Set}键进入设定菜单,显示内容如下:

功能及参数	说明	
MODE: CCL	定电流低量程	
CURR: 0.000A	立即电流值	
MODE: CCH	定电流高量程	
CURR: 0.000A	立即电流值	
MODE: CV	定电压模式	
VOLT: 80.00V	立即电压值	
MODE: CRL	定电阻低量程	
RES: 2.000Ω	立即电阻值	
MODE: CRM	定电阻中量程	
RES: 20.000 Ω	立即电阻值	
MODE: CRH	定电阻高量程	
RES: 20.000 Ω	立即电阻值	
MODE: CPV	定功率电压源模式	
POWR: 0.000W	立即功率值	
MODE: CPC	定功率电流源模式	
POWR: 0.000W	立即功率值	

1.6.3 瞬态测试菜单描述

在基本模式下,按^{Tran}键进入相应的瞬态测试,按^{Set}键进入设定菜单,显示内容如下:

功能	说明	参数举例
LevelL	瞬态低值	1.000A

LevelH	瞬态高值	2.000A
TimeL	瞬态低值时间	600.00ms
TimeH	瞬态高值时间	600.00ms
TimeR	瞬态上升沿时间	0.01ms
TimeF	瞬态下降沿时间	0.01ms
MODE	连续(Cont) 脉冲(Puls) 翻转(Togg)	Cont

注: 瞬态测试功能在定电流、定电压、定电阻模式下有效。

1.6.4 序列测试菜单描述

在基本模式下,使用组合键^{2nd} + ⁹LLL 进入序列测试菜单,显示内容如下:

功能	说明
No.	序列编号(0-6)
Memo	序列注释(10个字符)
Data: <new edit=""></new>	序列数据:新建/编辑
Count	循环次数(1-65535)
Chain: Off	链接(0-6, off)

在序列测试菜单, 按▲、▼键选择数据编辑, 通过旋钮或者▲、▶键选择数据新建 或编辑, 使用^{Enter}键进入序列数据编辑菜单, 显示格式如下:

功能	说明
01. 10000.00000s	序号 时间
ССН 5.000А	模式 设定值

1.7 液晶显示信息描述

①、定电流模式:

液晶屏上排显示电压和电流测量值,下排显示电流设定值、工作模式(CCH表示大电流模式,CCL表示小电流模式)及负载输入状态(ON为打开,OFF为关闭)。

②、定电压模式:

液晶屏上排显示电压和电流测量值,下排显示电压设定值、工作模式(CV表示定电压模式)及负载输入状态(ON为打开,OFF为关闭)。

③、定电阻模式:

液晶屏上排显示电压和电流测量值,下排显示电阻设定值、工作模式(CRL 表示小电阻模式,CRM 表示中电阻模式,CRH 表示大电阻模式)及负载输入状态(ON 为打开,OFF 为关闭)。

④、定功率模式:

液晶屏上排显示电压和电流测量值,下排显示功率设定值、工作模式(CPC 表示定功率电流源模式,CPV 表示定功率电压源模式)及负载输入状态(ON 为打开,OFF 为关闭)。

⑤、瞬态测试:

液晶屏上排显示电压和电流测量值,下排显示当前时刻的瞬态设定值、瞬态测试模式 (tCCH 为大电流模式瞬态测试,tCCL 为小电流模式瞬态测试,tCV 为定电压模式瞬态测 试,tCRL 为小电阻瞬态测试,tCRM 为中电阻瞬态测试,tCRH 为大电阻瞬态测试。字母 t 表示瞬态测试)及负载输入状态(ON 为打开,OFF 为关闭)

⑥、序列测试:

液晶屏上排显示电压和电流测量值,下排显示序列当前的设定值、序列测试模式(LCCH 为大电流模式序列测试,LCCL 为小电流模式序列测试,LCV 为定电压模式序列测试,LCRL 为小电阻序列测试,LCRM 为中电阻序列测试,LCRH 为大电阻序列测试。字母L表示序列测试)及负载输入状态(ON 为打开,OFF 为关闭)。

⑦、电池容量测试:

液晶屏上排显示电压和电流测量值,下排显示电池容量及放电时间。

⑧、短路测试:

液晶屏上排显示电压和电流测量值,下排显示短路设定值(以 3721A 为例, CCL 短路测试电流为 4.4A, CCH 短路测试电流为 44A, CV 短路测试电压为 0V, CRL 短路测试电阻 为 0.018Ω, CRM 短路测试电阻为 1.8Ω, CRH 短路测试电阻为 18Ω, CPV 短路测试功率 为 420W, CPC 短路测试功率为 0W)、短路测试模式(sCCL、sCCH、sCV、sCRL、sCRM、sCRH、sCPC、sCPV。字母 s 表示短路测试)及负载输入状态(ON 为打开, OFF 为关闭)。

⑨、显示实际功率:

在基本测试模式,按▲、▼键可切换显示负载状态与实际功率。在实际功率显示界

面,液晶屏上排显示实际电压和电流,下排显示设定值及实际功率值。

⑩、保护状态:

负载出现保护时,液晶屏上会显示相应的保护状态。下图为极性反接保护状态显示。

保护状态包括过电流(OC)、过电压(OV)、过功率(OP)、过温度(OT)、负载保护(PT)、极性反接(RV)。

1.8 远程编程

指令通过远程接口(RS232、GPIB、USB)发送到电子负载,经处理器解码并执行。如命令 有误,处理器可判别命令错误以及辨别错误类型。处理器也能够维护状态寄存器。

第二章 功能与特性

本章对电子负载的功能与特性进行说明。阅读本章,你将对 ARRAY 372X 系列有更深的了解。

2.1 本地和远程控制

ARRAY 372X 系列电子负载可以由其自带的键盘和旋钮进行控制,也可以通过远程端口, 由远程控制器进行控制。如需通过其自身的键盘和旋钮进行控制,负载必须处于本地控制状态。 电子负载开机后即自动进入本地控制状态。当电子负载的 RS232 接口接收到远程命令 SYSTem:REMote,或者其 USB 或 GPIB 接口接收到命令时,REM 远程状态指示灯点亮,负载 进入远程控制状态。

在远程控制状态下,所有的键盘和旋钮操作均无效(组合键^{2nd} + ⁰ coal</mark>除外),电子负载的 一切操作均受远程控制器控制。在接收到返回本地控制的指令 SYSTem:LOCal 后,REM 远程状 态指示灯熄灭,电子负载返回本地控制状态。在远程控制状态下,也可以通过按下组合键^{2nd} + ^① coal,让电子负载返回本地控制状态。

本地操作的细节在"本地操作"章节有详细描述。远程编程操作的基本方法在"远程操作" 章节有说明,更详细的编程说明请参见《Array 372X 系列电子负载编程参考手册》。

2.2 主要功能

电子负载的主要测试功能如下:

- 定电流测试: CCL, CCH
- 定电压测试: CV
- 定电阻测试: CRL, CRM, CRH
- 定功率测试: CPV, CPC
- 瞬态测试: TRAN
- 序列测试: LIST
- 电池放电容量测试: BATTERY
- 短路测试: SHORT

2.3 基本测试功能

本负载有定电流、定电压、定电阻、定功率四种基本测试功能,包括CCL、CCH、CV、CRL、 CRM、CRH、CPV、CPC八种基本工作模式。

可以通过前面板或者远程命令来设定测试模式和相关参数。除非用户改变设定,否则电子 负载将始终保持在当前模式。如果负载输入处于打开状态,模式改变时,为避免可能发生的电

流冲击,电子负载将自动关闭大约 5ms。

电子负载的设定值在负载打开时立即有效。假如输入的设定值超出了范围,它将被自动限 制在最大值或最小值处。

2.3.1 定电流测试

定电流测试分为大电流模式(CCH)和小电流模式(CCL)。大电流模式提供了更大的测试范围,小电流模式则提供了更高的电流分辨率。在定电流状态下,不管输入电压如何改变,电子 负载始终吸收一个恒定的电流,如图 2-1。在基本测试状态,按^{Set}键进入模式与参数设定菜单, 通过▲、▼键选择 CCH 或 CCL 定电流模式,通过数字键或者旋钮结合▲、▶键来输入 电流值,使用^{Enter}键确认。定电流测试模式和参数也可以通过远程命令来设定:

MODE CCL | CCH

CURRent <NRf+>

图 2-1 定电流模式

2.3.1.1 电流设定范围

各型号负载的电流设定范围如下:

	型号	3720A	3721A	3722A	3723A
構士	CCL	0~3A	0~40A	0~2A	0~3A
侠八	ССН	0~30A	0~40A	0~20A	0~30A

如果负载输入原来处于打开状态,模式改变时负载输入会自动关闭大约 5ms。例如:从 CCL 转换至 CCH 时,负载输入会关闭大约 5ms。另外值得注意的是,改变电流模式,电流设定值可能也会发生改变以适应新的范围。以 3721A 为例,原先的设定为 CCH 10.000A,从 CCH 切换到 CCL 时,电流设定值会改变为 CCL 模式的最大值 4.0000A。

2.3.1.2 立即电流值

立即电流值就是定电流模式下的电流设定值。立即电流值可以在模式与参数设定菜单里设定,也可通过远程命令 CRRRent <NRf+>设定。在定电流模式时,立即电流值还可以通过左右键 (▲、▶) 和旋钮直接进行修改。

2.3.1.3 触发电流值

触发电流值用于在电子负载里预置一个电流值,一旦接收到触发信号,负载就自动将这个 预置的电流值设定成为立即电流值。如果当时负载输入已打开并且正处于定电流模式,输入电 流会立即因此而改变;如果当时不处于定电流模式,这个电流值不会直接影响负载输入直到定 电流模式有效。

触发电流值只能通过远程命令 CURRent:TRIGgered <NRf+>来设置。一旦一个触发电流值被 触发,随后的触发将会无效直至接收到新的触发电流值设置命令。触发操作将会在后面的内容 中描述。电子负载的状态寄存器可跟踪是否有触发或其它的操作条件。这个状态寄存器在《Array 372X 系列电子负载编程参考手册》中有详细描述。

2.3.1.4 瞬态电流值

在瞬态电流测试状态,负载电流在高(LevelH)、低(LevelL)两个瞬态电流值之间切换。 瞬态电流值可以在瞬态测试菜单里设定,也可以通过远程命令设定:

CURRent:HIGH <NRf+>

CURRent:LOW <NRf+>

2.3.1.5 软件电流保护

电子负载允许用户通过远程命令设定一个保护电流值(范围等同于 CCH 电流范围)。当负载 电流超过保护电流值一个可编程的时间(0.001s-60s)后,电子负载会关闭,同时发出声音报警。 保护电流值在任何一个模式(不仅仅限于定电流模式)下都是有效的。远程设定命令如下:

CURRent:PROTection <NRf+>

CURRent:PROTection:DELay <NRf+>

2.3.2 定电压测试

在定电压模式下,不管输入电流如何变化,电子负载将始终维持输入电压的恒定,如图 2-2。 在基本测试状态,按^{Set}键进入模式与参数设定菜单,通过▲、▼键选择定电压模式,通过 数字键或者旋钮结合▲、▶键输入电压值,使用^{Enter}键确认。定电压模式和参数也可以通过 远程命令设定:

MODE CV

VOLTage <NRf+>

2.3.2.1 电压设定范围

各型号负载的电压设定范围如下:

型号	3720A	3721A	3722A	3723A
电压	0~80V	0~80V	0~200V	0~200V

2.3.2.2 立即电压值

立即电压值就是定电压模式下的电压设定值。立即电压值可以在模式与参数设定菜单里设定,也可通过远程命令 VOLTage <NRf+>设定。在定电压模式时,立即电压值还可以通过左右键 (◀、▶) 和旋钮直接进行修改。

2.3.2.3 触发电压值

触发电压值用于在电子负载里预置一个电压值,一旦接收到触发信号,负载就自动将这个 预置的电压值设定成为立即电压值。如果当时负载输入已打开并且正处于定电压模式,输入电 压会立即因此而改变;如果当时不处于定电压模式,这个电压值不会直接影响负载输入直到定 电压模式有效。

触发电压值只能通过远程命令 VOLTage:TRIGgered <NRf+>设置。一旦一个触发电压值被触发,随后的触发将会无效直至接收到新的触发电压值设置命令。触发操作将会在后面的内容中描述。电子负载的状态寄存器可跟踪是否有触发或其它的操作条件。这个状态寄存器在《Array 372X 系列电子负载编程参考手册》中有详细描述

2.3.2.4 瞬态电压值

在瞬态电压测试状态,负载电压在高(LevelH)、低(LevelL)两个瞬态电压值之间切换。 瞬态电压值可以在瞬态测试菜单里设定,也可以通过远程命令设定:

VOLTage:HIGH <NRf+>

VOLTage:LOW <NRf+>

2.3.3 定电阻测试

定定电阻测试分为小电阻(CRL)、中电阻(CRM)和大电阻(CRH)三种模式。在定电阻模式下,电子负载等效于一只恒定的电阻,会随着输入电压的变化而线性调节输入电流,使得 I = U / R,如图 2-3。在基本测试状态,按^{Set}键进入模式与参数设定菜单,通过▲、▼键选择定电阻模式,通过数字键或者旋钮结合▲、▶键来输入电阻值,使用Enter键确认。定电阻测试模式和参数也可以通过远程命令设定:

MODE CRL | CRM | CRH

RESistance <NRf+>

图 2-3 定电阻模式

2.3.3.1 电阻设定范围

各型号负载的电阻设定范围如下:

	型号	3720A	3721A	3722A	3723A
	CRL	0.02~2 Ω	0.02~2 Ω	0.0666~6.66Ω	0.0666~6.66Ω
模式	CRM	2~200 Ω	2~200 Ω	6.66~666 Ω	6.66~666 Ω
	CRH	20~2000 Ω	20~2000 Ω	66.6~6660 Ω	66.6~6660 Ω

如果负载输入处于打开状态,模式的改变会引起负载输入自动关闭大约 5ms。例如:从 CRL 转换到 CRM 时,负载输入会关闭大约 5ms。另外值得注意的是,改变电阻模式,电阻设定值可 能也会发生改变以适应新的范围。以 3721A 为例,原先的设定为 CRM 10.000 Ω,从 CRM 转换 到 CRL 时,电阻设定值会改变为 CRL 的最大值 2.0000 Ω。

2.3.3.2 立即电阻值

立即电阻值就是定电阻模式下的电阻设定值。立即电阻值可以在模式与参数设定菜单里设定,也可通过远程命令 RESistance <NRf+>设定。在定电阻模式时,立即电阻值还可以通过左右键(▲、▶)和旋钮直接进行修改。

2.3.3.3 触发电阻值

触发电阻值用于在电子负载里预置一个电阻值,一旦接收到触发信号,负载就自动将这个 预置的电阻值设定成为立即电阻值。如果当时负载输入已打开并且正处于定电阻模式,负载电 阻会立即因此而改变;如果当时不处于定电阻模式,这个电阻值不会直接影响负载输入直到定 电阻模式有效。

触发电阻值只能通过远程命令 RESistance:TRIGgered <NRf+>设置。一旦一个触发电阻值被 触发,随后的触发将会无效直至接收到新的触发电阻值设置命令。触发操作将会在后面的内容 中描述。电子负载的状态寄存器可跟踪是否有触发或其它的操作条件。这个状态寄存器在《Array 372X 系列电子负载编程参考手册》中有详细描述。

2.3.3.4 瞬态电阻值

在瞬态电阻测试状态,负载电阻在高(LevelH)、低(LevelL)两个瞬态电阻值之间切换。 瞬态电阻值可以在瞬态测试菜单里设定,也可以通过远程命令设定:

RESistance:HIGH <NRf+>

RESistance:LOW <NRf+>

2.3.4 定功率测试

定功率模式分为定功率电压源模式(CPV)和定功率电流源模式(CPC),分别适合于电压源和 电流源的测试。在定功率工作模式下,不论外部电源的电压和电流如何变化,电子负载都将根 据设定从电源吸收恒定的功率,使得电子负载的输入电压和电流满足U*I=P,如图 2-4。在基 本测试状态,按^{Set}键进入模式与参数设定菜单,通过▲、▼键选择定功率模式,通过数字 键或者旋钮结合▲、▶键输入功率值,使用Enter键确认。定功率测试模式和参数也可以通过 远程命令设定:

MODE CPV | CPC

POWer <NRf+>

图 2-4 恒功率模式

图 2-5 是几种常见电源的伏安特性曲线,而恒功率曲线是一条位于第一象限的双曲线,在 电源功率大于设定功率的情况下,恒功率曲线通常与电源的伏安曲线存在两个交点。在 CPV 点, 电源表现出电压源的特征,即输出功率随电流的增大而增大;在 CPC 点,电源表现出电流源的 特征,即输出功率随电压的增大而增大。Array 372X 系列电子负载可以由用户设定使其工作在 其中任一交点状态。

由于采用先进的斜率探测法,本电子负载只需测试电源伏安曲线的一部分即可判断恒功率 曲线与电源伏安曲线是否相交,因此在设定功率大于电源的实际功率时,外部电源不会因功率 不足而被负载拉至短路。电子负载在发现电源功率不足以后,会自动反复搜寻恒功率点,直到 设定功率被满足时为止。

2.3.4.1 功率设定范围

各型号负载的功率设定范围如下:

型号	3720A	3721A	3722A	3723A
功率	0~250W	0~400W	0~200W	0~350W

2.3.4.2 立即功率值

立即功率值就是在定功率模式下的功率设定值。立即功率值可以在模式与参数设定菜单里 设定,也可通过远程命令 POWer <NRf+>设定。在定功率模式时,立即功率值还可以通过左右 键 (▲、▶) 和旋钮直接进行修改。

2.3.4.3 触发功率值

触发功率值用于在电子负载里预置一个功率值,一旦接收到触发信号,负载就自动将这个 预置的功率值设定成为立即功率值。如果当时负载输入已打开并且正处于定功率模式,负载输 入功率会立即因此而改变;如果当时不处于定功率模式,这个功率值不会直接影响负载输入直 到定功率模式有效。

触发功率值只能通过远程命令 POWer:TRIGgered <NRf+>设置。一旦一个功率值被触发,随 后的触发将会无效直至接收到新的触发功率值设置命令。触发操作将会在后面的内容中描述。 电子负载的状态寄存器可跟踪是否有触发或其它的操作条件。这个状态寄存器在《Array 372X 系列电子负载编程参考手册》中有详细描述。

2.4 瞬态测试

瞬态测试允许负载在高(LevelH)、低(LevelL)两个设定值之间切换。这可用于测试电源的动态特性。瞬态测试可以工作在定电流、定电压、定电阻模式下,具有连续(Continuous)、脉冲(Pulse)、翻转(Toggle)三种工作方式。瞬态测试开始之前,请确保序列测试功能已关闭。

瞬态测试设定参数有:瞬态低值(LevelL)、瞬态高值(LevelH)、低值时间(TimeL)、高值时间(TimeH)、上升沿时间(TimeR)、下降沿时间(TimeF)以及工作方式。

瞬态高、低值的设定范围与相应定电流、定电压、定电阻模式的设定范围相同。

高、低值时间的设定范围是 0~655.35ms; 上升、下降沿时间的设定范围是 10us~655.35ms; 分辨率均为 10us。最高测试频率为 50kHz。

瞬态测试功能的打开和关闭可以通过前面板上的^[Tran]键或者远程命令 TRANsient ON | OFF

设定。打开瞬态测试功能前,请先设定基本工作模式为需要进行瞬态测试的模式。

注:瞬态测试时,应该考虑到启动电压和保护电流等参数。这些参数设置不当有可能引起 负载输入关闭,从而中断测试。

2.4.1 连续方式

在连续方式下,负载周期性地在高、低两个瞬态值之间切换。此方式不受触发信号的影响。 瞬态低值(LevelL)、瞬态高值(LevelH)、低值时间(TimeL)、高值时间(TimeH)、上升沿时间 (TimeR)、下降沿时间(TimeF)以及工作方式等参数可以在瞬态测试菜单里设定,也可以通过以下 远程命令设定:

CURRent:LOW <NRf+>

CURRent:HIGH <NRf+>

VOLTage:LOW <NRf+>

VOLTage:HIGH <NRf+>

RESistance:LOW <NRf+>

RESistance:HIGH <NRf+>

TRANsient:LTIMe <NRf+>

TRANsient:HTIMe <NRf+>

TRANsient:RTIMe <NRf+>

TRANsient:FTIMe <NRf+>

TRANsient:MODE CONTinuous

TRANsient ON | OFF

例如: 假定负载当前处于 CCH 模式,负载输入关闭,按如下操作设置瞬态参数: 按^{Tran}键进入瞬态测试。

按[Set]键打开瞬态测试菜单。

在瞬态测试菜单里设定下列参数:

LevelL: 5.000A

LevelH : 10.000A

TimeL: 0.50ms

TimeH : 0.50ms

TimeR : 0.20ms

TimeF: 0.20ms

Mode : Cont

然后按^{lnput}键打开负载输入;

也可通过远程命令设定:

SCPI 命令	描述
TRAN ON	打开瞬态测试功能
CURR:LOW 5	设置瞬态电流低值为 5A
CURR:HIGH 10	设置瞬态电流高值为 10A
TRAN:LTIM 500us	设置瞬态低值时间为 500us
TRAN:HTIM 500us	设置瞬态高值时间为 500us
TRAN:RTIM 200us	设置瞬态上升沿时间为 200us
TRAN:FTIM 200us	设置瞬态下降沿时间为 200us
TRAN:MODE CONT	选择连续工作方式
INP ON	打开负载输入

图 2-6 显示出负载的电流波形:负载输入电流经过 200us 上升沿到达瞬态高值(10A),维 持 500us, 然后经过 200us 下降沿到达瞬态低值(5A), 再维持 500us, 如此循环往复。

2.4.2 脉冲方式

脉冲方式需要结合触发功能一起使用。未被触发时,负载维持在瞬态低值,触发以后,就 会产生一个包括上升沿、瞬态高值、下降沿三个阶段的脉冲,最后再次返回到瞬态低值状态。 瞬态低值(LevelL)、瞬态高值(LevelH)、高值时间(TimeH)、上升沿时间(TimeR)、下降沿时间 (TimeF)以及脉冲方式等参数可以在瞬态测试菜单里设定,也可以通过以下远程命令设定:

CURRent:LOW <NRf+> CURRent:HIGH <NRf+> VOLTage:LOW <NRf+> VOLTage:HIGH <NRf+> RESistance:LOW <NRf+> RESistance:HIGH <NRf+> TRANsient:HTIMe <NRf+> TRANsient:RTIMe <NRf+> TRANsient:FTIMe <NRf+>

TRANsient:MODE PULSe

TRANsient ON | OFF

触发可以由外触发端子输入的信号或者组合键^{2nd} + ^{mage}产生,也可以由远程命令*TRG 或者 TRIGger 产生。触发仅当负载处于瞬态低值期间有效,每一个触发引起一个脉冲。在脉冲 持续的整个上升沿、瞬态高值、下降沿期间,任何触发都会被忽略。

例如: 假定负载当前处于 CCH 模式, 负载输入关闭, 按如下操作设置瞬态参数:

按^{Tran}键进入瞬态测试。

按^{Set}键打开瞬态测试菜单。

在瞬态测试菜单里设定下列参数:

LevelL: 5.000A

LevelH : 10.000A

TimeL: 0.50ms

TimeH : 0.50ms

TimeR : 0.10ms

TimeF : 0.10ms

Mode : Puls

然后按^{linput}键打开负载输入;

也可通过远程端口设定:

SCPI 命令	描述
TRIG:SOUR EXT	选择外部输入触发命令
TRAN ON	打开瞬态测试功能
CURR:LOW 5	设置瞬态电流低值为 5A
CURR:HIGH 10	设置瞬态电流高值为 10A
TRAN:HTIM 500us	设置瞬态高值时间 500us
TRAN:RTIM 100us	设置瞬态上升沿时间 100us
TRAN:FTIM 200us	设置瞬态下降沿时间 200us
TRAN:MODE PULS	选择脉冲工作方式
INP ON	打开负载输入

从外触发端子输入触发信号。图 2-7 显示出触发前后负载的电流波形:负载输入打开后, 电子负载开始工作在瞬态低值(5A),每一次触发,负载电流都会经过100us上升沿后到达瞬态高 值(10A),然后持续500us,再经过200us下降沿返回到瞬态低值(5A)。

2.4.3 翻转方式

翻转方式需要结合触发功能一起使用。未被触发时,负载维持在某一瞬态值,每一次触发 以后,负载就会产生一个反转,经过上升沿或下降沿到达另一个瞬态值。瞬态低值(LevelL)、 瞬态高值(LevelH)、上升沿时间(TimeR)、下降沿时间(TimeF)以及翻转方式等参数可以在瞬态测 试菜单里设定,也可以通过以下远程命令设定:

CURRent:LOW <NRf+>

CURRent:HIGH <NRf+>

VOLTage:LOW <NRf+>

VOLTage:HIGH <NRf+>

RESistance:LOW <NRf+>

RESistance:HIGH <NRf+>

TRANsient:RTIMe <NRf+>

TRANsient:FTIMe <NRf+>

TRANsient:MODE TOGGle

TRANsient ON | OFF

触发可以由外触发端子输入的信号或者组合键^{2nd} + ^{mager}产生,也可以由远程命令*TRG 或者 TRIGger 产生。

例如: 假定负载当前处于 CCH 模式,负载输入关闭,按如下操作设置瞬态参数:

按Tran键进入瞬态测试。

按^{Set}键打开瞬态测试菜单。

在瞬态测试菜单里设定下列参数:

LevelL: 5.000A

LevelH : 10.000A

TimeL: 0.50ms

TimeH : 0.50ms

TimeR: 0.10ms

TimeF : 0.20ms

Mode : Togg

然后按^[mpotf]键打开负载输入;

```
也可通过远程端口设定:
```

SCPI 命令	描述
TRIG:SOUR EXT	选择外部输入触发命令
TRAN ON	打开瞬态测试功能
CURR:LOW 5	设置瞬态电流低值为 5A
CURR:HIGH 10	设置瞬态电流高值为 10A
TRAN:RTIM 100us	设置瞬态上升沿时间 100us
TRAN:FTIM 200us	设置瞬态下降沿时间 200us
TRAN:MODE TOGG	选择翻转工作方式
INP ON	打开负载输入

从外触发端子输入触发信号。图 2-8 显示出触发前后负载的电流波形:负载输入打开后, 电子负载刚开始维持在瞬态低值(5A),第一次触发,负载电流经过 100us 上升沿后到达并维持在 瞬态高值(10A),第二次触发,负载电流经过 200us 下降沿后到达并维持在瞬态低值,依此类 推,每一次触发,负载状态就发生一次翻转。

图 2-8 翻转方式

2.5 序列测试

除了瞬态测试功能外,电子负载还提供了更加灵活的序列测试功能。它可以使负载按照某 一预先设定的测试序列进行工作。

序列测试功能允许用户自己定义一系列测试步骤,每一步的工作模式、负载值和工作时间 均可设定。序列测试可以工作在定电压、定电流、定电阻模式下,每一步最短时间为 10us,最 长时间 99999.99999s (约合 27.78 小时);序列测试可以循环执行多次,用户可以指定循环次数; 序列可以相互链接,每个序列执行完毕,还可以通过链接启动另一测试序列,进一步扩展序列 测试的能力,完成更为复杂的测试任务;每个序列最多可包含 50 个测试步骤,电子负载可以保 存 7 个测试序列。

序列测试的各项参数可以在序列测试菜单里进行编辑和设定,也可以通过相关的远程命令 来进行。本负载提供有便捷的序列编辑功能,用户在输入/编辑序列测试步骤时,可以方便地查 看前、后测试步骤,并可即时进行修改、插入和删除,有效降低了序列输入时的工作量。

序列每一步的设定值在退出测试步骤编辑菜单时自动保存。序列的其它参数在编辑后立即 保存。 序列测试功能也可以通过远程命令实现。

启动序列测试功能之前,请确保瞬态测试功能已关闭。序列测试中,如果下一步的工作模式与当前步骤不同,为避免可能发生的电流冲击,当前步骤结束后,电子负载将自动插入一个 5ms 的延时,在此其间负载输入会被关闭。

图 2-9 为一个 5 步的测试序列运行图。详细操作步骤在第四章"序列测试"有详细解释。

图 2-9 序列测试

注: 序列测试时,应该考虑到启动电压和保护电流等参数。这些参数设置不当有可能引起 负载输入关闭,从而中断测试。

2.6 电池放电容量测试

电子负载采用恒流放电来进行电池容量测试。用户可设置电池放电电流和电池放电终止电 压。当电池电压下降至终止电压时,自动停止放电。测试过程如图2-10所示。负载在放电过程 中可以实时显示电池电压、放电电流、放电时间和放电容量。最大放电时间为99小时99分99秒, 最大放电容量如下:

图 2-10 电池容量测试时电压、电流曲线

2.7 短路测试

电子负载可模拟短路,以测试被测设备的保护性能。短路功能的打开和关闭可以在主菜单 里设定,也可通过远程命令 INPut:SHORt ON | OFF 设定。打开短路测试功能不会改变其它设定 值。当短路测试功能打开时,短路值取决于当前的工作模式,各型号负载的短路值如下:

	型号	3720A	3721A	3722A	3723A
	CCL	3.3A	4.4A	2.2A	3.3A
	ССН	33A	44A	22A	33A
	CV	0V	0V	0V	0V
構式	CRL	0.018 Ω	0.018 Ω	0.06 Ω	0.06 Ω
侠八	CRM	1.8 Ω	1.8 Ω	6 Ω	6 Ω
	CRH	18 Ω	18 Ω	60 Ω	60 Ω
	CPV	270W	420W	220W	370W
	CPC	0W	0W	0W	0W

注: 短路测试时,应该考虑到启动电压和保护电流等参数。这些参数设置不当有可能引起 负载输入关闭,从而中断测试。

2.8 触发功能

触发功能主要用于使电子负载与其它测试仪器或者外部事件保持同步。本负载提供了多种 触发方式,可以应用于下列场合:

- **触发一个预置值**把所有未触发的触发值设定成为立即值。如果负载输入已打开,对 于当前的模式,新的值将会立即出现在负载输入端;对于其它模式,则要等到该模式 有效才会影响负载输入。
- **触发一个瞬态脉冲** 当脉冲瞬态方式有效时, 触发会使负载按照先前设定的瞬态参数产 生一个测试脉冲。
- **触发一个瞬态翻转** 当翻转瞬态方式有效时, 触发会使负载按照先前设定的瞬态参数在 瞬态低值和瞬态高值之间产生一次瞬态翻转。
- 触发一个序列测试功能 在序列测试时,触发会使负载启动当前的测试序列。

远程控制时有三种触发方式: GPIB 的<GET>信号,*TRG 以及 TRIGger 命令。负载的前面 板上的外触发输入端子以及组合键^{2nd} + ^{Inggen}也可以用于触发。

电子负载有三个触发源:总线(BUS)、外部(EXTernal)和保持(HOLD)。

- 总线 (BUS): GPIB 的<GET>信号或*TRG 作为触发源。
- **外部 (EXTernal):** 选择电子负载的触发输入端子或组合键^{2nd} + ^{trigger}作为触发源。 触发端子输入信号为 TTL 电平,下降沿触发。
- 保持 (HOLD): 只能使用 TRIGger[:IMMediate]命令作为触发源。此时其他的触发方 式,包括*TRG,都是无效的。

注: 命令 TRIGger:IMMediate 可作用于三个触发模式。只能通过远程命令 TRIGger:SOURce BUS | EXTernal | HOLD 选择触发源。

2.9 输入控制

2.9.1 负载输入的打开与关闭

负载输入的打开和关闭可以通过 按键,也可以通过远程命令 INPut ON | OFF 实现。在 负载输入关闭状态,按^{muth}键打开负载输入;在负载输入打开状态,按^{muth}键关闭输入。打开和 关闭负载输入不会影响负载设定。

在本地控制时,如果负载输入打开,基本测试、瞬态测试、序列测试、电池放电容量测试 等状态是不能够互相直接转换的,仅在负载输入关闭时,才可以从某一测试状态转换至另一种 测试状态。

2.9.2 启动电压和启动电压锁定

当外部输入电压低于启动电压(Von Point)时,即使负载输入已经打开,负载也不会启动。 只有当外部输入电压达到或超过启动电压时,负载才开始工作。启动电压的默认值是 0V。

启动电压锁定(Von Latch)用于锁定负载的启动状态。如果打开启动电压锁定功能(Von Latch),那么在负载输入打开以后,一旦输入电压达到启动电压,负载即启动;以后无论输入电压如何变化,既使低于启动电压,负载也不会关闭,如图 2-11;如果关闭启动电压锁定功能(Von Latch),那么在负载输入打开以后,输入电压达到启动电压时,负载就自动启动,低于启动电压时,负载就自动关闭,如图 2-12。通过设置启动电压和启动电压锁定,可以实现负载输入自动打开和关闭,有效简化测试操作。

启动电压可以在主菜单里设定,也可通过远程命令 INPut:LATCh:VOLTage <NRf+>设定。 启动电压锁定可以在主菜单里设定,也可通过远程命令 INPut:LATCh ON | OFF 设定。

图 2-11 启动电压锁定(Von Latch)打开

图 2-12 启动电压锁定(Von Latch)关闭

注:如果负载不能正常工作,请检查启动电压 Von 的设置是否正确。

2.9.3 定电压模式电流限制

定电压模式电流限制(CV Curr Limit)用于限制定电压模式下负载的最大输入电流,如果 负载电流达到限制值时电压仍然高于设定值,负载将转换至定电流状态,从而实现 CV+CC 的 功能,如图 2-13。定电压模式电流限制不同于软件电流保护,不会关闭负载输入。

定电压模式电流限制值可以在主菜单里设定,也可通过远程命令 INPut:LIMit:CURRent <NRf+>设定。

图 2-13 定电压电流限制功能示意图

2.9.4 电流上升速率

电流上升速率(Curr Rise Rate)用于设定定电流模式下的电流上升速率。该参数可以在主 菜单里设定,也可通过远程命令 CURRent:RISE:RATE <NRf+>设定。

如果电流上升速率为 0.1A/us, 电流设定值为 20A, 那么负载输入打开时的电流上升速率如图:

图 2-14 电流上升速率示意图

注: 电流上升速率设定仅对 CCH 和 CCL 模式有效, 且 CCL 模式下的实际电流上升速率是 设定值的 1/10。

2.9.5 电流下降速率

电流下降速率(Curr Rise Rate)用于设定定电流模式下的电流下降速率。该参数可以在主 菜单里设定,也可通过远程命令 CURRent:FALL:RATE <NRf+>设定。

如果电流下降速率为 0.1A/us, 电流设定值为 20A, 那么负载输入关闭时的电流下降速率如图:

注: 电流下降速率设定仅对 CCH 和 CCL 模式有效, 且 CCL 模式下的实际电流下降速率是 设定值的 1/10。

2.10 测量功能

电子负载具有高分辨率测量系统,可实时测量输入电压和电流。输入功率和电阻是根据输入电压和输入电流计算得到的。测量值可以通过液晶屏直接查看,也可通过以下远程命令读取:

MEASure:VOLTage?

MEASure:CURRent?

MEASure:RESistance?

MEASure:POWer?

2.11 保存和调用

电子负载具有 EEPROM 存储器,用于保存各项参数,包括模式、输入状态、电流、电压、 电阻、瞬态设定、保护值等。372X 系列电子负载可以保存 10 组参数,表 2-1 列出了保存/调用 操作涉及到的所有参数及其默认值(以 3721A 为例)。

表 2-1

功能	作用	默认值
Input	输入状态	Off
Mode	工作模式	ССН
Current Level	立即电流值	0A
Current Rise Rate	电流上升速率	4A/us
Current Fall Rate	电流下降速率	4A/us
Current High	瞬态电流高值	0A
Current Low	瞬态电流低值	0A
*Current Protection Level	电流保护限制值	40A
*Current Protection Delay	电流保护延时	60s
*Current Protection State	启用/禁用电流保护	Off
Voltage Level	立即电压值	80v
CV Current Limit	定电压模式电流限制	40A
Voltage High	瞬态电压高值	80v
Voltage Low	瞬态电压低值	80v
Resistance level	立即电阻值	2000 Ω
Resistance High	瞬态电阻高值	2000 Ω
Resistance Low	瞬态电阻低值	2000 Ω
Power level	立即功率值	0W
Transient Operation	瞬态测试	Off
Transient Mode	瞬态工作模式	Continuous
Transient Htime	瞬态高值时间	0ms
Transient Ltime	瞬态低值时间	0ms
Transient Rtime	瞬态上升沿时间	0.01ms
Transient Ftime	瞬态下降沿时间	0.01ms
Trigger Function	触发功能选择	Tran
*Trigger Source	触发源	External
Battery State	电池放电容量测试	Off
Battery Terminate Voltage	电池放电终止电压	0V
Discharge Current	电池放电电流	0A
Latch Voltage Level	负载启动电压	0V
Latch State	启动电压锁定	Off

*仅仅在远程状态才可以操作

使用键盘操作时,可以使用组合键^{2nd} + ¹_{save}和^{2nd} + ²_{Recal},来保存和调用存储在位置 0 ~ 9 的 10 组参数;也可以通过远程命令*SAV < NRI >和*RCL < NRI >命令来保存和调用参数。 负载每次开机时都会自动调用位置 '0'所保存的参数。

2.12 读取远程错误

当远程控制发生错误时,错误状态指示灯会点亮。错误代码分为如下几类:

- -lxx 命令错误
- -2xx 执行错误
- -3xx 特定设备错误
- -4xx 查询错误

使用组合键^{2nd} + ³ = 可以在前面板查询错误代码。远程查询命令 SYSTem:ERRor?可以在远程状态查询错误代码和信息。

错误信息保存在一个错误队列之中,这是一个先进先出结构的缓冲区,最多可保存 20 条错误信息。如果产生的错误信息超过 20 条,电子负载会将存储在队列中的最后一条错误信息替换为-350,"Too many errors",此刻除非错误信息被读取或者被清除,否则电子负载将不再保存更多错误信息。一旦错误被读取,它将会被自动从错误队列中清除。

2.13 状态报告

电子负载具有状态报告寄存器。电子负载的各种状态可以通过查询状态寄存器来获得。使用者可通过设置状态寄存器组中的使能寄存器来确定哪些事件被报告,这些寄存器在《Array 372X 系列电子负载编程参考手册》中有详细描述。

2.14 保护功能

电子负载具备以下几种保护功能:

- 过电压 (OV)
- 过电流 (OC)
- 过功率 (OP)
- 过温度(OT)
- 极性反接(RV)

负载一旦出现异常,负载输入立即关闭并会发出声音报警,显示屏显示故障原因,负载进入异常锁定状态,状态寄存器内相应的状态标志会置位。除了特定的操作,负载将不再响应其 它指令。例如:当过温过高时,负载输入会关闭并发出声音报警,显示屏右下角会显示 OT,不 再响应其它操作指令。

2.14.1 清除异常锁定状态

当负载进入异常锁定状态后,不再响应其它指令,只有通过组合键^{2nd} + ^{Clear}或者远程命

令 INPut:PROTection:CLEar 清除锁定状态,才可恢复正常操作。当然导致负载进入异常锁定状态的原因必须要解除,否则又会立即再次引起异常锁定。

另外,在软件电流保护功能打开时,如果过流时间还没超过设定的保护时间,负载会显示保护状态 PT,但并不关闭负载输入。此时通过组合键^{2nd} + ^{Clear}或者远程命 INPut:PROTection:CLEar 可以清零过流时间。

2.14.2 过电压

过电压保护值是由厂家在生产时设定的,用户无法改变。当输入电压超过预设电压时,触 发过压保护,负载输入关闭并显示 OV。同时可疑状态寄存器中的 OV 和 VF 标志置位,并且一 直保持到它们被复位且过电压状态解除。

2.14.3 过电流

电子负载允许用户定义一个电流保护限制值。当这个限制值被超过时,过流定时器开始计时,显示屏会显示保护状态 PT,但负载输入并不立即关闭;当计时时间达到设定的延迟时间后,触发过电流保护,负载输入关闭并显示 OC。同时可疑状态寄存器中的 OC 和 PS 标志置位,并且一直保持到它们被复位且过电流状态解除。

电流保护限制功能只能通过以下远程命令来设定:

SCPI 命令	描述
CURRent:PROTection:STATe ON OFF	用于打开或关闭该功能
CURRent:PROTection < NRf+>	设定电流限制值
CURRent:PROTection:DELay < NRf+>	设定关断负载的延迟时间

2.14.4 过功率

电子负载具备硬件恒功率和软件过功率保护功能。

一旦负载的输入功率超过其最大额定输入功率,硬件恒功率电路就会立即启动,将输入功 率限制在负载可承受的范围内。同时负载也通过计算,测量当前的实际功率。不论是硬件恒功 率电路启动,还是通过软件测量计算,只要持续过功率时间超过一定限额,就会触发过功率保 护。

过功率保护发生后,负载输入关闭并显示 OP。同时可疑状态寄存器中的 OP 和 PS 标志置 位,并且一直保持到它们被复位且过功率状态解除。

2.14.5 过温度

如果负载内部温度超出了安全极限,就会触发过温度保护,负载输入关闭并显示 OT。同时 可疑状态寄存器中的 OT 和 PS 标志置位,并且一直保持到它们被复位且过温度状态解除。在清 除异常锁定状态时,必须等待负载温度降到正常范围。负载的散热风扇有助于尽快降低其内部 温度。

2.14.6 极性反接

在输入端电源极性接反的情况下,触发极性反接保护,负载输入关闭并显示 RV。同时可疑状态寄存器中的 RV 和 VF 标志置位,并且一直保持到它们被复位且极性反接状态解除。

2.15 其他辅助功能

2.15.1 触发功能选择

主菜单中的触发功能选择(Trigger Function),用于选择触发对象。选择Tran用于触发触发 瞬态测试,选择List用于触发序列测试。

2.15.2 旋钮使能

主菜单中的旋钮使能(Knob)用来启用/禁用旋钮功能。选择 On 启用旋钮,选择 Off 禁用旋钮。

2.15.3 按键声音

主菜单中的按键声音(Key Sound)用于控制按键发音。选择 On 启用按键声音,选择 Off 禁止按键声音。
第三章 安装

3.1 初始检查

收到负载后,请立即检查负载是否在运输过程中发生明显损坏。同时保存好包装材料,以 备将来送修时使用。

确认按键和旋钮没有破损,机壳和面板表面没有凹陷或刮痕,显示屏也没有破裂或刮痕。

3.2 环境和安置

负载在 0 ℃ 到 40 ℃ 的环境温度下可满功率运行。在 40 ℃ 到 50 ℃ 的环境中需降功 率使用,否则会因温度过高而引起过温保护。

负载要放置在通风良好的环境中,同时远离电磁干扰环境,环境中不许有易燃易爆物体。

安装于机架中时必须拆除前后面边的橡胶缓冲框。负载工作时从机身两侧吸入冷空气,从 后面板出风口排出热空气来进行散热,因此安装时必须在其两侧及后方留出足够空间以保证空 气流通。

3.3 上电自检

上电自检能够检测出负载基本的工作状况,从而作为负载验收的初步检验手段。

通电之前,首先检查交流电源电压,确保负载后面板上的电压选择开关与当地供电电压一致。

接好交流电源线,按下前面板电源开关,负载上电进行自检。如自检异常,会有错误信息 显示。错误信息列表如下表所示:

	错误代码	错误说明	
	601	Lcd selftest error(液晶测试错误)	
603System ADC test failed (ADC 系统测试失败607Rundown too noisy (信号太嘈杂)608Keypad selftest error (键盘测试错误)609EEPROM checksum failed (EEPROM 校验和年630Temperature test failed (温度检测错误)		System ADC test failed(ADC 系统测试失败)	
		Rundown too noisy(信号太嘈杂)	
		Keypad selftest error(键盘测试错误)	
		EEPROM checksum failed(EEPROM 校验和错误)	
		Temperature test failed(温度检测错误)	

若一切正常,则负载进入初始工作状态;默认出厂状态此刻负载应进入 CCH 模式,负载输入关闭;若先前修改过参数并保存在参数位置 0,负载会自动调用该参数。然后通电预热二十分钟,进行下面测试:

连接一台具备 CV 和 CC 模式的电源到电子负载的输入端,正负极性对应,执行 CCH 5A 及 CV 5V 操作,负载应工作正常,吸收 5A 的电流或调整输入电压为 5V,误差应在手册规定的误 差范围内。至此可断定电子负载基本工作正常。

3.4 后面板连接

372X 系列电子负载的后面板配置如图 3-1 所示,主要包含交流输入部分和通讯接口部分。 交流输入部分包括交流输入和保险丝插座,电压选择开关。通讯接口包括 RS-232 接口,以及 用户选配的 GPIB 或 USB 扩展接口。

交流输入:

交流电源线缆类型要符合当地使用标准。

保险丝规格为 250V 315mA。

电压选择开关可以选择到110V或220V电压档位,选择的电压应与当地供电电压规格一致。

通信接口:

RS-232 接口:

负载提供一个 RS-232 接口,这是一个标准的 DB9 针型连接器,使用 DTR 和 DSR 信号进行流控制,引脚定义如下所示。

Pin	Input/Output	描述
1	-	没有使用
2	Input	RXD 接收数据
3	Output	TXD 发送数据
4	Output	DTR 数据终端准备好
5	Common	GND 信号地
6	Input	DSR 数据准备好
7	-	没有使用
8	-	没有使用
9	-	没有使用

接口参数通过 MENU 菜单进行设置,电子负载使用 SCPI 命令进行编程。

GPIB 接口:

负载可另外安装一个 GPIB 接口,其地址可以通过 MENU 菜单进行设置,范围为 0 到 30。 在同时连接多台 GPIB 设备时,要保证每台 GPIB 设备的地址是唯一的,并且不可被其它类型接 口总线上的仪器使用。负载在出厂时的默认地址为05。

USB 接口

负载可另外安装一个 USB 接口,用户需在计算机上安装相应的驱动程序方可与负载进行通信。

USB 接口与 GPIB 接口均需占用负载后面板的扩展槽,因此只能选择加装其中一种接口。 在同一时刻,负载只能通过一种接口与外部通信。

3.5 前面板连接

372X 系列电子负载前面板上的连接端子包括输入端子(INPUT +和 INPUT -)、电压检测端子(SENSE +和 SENSE -)以及外触发输入端子。如图 **3-2** 所示。

负载输入端子

前面板提供了两个大型螺旋顶杆接线端子(INPUT +, INPUT -),用于连接输入,连接线 缆的最大直径为 6mm。进行大电流测试时,为了提高测试的准确度,减小测量误差,应尽量使 用较粗的线缆。

远端电压检测端子

前面板提供了两个电压检测端子(SENSE +和 SENSE -),用于远端电压检测,防止因负载输入连接导线上的压降对电压测量造成影响,提高电压检测精度。372X系列电子负载可自动检测远端电压输入信号,因此使用远端电压检测功能时无需修改参数设定或改变硬件接线。

外触发输入端子

外触发输入端子是一个 BNC 连接端子,中间为输入正端,外壳为输入负端。接收 5V TTL 兼容的下降沿触发信号。为保证可靠触发,低电平时间应大于 10us。

3.6 使用连接

远端检测连接

当负载有电流流过时,受连接电源与负载的导线电阻影响,负载输入端的电压会低于电源

输出电压。如需要通过负载精确测量电源电压,可利用负载的远端电压检测端子。连接后负载 会自动切换到远端测量状态。接线如图 **3-3** 所示。

多台负载并联

当需要更大的功率或电流时,可以将两台或更多台负载进行并联操作。不过值得注意的是: 并联操作仅限于定电流模式。并连接线方法可参考图 **3-4**。

第四章 本地操作

第二章"功能与特性"对电子负载的本地操作进行了简要说明,本章将结合实例,更详细介绍的 372X 系列电子负载的本地操作。

4.1 本地控制描述

如果需要通过前面板的键盘和旋钮操作电子负载,电子负载必须处于本地控制状态。电子 负载开机后即处于本地控制(前面板)状态,同时自动调入先前保存在 EEPROM 位置 0 的相关 参数。

在远程控制状态,所有的键盘和旋钮操作无效(组合键^{2nd} + ¹ + ¹

4.2 前面板主要操作

- 电子负载与电源连线
- 输入打开与关闭
- 定电流测试
- 定电压测试
- 定电阻测试
- 定功率测试
- 短路测试
- 连续方式瞬态测试
- 脉冲方式瞬态测试
- 翻转方式瞬态测试
- 序列测试
- 电池放电容量测试功
- 参数保存与调用
- 保护状态清除
- 负载错误信息
- 负载触发
- 电子负载主菜单

4.3 电子负载与电源连线

电源正极连接电子负载输入(INPUT)的红色端子("+"),电源负极连接电子负载输入(INPUT)的黑色端子("-")。如正负极接反,电子负载将处于 RV 保护状态。如果真出现电子负载处于 RV 保护状态,请重新连接电源与电子负载。

正确连接电源与电子负载后,如果想取消电子负载的 RV 保护状态,按组合键^{2nd} + ^{Cleer}取 消保护状态或直接重新启动电子负载,详细介绍请参考下述的"负载保护状态清除。

4.4 负载输入打开/关闭

按意动或者关闭电子负载输入。

4.5 基本测试

基本测试操作步骤如下:

- 1. 按^{Set}键进入模式与参数设定菜单。
- 2. 使用 ()、)键选择某一基本工作模式。
- 3. 使用数字键或者旋钮结合 ◀、 ▶键输入设定值,使用 ^{Glear} 键修改设定值或退出模式 与参数设定菜单。
- 4. 按^{Enter}键确定同时退出模式与参数设定菜单。
- 5. 按^{lnput}键打开负载输入。

4.5.1 定电流测试

定电流测试分为大电流模式(CCH)和小电流模式(CCL)。

例 1: 以 3721A 为例,在 CV 模式下,设置负载为大电流模式(CCH),电流值为 5.12A。打开负载。步骤如下:

步骤	操作细节	液晶显示
	按 ^{Set} 键进入模式与参数设定菜单。	MODE: CV
第 少		CURR: 80.00 <u>0</u> A
始一止	使用 ▲ 键选择 CCH 模式	MODE: CCH
- わーク		CURR: 0.00 <u>0</u> A
签二正	使用数字键或者旋钮结合 <	MODE: CCH
第二少		CURR: 5.120A
笛皿上	四步 按 Enter 键确定同时退出模式与参数设定菜单。	0.000V 0.000A
- 第四少		5.12 <u>0</u> A CCH OFF
签工中	按 ^{Inputf} 键打开负载。	0.000V 0.000A
第 五少		5.12 <u>0</u> A CCH ON
签之止	使用▲、▼键查看当前功率值	0.000V 0.000A
第八少		5.12 <u>0</u> A 0.000W

上述步骤对应的 SCPI 命令为:

MODE	ССН	;	设定模式
CURR	5.12	;	设定设定值
INP	ON	;	打开负载

例 2: 在 CCH 模式下,设置电流值为 5.8A。打开负载。有两种方法可以设定电流值。

方法一:

步骤	操作细节	液晶显示
第一步	按 ^{Set} 键进入模式与参数设定菜单。	MODE: CCH
71. 2		CURR: 5.12 <u>0</u> A
第二北	使用数字键或者旋钮结合 🗨、 🕨 键输入电流值 5.8	MODE: CCH
オーク		CURR: 5.800A
第二生	按Enter键确定同时退出模式与参数设定菜单。	0.000V 0.000A
オーク		5.80 <u>0</u> A CCH OFF
箔皿止	按 ^[Input] 键打开负载。	0.000V 0.000A
わ 四少		5.80 <u>0</u> A CCH ON

方法二:

步骤	操作细节		反晶显示
第一步	使用 🗲 键将光标移动到百分位下。	0.000V 5.1 <u>2</u> 0A	0.000A CCH OFF
第二步	旋转旋钮设定百分位值为0。 (旋转旋钮立即改变设定值。负载打开时,该设定值立即 在输入端生效。)	0.000V 5.1 <u>0</u> 0A	0.000A CCH OFF
第三步	使用 🗲 键将光标移动到十分位下。	0.000V 5. <u>1</u> 00A	0.000A CCH OFF
第四步	旋转旋钮设定十分位值为8。 (旋转旋钮立即改变设定值。负载打开时,该设定值立即 在输入端生效。)	0.000V 5. <u>8</u> 00A	0.000A CCH OFF
第五步	按 ^{linput} 键打开负载。	0.000V 5. <u>8</u> 00A	0.000A CCH ON

上述步骤对应的 SCPI 命令为:

MODE	ССН	;	设定模式
CURR	5.8	;	设定设定值
INP	ON	;	打开负载

注: CCH 定电流模式下,右下角显示 CCH 标志; CCL 定电流模式下,右下角显示 CCL 标志。

4.5.2 定电压测试

例 1: 以 3721A 为例,在 CCH 模式下,设置负载为定电压模式(CV),电压值为 50V。打开 负载。查看当前功率。步骤如下:

步骤	操作细节	液晶显示
笠		MODE: CCH
邦少	按上一进进入模式与奓数议定米里。	CURR: 3.80 <u>0</u> A
结一止	使用▼键选择 CV 模式。	MODE: CV
\$\$—少		VOLT: 80.00 <u>0</u> V
签二正	使用数字键或者旋钮结合 🔍、 🕨 键输入电压值 50。	MODE: CV
第二少		VOLT: 50.000V
笠田屯 按 Fnter /舟水合同时沿山		0.000V 0.000A
第四少	按 上一一 键	50.00 <u>0</u> V CV OFF
签工止	按 ^{lnput} 键打开负载。	0.000V 0.000A
<u> </u>		50.00 <u>0</u> V CV ON
签一止	使用▲、▼键查看当前功率值。	0.000V 0.000A
第八少		50.00 <u>0</u> V 0.000W

上述步骤对应的 SCPI 命令为:

MODE	CV	;	设定模式
VOLT	50	;	设定设定值
INP	ON	;	打开负载

例 2: 在 CV 模式下,设置负载电压值为 60V。打开负载。有两种方法可以设定电压值。

方法一:

步骤	操作细节	液晶显示
笛一北	按 ^{Set} 键进入模式与参数设定菜单。	MODE: CV
カック		CURR: 50.00 <u>0</u> V
笛一止	使用数字键或者旋钮结合 🔍、 🕨 键输入电压值 60。	MODE: CV
- わーク		VOLT: 60.000V
勞二中		0.000V 0.000A
第二少	按上一键佣定问时退出楔式与参数设定采单。	60.00 <u>0</u> V CV OFF
笠田屯	按 ^{Input} 键打开负载。	0.000V 0.000A
		60.00 <u>0</u> V CV ON

方法二:

步骤	操作细节	液晶显示
第一步	使用 建将光标移动到十位下。	0.000V 0.000A <u>5</u> 0.000V CV ON
第二步	旋转旋钮设定十位值为6。 (旋转旋钮立即改变设定值。负载打开时,该设定值立 即在输入端生效。)	0.000V 0.000A <u>6</u> 0.000V CV OFF

第三步	按 ^{Input} 键打开f	负载。	0.000V 0.000A <u>6</u> 0.000V CV ON
上述步	骤对应的 SCPI 1	命令为:	
MODE	CV	;设定模式	
VOLT	60	; 设定设定值	
INP	ON	;打开负载	
注:定	电压模式下,右	下角显示 CV 标志;	

4.5.3 定电阻测试

定电阻测试分为小电阻(CRL)、中电阻(CRM)和大电阻(CRH)三种模式。

例 1: 以 3721A 为例,在 CV 模式下,设置负载为小电阻模式(CRL),电阻值为 1.5 Ω。打 开负载。查看当前功率。步骤如下:

步骤	操作细节	液晶显示
第一步	按 ^{Set} 键进入模式与参数设定菜单。	MODE: CV CURR: 50.00 <u>0</u> V
第二步	使用♥♥键选择 CRL 模式。	MODE: CRL RES : 0.0200Ω
第三步	使用数字键或者旋钮结合 <	MODE: CRL RES : 1.5000Ω
第四步	按Enter键确定同时退出模式与参数设定菜单。	0.000V 0.000A 1.500 <u>0</u> Ω CRL OFF
第五步	按 ^{Inputf} 键打开负载。	0.000V 0.000A 1.500 <u>0</u> Ω CRL ON
第六步	使用▲、▼键查看当前功率值。	0.000V 0.000A 1.500 <u>0</u> Ω 0.000W

上述步骤对应的 SCPI 命令为:

MODE	CRL	;	设定模式
RES	1.5	;	设定设定值
INP	ON	;	打开负载

注: 查看实际功率值可以通过 (▲)、 (▼)键查看,液晶的右下角显示实际功率值。

例 2: 在 CRL 模式下,设置负载电阻值为 1.8 Ω。打开负载。有两种方法可以设定电阻值。 方法一:

步骤	操作细节	液晶显示
第一步	按 ^{Set} 键进入模式与参数设定菜单。	MODE: CRL RES : $1.500\underline{0} \Omega$

	MODE:	CRL	
疖 —少	弗— 万 [使用数字键或者旋钮结合 □ 、 □ 键输入电阻值 1.8。	RES :	1.8000 Ω
第二正		0.000V	0.000A
第二 少	弗二步 按└──」键确定同时退出模式与参数设定菜单。	1.800 <u>0</u> Ω	CRL OFF
笠田屯		0.000V	0.000A
弗四亚	按[m/m]键打开页载。	1.800 <u>0</u> Ω	CRL ON

方法二:

步骤	操作细节	液	晶显示
第一步	使用 建将光标移动到十分位下	0.000V 1. <u>5</u> 000 Ω	0.000A CRL OFF
第二步	旋转旋钮设定十分位值为8。 (旋转旋钮立即改变设定值。负载打开时,该设定值立 即在输入端生效。)	0.000V 1. <u>8</u> 000 Ω	0.000A CRL OFF
第三步	按 ^{Inputf} 键打开负载。	0.000V 1. <u>8</u> 000 Ω	0.000A CRL ON

上述步骤对应的 SCPI 命令为:

MODE	CRL	; 设定模式
RES	1.8	; 设定设定值
INP	ON	; 打开负载

注: CRH 定电阻模式下,右下角显示 CRH 标志; CRM 定电阻模式下,右下角显示 CRM 标志。CRL 定电阻模式下,右下角显示 CRL 标志。

4.5.4 定功率测试

定功率测试分为定功率电压源模式(CPV)和定功率电流源模式(CPC)

例 1::以 3721A 为例,在 CRL 模式下,设置负载为定功率电压源模式(CPV),功率值为 100W。 打开负载。查看当前功率。步骤如下:

步骤	操作细节	液	瓦晶显示
- 第二- 上		MODE:	CRL
カリ	按上一键进入模式与参数反定米平。	RES :	1.800 <u>0</u> Ω
结一止		MODE:	CPV
第二少	使用└┻┘键选择 CPV 模式。	POWR:	0.00 <u>0</u> W
第三步	使用数字键或者旋钮结合◀、▶键输入功率值	MODE: POWR:	CPV 100.00W
	100.		
箔皿尗	按Enter 键确空同时退山棋式占参粉设空荧单	0.000V	0.000A
까먹少	按[]键棚足问时退击模式与参数仅足来早。	100.0 <u>0</u> W	CPV OFF
签工中		0.000V	0.000A
	按lon/off)键打计负载。	100.0 <u>0</u> W	CPV ON

第六步	使用▲、▼	键查看当前功率值	0.000V 100.0 <u>0</u> W	0.000A 0.000W
上述步骤	聚对应的 SCPI 命	1令为:		
MODE	CPV	; 设定模式		
POW	100	; 设定设定值		
INP	ON	; 打开负载		

例 2: 在 CPV 模式下,设置负载功率值为 200W。打开负载。有两种方法可以设定功率值。 方法一:

步骤	操作细节	Й	凌 晶显示
第一步	按 ^{Set} 键进入模式与参数设定菜单。	MODE: POWR:	CPV 100.0 <u>0</u> W
第二步	使用数字键或者旋钮结合 200。	MODE: POWR:	CPV 200.00W
第三步	按Enter键确定同时退出模式与参数设定菜单。	0.000V 200.0 <u>0</u> W	0.000A CPV OFF
第四步	按 ^{Inputf} 键打开负载。	0.000V 200.0 <u>0</u> W	0.000A CPV ON

方法二:

步骤	操作细节	液	晶显示
第一步	使用 建将光标移动到百位下	0.000V <u>1</u> 00.00W	0.000A CPV OFF
第二步	旋转旋钮设定百位值为2。 (旋转旋钮立即改变设定值。负载打开时,该设定值立 即在输入端生效。)	0.000V <u>2</u> 00.00W	0.000A CPV OFF
第三步	按 ^{linput} 键打开负载。	0.000V <u>2</u> 00.00W	0.000A CPV ON

上述步骤对应的 SCPI 命令为:

MODE	CPV	;	设定模式
POW	200	;	设定设定值
INP	ON	;	打开负载

注: CPV 定电阻模式下,右下角显示 CPV 标志; CPC 定电阻模式下,右下角显示 CPC 标志。

4.6 短路测试

短路测试操作步骤如下:

1. 按^{Menu}键进入主菜单,使用♥键选择菜单项 Short (短路)。

2. 使用 键或旋钮设定 On,按^{Enter}键确定。

3. 按^{Clear}键退出主菜单。在基本测试模式前,液晶显示 s 标志。

 按 Set 键进入模式与参数设定菜单,使用 ▲、 ▼键选择任一基本测试模式,按 Enter 键确定同时退出模式与参数设定菜单。

5. 按^{lnput}键,打开负载。

例 1: 负载原先在 CV 模式,负载关闭。设置负载为短路状态,工作模式为 CCH,负载打 开。负载进行 CCH 短路测试。

步骤	操作细节	液晶显示
第一步	按 ^{Menu}]键进入主菜单,使用♥键洗择菜单项 Short。	Short:
		On *Off
笛一止		Short:
用□□键或旋钮设定 On, 按□□□键确定。		*On Off
笛二中		0.000V 0.000A
舟 —少	按 ^{wwww} 键退出土采毕。仕CV 模式刖,液晶显示 S 标志。	0.000V sCV OFF
左面上	按 ^{Set} 键进入模式与参数设定菜单,使用▲键选择基本模	0.000V 0.000A
 弗四步	式为 CCH,按 ^{Enter} 键确定同时退出模式与参数设定菜单。	44.000A sCCH OFF
签工止	her Input tet tr T A A	0.000V 0.000A
第 丑少	按[midf]键,打开负载。	44.000A sCCH ON

上述步骤对应的 SCPI 命令为:

INP:SHOR	ON	;	设定负载短路
MODE	ССН	;	设定模式
INP	ON	;	打开负载

例 2: 在上例基础上,退出短路测试功能,关闭负载。

步骤	操作细节	液晶显示
		Short:
 第 少	按些到键进入主来单,使用LYJ键选择来单坝 Short。	*On Off
岱一止		Short:
另—少	使用L 键或旋钮设定 Off,按L 键 确定。	On *Off
签二止		0.000V 0.000A
枭二少	按 ^{mumm} 键退出土采单。在CCH 模式則, 液晶显示 S 标志泪失。	0.00 <u>0</u> A CCH ON
		0.000V 0.000A
第四少	妆 ^[mm] 键,大团贝轼。	0.00 <u>0</u> A CCH OFF

上述步骤对应的 SCPI 命令为:

INPUT: SHOR OFF ; 设定负载退出短路

INP OFF ;关闭负载

4.7 瞬态测试

瞬态测试操作步骤如下:

- 按 Set 键进入模式与参数设定菜单,使用 ▲、▼键选择某一基本测试模式,按 Enter 键 确定同时退出模式与参数设定菜单。
- 2. 按^[Tran]键进入瞬态测试。在基本测试模式前,液晶显示t标志。
- 3. 按^{Set}键进入瞬态测试菜单。
- 4. 使用▲、▼键选择参数。
- 5. 使用数字键或者旋钮结合
 5. 使用数字键或者旋钮结合
 使用
 使用

 </
- 6. 按^{Clear}键退出瞬态测试菜单。
- 7. 按^{linput}键,打开负载。

4.7.1 连续方式瞬态测试

例 1: 以 3721A 为例,设置负载电压值在 1V 与 5V 之间来回切换,上升沿时间值 10ms, 高电平时间值 200ms,下降沿时间值 20ms,低电平时间值 400ms,工作方式为连续方式。步骤 如下:

步骤	操作细节	液晶显示
第一步	按 ^{Set} 键进入模式与参数设定菜单,使用▲、▼键选择 CV模式,按 ^{Enter} 键确定同时退出模式与参数设定菜单。	0.000V 0.000A 0.00 <u>0</u> V CV OFF
第二步	按 ^{Tran} 键进入瞬态测试。在 CV 前,液晶显示 t 标志。	0.000V 0.000A 80.000V tCV OFF
第三步	按 ^{Set} 键,进入瞬态测试菜单。	► LevelL:80.000V LevelH:80.000V
第四步	使用数字键或者旋钮结合 ◀、 ▶键设定 LevelL 值为 1, 按 ^{Enter} 键确定。	LevelL:1.000V ▶LevelH:80.00 <u>0</u> V
第五步	使用数字键或者旋钮结合 ◀、 ▶ 键设定 LevelH 值为 5, 按 Enter 键确定。	► TimeL :530.0 <u>0</u> ms TimeH :500.00ms
第六步	使用数字键或者旋钮结合 ◀、 ▶ 键设定 TimeL 值为 400ms,按 ^{Enter} 键确定。	TimeL :400.00ms ▶TimeH :500.0 <u>0</u> ms
第七步	使用数字键或者旋钮结合 ◀、 ▶ 键设定 TimeH 值为 200ms,按 ^{Enter} 键确定。菜单自动到下一参数项。	► TimeR: 100.0 <u>0</u> ms TimeF: 100.00ms
第八步	使用数字键或者旋钮结合 ◀、 ▶ 键设定 TimeR 值为 10ms,按 ^{Enter} 键确定。	TimeR: 10.00ms ▶TimeF: 100.0 <u>0</u> ms

第九步	使用数字键或者旋钮结合 ◀、 ▶键设定 TimeF 值为 20ms, 按 ^{Enter} 键确定。	►Mode: ◀ Cont ►
第十步	使用 ◀、 ▶ 键或旋钮设定 Mode 值为 Cont, 按 Enter 键确 定。	►Mode: ⊲ Cont ►
第十一步	按 ^{Clear} 键退出瞬态测试菜单。	0.000V 0.000A 1.000V tCV OFF
第十二步	按 ^[Input] 键,打开负载。	0.000V 0.000A 1.000V tCV ON 0.000V 0.000A 5.000V tCV ON

MODE	CV	;	设定模式
TRAN	ON	;	打开瞬态
VOLT:LOW	1	;	设置瞬态低值
VOLT:HIGH	5	;	设置瞬态高值
TRAN:LTIME	400ms	;	设置低电平持续时间
TRAN:HTIME	200ms	;	设置高电平持续时间
TRAN:RTIME	10ms	;	设置上升沿持续时间
TRAN:FTIMR	20ms	;	设置下降沿持续时间
TRAN:MODE	CONT	;	选择连续工作方式
INP	ON	;	打开负载

4.7.2 脉冲方式瞬态测试

例 1: 假设负载是外部触发模式,设置负载电流在 1A 与 5A 之间来回切换,上升沿时间值 10us,高电流时间值 200ms,下降沿时间值 10us,工作方式为脉冲模式,同时执行一次触发。

步骤	操作细节	液晶显示
第一步	按 ^{Set} 键进入模式与参数设定菜单,使用▲、▼键选择 CCH 模式,按 ^{Enter} 键确定同时退出模式与参数设定菜单。	0.000V 0.000A 0.00 <u>0</u> A CCH OFF
第二步	按 ^{Tran} 键进入瞬态测试。在 CCH 前,液晶显示 t 标志。	0.000V 0.000A 0.500A tCCH OFF
第三步	按 ^{Set} 键进入瞬态测试菜单。	►LevelL: 0.50 <u>0</u> A LevelH:1.000A
第四步	使用数字键或者旋钮结合 ◀、 ▶ 键设定 LevelL 值为 1, 按 Enter 键确定。	LevelL: 1.00 <u>0</u> A ▶LevelH: 1.000A
第五步	使用数字键或者旋钮结合 ◀、▶键设定 LevelH 值为 5, 按 ^{Enter} 键确定。	► TimeL:400.0 <u>0</u> ms TimeH:400.00ms

笛亭庄	按♥键选择 TimeH。使用数字键或者旋钮结合◀、▶	► TimeR:10.0 <u>0</u> ms	
兎ハ 少	键设定 TimeH 值 200ms,按Enter键确定。	TimeF:20.00ms	
答上上	使用数字键或者旋钮结合 🗨、 ▶ 键设定 TimeR 值为	TimeR:10.00ms	
弗 七亚	10us,按 ^{Enter} 键确定。	► TimeF:20.0 <u>0</u> ms	
	使用数字键或者旋钮结合 🗨、 🕨 键设定 TimeF 值为		
弗八莎	10us,按 ^{Enter} 键确定。	► Mode: <cont td="" ►<=""></cont>	
	使用		
弟九步	确定。	► Mode: ◄ Puls ►	
笠上止	to Clear to Deather 按出日山 晒大咖啡子苦 畄	0.000V 0.000A	
第 丨少	孜 ^ш 這一種必由時必则因未半。	1.000A tCCH OFF	
笠上 止	⁺ z ^{Input} は建立していた。 +z ⁻ ^{Input} は建立していた。 +z ⁻	0.000V 0.000A	
舟 丁一少	按 ^[mm] 键,打开贝氧。	1.000A tCCH ON	
岱十一中	按组合键 ^{2nd} + Trigger或触发端子(TRIG IN)信号为低电	0.000V 0.000A	
第十一少	平,执行一次触发。	5.000A tCCH ON	

MODE	ССН	;	设定模式
TRAN	ON	;	打开瞬态
CURR:LOW	1	;	设置瞬态低值
CURR:HIGH	5	;	设置瞬态高值
TRAN:HTIME	200ms	;	设置高电平持续时间
TRAN:RTIME	10us	;	设置上升沿持续时间
TRAN:FTIME	10us	;	设置下降沿持续时间
TRAN:MODE	PULS	;	选择脉冲工作方式
INP	ON	;	打开负载
TRIG		;	执行一次脉冲

4.7.3 翻转方式瞬态测试

例 1: 假设负载是外部触发模式,设置负载电阻在 200Ω 与 500Ω之间来回切换,上升沿时间值 10us,下降沿时间值 10us,工作方式为翻转模式,同时执行一次触发。

步骤	操作细节	液晶显示
箆一步	按 ^{Set} 键进入模式与参数设定菜单,使用▲、▼键选择	0.000V 0.000A
71 22	CRH 模式,按 ^{Enter} 键确定同时退出模式与参数设定菜单。	20.000 Ω CRH OFF
焙一止		0.000V 0.000A
カーク	按 进进 C 瞬 态 测 试 。 在 C R H 前 , 浟 前 亟 示 t 朴 志 。	2000. <u>0</u> Ω tCRH OFF
笛二中		►LevelL: 2000. <u>0</u> Ω
疖 —少	按L) 键进入瞬态测试来单。	LevelH: 2000.0Ω
第四步	使用数字键或者旋钮结合 <	LevelL: 200.00 Ω

	按Enter键确定。	►LevelH: 2000. <u>0</u> Ω
笛五北	使用数字键或者旋钮结合 🗨、 🕨 键设定 LevelH 值为	► TimeL:400.0 <u>0</u> ms
おエク	500,按 ^{Enter} 键确定。	TimeH:200.00ms
笛士中	按♥键选择 TimeR,使用数字键或者旋钮结合◀、▶	TimeR:10.00ms
第八少	键设定 TimeR 值为 10us, 按 ^{Enter} 键确定。	► TimeF:10.0 <u>0</u> ms
笛上生	使用数字键或者旋钮结合◀、▶键设定 TimeF 值为	
新山少	10us,按 ^{Enter} 键确定。	► Mode: ◄ Puls ►
笛八中	使用	
第八少	确定。	► Mode: ◄ logg ►
第九步	^{Clear} ^{按 Imm Clear}	0.000V 0.0000A
747622	12000000000000000000000000000000000000	200.00 Ω tCRH OFF
第十步	坛 Input ka 打开 石 栽	0.000V 0.0000A
<i>₩19</i>		200.00 Ω tCRH ON
第十一	按组合键 ^{2nd} + frigger 或触发端子(TRIG IN)信号为低电平,	0.000V 0.0000A
步	执行一次触发。	500.00 Ω tCRH ON

MODE	CRH	;	设定模式
TRAN	ON	;	打开瞬态
RES:LOW	200	;	设置瞬态低值
RES:HIGH	500	;	设置瞬态高值
TRAN:RTIME	10us	;	设置上升沿持续时间
TRAN:FTIME	10us	;	设置下降沿持续时间
TRAN:MODE	TOGG	;	选择翻转工作方式
INP	ON	;	打开负载
TRIG		;	执行一次翻转

4.8 序列测试

序列测试操作步骤如下:

- 1. 按组合键^{2nd} + ⁹.....进入序列测试菜单。
- 2. 使用数字键或旋钮选择序列编号(No.),按^{Enter}键确定。
- 3. 使用 V键选择序列注释(Memo)。
- 4. 使用旋钮和 ◀、 ▶ 键设定注释值(最长 10 个字符)。
- 5. 使用 ♥ 键选择序列数据 Data:<New/<u>E</u>dit>)。使用 ◀、 ▶ 键或旋钮选择序列数据的 新建或编辑。

定同时返回序列测试萃单.
7 法择编辑 (Edit) 按 Enter 键进入 先数编辑 界面
试模式,按上的键确定。在设定完第三个参数,按上的通确定同时进入下一步。
10. 如需修改一步。使用└▲┘、└▲┘键选择该步。设置该步数据的方法同操作步骤第九步的
方法。
11. 如需在最后一步增加一步。使用↓▼」键选择到最后新的一步。设置该步数据的方法同
操作步骤第九步的方法。
12. 如需在已编辑好的某一步插入一步。使用▲、▼ 键选择该步。此时液晶显示不闪动,
按组合键 [2nd] + [7 meer] 可插入新的一步。设置该步数据的方法同操作步骤第九步的方法。
13. 如需删除已编辑好的某一步。使用 🔺 🔍 键选择该步。此时液晶显示不闪动,按组
合键 ^{2nd} + ⁸ 可删除当前步数。编辑好的步数仅有一步时,退出步数编辑界面。
14. 按 ^{Elear} 键退出步数编辑界面同时保存序列数据到序列编号指定的 EEPROM 里。
15. 使用♥️键选择循环次数(Count)。使用数字键或者旋钮结合◀、▶️键输入设定
值,按 ^{Enter} 键确定同时保存循环次数到序列编号指定的 EEPROM 里。
16. 使用♥♥键选择链接(Chain)。使用数字键(数字键大于 6 为 OFF)或者旋钮输入设
定值,按 ^{Enter} 键确定同时保存链接数到序列编号指定的 EEPROM 里。
17. 按 ^{Clear} 键退出序列测试菜单。
18. 按组合键 $2nd$ + $4start$ 启动序列测试。
19. 按组合键 ^{2nd} + ⁵ stop 停止序列测试。
在序列参数编辑完后,序列测试的启动和关闭操作步骤如下:
1. 按组合键 ^{2nd} + ⁹ LLL 进入序列测试菜单。
2. 使用数字键或旋钮设定序列编号(No.),按 ^{Enter} 键确定。
3. 按 ^{Clear} 键退出序列测试菜单。
4. 按组合键 ^{2nd} + ⁴ start启动序列测试。
5. 按组合键 $2nd + \frac{5}{stop}$ 停止序列测试。
4.8.1 序列编辑
例 1:编辑一组新的序列。序列编号为 0。序列 Memo 为 Test Power。序列步数:第一步为
CCL, 1A,1S; 第二步为 CCH, 2A,1S; 第三步为 CV, 1V,1S; 第四步为 CRL, 1Ω,1S; 第五步

为 CRH,	200Ω , $1S_{\circ}$	序列操作循环次数5次。	序列链接关闭。	启动序列测试	。停止序列测试

MCKII, 20	022,13。1791年中個小人致37人。1791进安大肉。但幼月910	四风。 厅卫门"列初风
步骤	操作细节	液晶显示
第一步	按组合键 ^{2nd} + ⁹ List进入序列测试菜单。	►No.: <u>0</u> Memo:

第二步	使用数字键或旋钮设定 No.为 0,按 ^{Enter} 键确定(调用序列编号指定的 EEPROM 里的序列)。	►No.: <u>0</u> Memo:
第三步	使用 ▼ 键选择 Memo。	No.: 0 ►Memo:_
第四步	旋转旋钮选择字母T。	No.: 0 ►Memo: <u>T</u>
第五步	使用 建将下标右移一位。	No.: 0 ►Memo:T_
第六步	旋转旋钮选择字母 e。	No.: 0 ►Memo:T <u>e</u>
第七步	循环使用第五步、第六步方法,设定 Memo 为 Test Power, 按 ^{Enter} 键确定。	No.: 0 • Memo: <u>T</u> est Power
第八步	使用▼键选择 Data: <new <u="">Edit>。</new>	►Data: <new <u="">Edit> Count: 1</new>
第九步	使用 🗲 键或旋钮选择 New, 按 Enter 键确定。	Clear Data: Yes *No
第十步	使用 🗲 键或旋钮选择 Yes, 按 ^{Enter} 键确定,序列数据清除 同时进入步数编辑界面。	01. 0.0000 <u>0</u> s CCH 0.000A
第十一步	编辑第一步 CCL, 1A,1S。右上角时间设定值跳动,使用数 字键或者旋钮结合 ◀、▶键输入时间 1s,按 ^{Enter} 键确定。	01. 1.00000s CCH 0.000A
第十二步	左下角基本测试模式跳动,使用旋钮或 ^{Set} 键选择工作模式 CCL,按 ^{Enter} 键确定。	01. 1.00000s CCL 0.000A
第十三步	右下角设定值跳动,使用数字键或者旋钮结合◀、▶键 输入电流值 1A。按 ^{Enter} 键确定同时进入下一步。	01. 1.00000s CCL 1.000 <u>0</u> A
第十四步	循环使用第十一步到第十三步,设定其余四步。	
第十五步	序列五步编辑完成,不需要编辑第六步。按 ^{Dter} 键退出步数 编辑界面同时保存序列数据到序列编号指定的 EEPROM 里。	06. 0.0000 <u>0</u> s CRH 20.000Ω
第十六步	使用 ▼键选择 Count。使用数字键或者旋钮结合 ◀、▶ 键输入 5,按 ^{Enter} 键确定同时保存 Count 值到序列编号指定 的 EEPROM 里。	Data: <new <u="">Edit> •Count: 5</new>
第十七步	使用 ♥ 键选择 Chain。使用数字键(数字键大于 6)或者 旋钮输入 Off,按 ^{Enter} 键确定同时保存 Chain 值到序列编号 指定的 EEPROM 里。	►Chain:Off
第十八步	按 ^{Clear} 键退出序列测试菜单。	0.000V 0.000A 0.000A CCH OFF

第十九步	第十九步 按组合键 2nd + 4 star 启动序列测试。		0.000V	0.0000A		
				1.000A	LCCL ON	
笛一十上	按组合键 ^{2nd} + ⁵ _{stop} 停止序列测试。		0.000V	0.000A		
第一丨少			0.000A	CCH OFF		
上述步	骤对应的 SCPI	命令为:				
LIST:	NUMB	0	;	调用序列编号为0的序列	J	
LIST:	MEMO	"Test Power"	;	序列注释为 Test Power		
LIST:	ADD	CCL,1A,1S				
LIST:	ADD	CCH,2A,1S				
LIST:	ADD	CV,1V,1S				
LIST:	ADD	CRL,1 Ω ,1S				
LIST:	ADD	CRH,200 Ω ,1S	;	以上5条命令为序列步数	(
LIST:	COUN	5	;	本序列循环次数		
LIST:	СНА	OFF	;	本序列链接序列关闭		
LIST		ON	;	启动序列测试		
LIST		OFF	;	关闭序列测试		

4.8.2 序列数据的修改,增加,插入,删除操作

例 1: 在 4.8.1 例 1 的基础上,第一步修改时间 2s。最后一步增加 CCH, 5A,1S。第三步插 入 CRL, 1Ω,10S。第二步删除。序列链接自己序列,实现序列无穷执行。

步骤	操作细节		液晶显示
笛—		►No.:	<u>0</u>
ホリ	按组合键[] + [_ist]进入序列测试采单。		o: <u>T</u> est Power
结一止		►Data:	<new <u="">Edit></new>
	使用└┻┘键选择 Data: <new edit="">。</new>	Count: 5	
笛二生	使用 🕨 键或旋钮选择 Edit, 按 Enter 键确定。进入序列步数	01.	1.00000s
邾 —少	编辑界面。	CCL	1.0000A
笠田正		01.	1.0000 <u>0</u> s
 第四少	使用└┻┘键选择时间参数,时间设定值跳动	CCL	1.0000A
勞工止	使用数字键或者旋钮结合 ● 、 ● 键输入时间 2s, 按 ^{Enter}	01.	2.00000s
第 丑少	键确定。	CCL	1.0000A
塔一止	使用 建选择到最后新的一步。(第六步)。	06.	0.0000 <u>0</u> s
ホハ 少		CRH	20.000 Ω
笠上屯	增加一步 CCH, 5A,1S。右上角时间设定值跳动, 使用数字	06.	1.0000 <u>0</u> s
新 石少	键或者旋钮结合 🗨、 🕨 键输入时间 1s,按 ^{Enter} 键确定。	CRH	20.000 Ω
笠 八	左下角基本模式跳动,使用旋钮或 Set 键选择基本模式	06.	1.00000s
	CCH, 按 ^{Enter} 键确定	ССН	0.000A

第九步	右下角设定值跳动,使用数字键或者旋钮结合 ◀、▶键 输入电流值 5A。按 ^{Enter} 键确定并跳到序列数据下一步。	06. 1.00000s CCH 5.00 <u>0</u> A 07. 0.00000s
		CCH 0.000A
第十步	使田▲键洗择第三步数据	03. 1.00000s
		CV 1.000V
笛 十一步	按组合键 ^{2nd} + ⁷ Insert, 在第三步插入一步。	03. 0.0000 <u>0</u> s
		CV 0.000V
笠上一止	第三步插入一步 CRL, 1Ω,10S。设置该步数据的方法同第	03. 10.00000s
匊丁 — <i>少</i>	七步到第九步的方法。	CRL 1.0000 Ω
林上一上	使用▲键选择第二步数据。	02. 1.00000s
 吊 十 二 步		CCH 2.000A
林上田正	按组合键 ^{2nd} + ⁸ _{Delete} , 删除第二步。	02. 10.0000s
· 弗干四步		CRL 1.0000 Ω
勞上工止	按 ^{Clear} 键退出步数编辑界面同时保存序列数据到序列编号	►Data: <new <u="">Edit></new>
	指定的 EEPROM 里。	Count: 5
第十六步	使用 ▼ 键选择 Chain。	►Chain: Off
公士 しょと	使用数字键或者旋钮输入0(链接自己,无穷执行),按Enter	
弗 十七步	键确定同时保存 Chain 值到序列编号指定的 EEPROM 里。	► Chain: 0
Andre it is a st	filear	0.000V 0.000A
第十八步	按Emeterred提出序列测试菜单。	0.000A CCH OFF

LIST:NUMB	0	;	调用序列编号为0的序列
LIST:EDIT	1,CCL,1A,2S	;	修改第一步时间 2s
LIST:ADD	CCH,5A,1S	;	最后一步增加 CCH, 5A,1S
LIST:INS	3,CRL, 1Ω,10S	;	插入第三步
LIST:DEL	2	;	删除第二步
LIST:CHA	0	;	序列链接自己序列
LSIT:SAVE		;	保存序列
LIST	ON	;	启动序列测试
LIST	OFF	;	关闭序列测试

4.8.3 序列测试功能启动和停止

例 1: 启动序列编号为 0 的序列。停止已启动的序列测试功能。

步骤	操作细节	液晶显示	
第一步	按组合键 ^{2nd} + ⁹ Lst 进入序列测试菜单。	►No.: <u>1</u> Memo:	
第二步	使用数字键或旋钮设定 No.为 0,按 Enter 键确定(调用序	►No.: <u>0</u>	

	列编号指定的 EEPROM 里的序列)。	Memo: T	est Power
塔二中			0.000A
第二少	按题题键退出序列测试菜单。	0.00 <u>0</u> A	CCH OFF
笛田上		0.000V	0.0000A
舟四少	按组合键[]+ [start]后刘序列测试。	1.0000A	LCCL ON
签工止		0.000V	0.000A
界卫少	按组合键└┘┘ + └stop) 停止序列测试。	0.00 <u>0</u> A	CCH OFF

LIST: NUMB	0	;调用序列编号为0的序列
LIST	ON	; 启动序列测试
LIST	OFF	;关闭序列测试

4.9 电池放电容量测试

电池放电容量测试连接示意图:

电池放电容量测试操作步骤如下:

- 1. 按 健使负载输入关闭,连接好待测电池。
- 2. 按组合键^{2nd} + ⁶ Battery进入电池放电容量测试界面。
- 按^{Set}键进入电池放电参数编辑界面。使用▲、▼键选择参数。使用数字键或者旋钮结合▲、▶键输入终止电压值和放电电流值。按^{Enter}键确定。
- 4. 按^{Clear}键退出电池放电参数编辑界面。
- 5. 按^[myuf]键打开负载,开始电池放电容量测试。
- 6. 按 键关闭负载,暂停电池放电容量测试。
- 7. 按^{Ctear}键清除电池已放电时间和电池已放电容量。
- 8. 按组合键^{2nd} + ⁶ Battery, 退出电池放电容量测试。

例1: 进入电池放电容量测试。设置电池终止电压15V,放电电流3A。打开负载,开始电池 放电容量测试。关闭负载暂停电池放电容量测试。清除电池已放电时间和电池已放电容量。退 出电池放电容量测试。

步骤	操作细节	液晶显示	
第一步	按 ^{lingut} 键使负载输入关闭,连接好待测电池。	20.000V 0.000A 0.00 <u>0</u> A CCH OFF	

笛一止	按组合键 ^{2nd} + ⁶ Battery进入电池放电容量测试界面。	20.000V	0.000A
- ゲーク		0.000AH	00:00:00
	按 Set 键进入电池放电参数编辑界面。使用数字键或者旋	► MinVolt:	:0.00 <u>0</u> V
第二步	钮结合◀、▶键输入终止电压15V,按 ^{Enter} 键确定。	DisCurr:2	2.000A
林田中	使用数字键或者旋钮结合 ◀、 ▶键输入放电电流 3A,	MinVolt	15.000V
 弗四步	按 ^{Enter} 键确定。	►DisCurr:	3.00 <u>0</u> A
笛五生	按Percear键退出电池放电参数编辑界面。	20.000V	0.000A
第 五少		0.000AH	00:00:00
签上止	按 ^{Imput} 键打开负载,开始电池放电容量测试。	20.000V	3.000A
第八少		0.000AH	00:00:01
笠上屯	按 ^{lingut} 键关闭负载,暂停电池放电容量测试。	20.000V	0.000A
第七少		0.012AH	00:00:15
笠工止		20.000V	0.000A
	按 ^{backau} 键肩除电池已放电时间和电池已放电容量。	0.000AH	00:00:00
	按组合键 ^{2nd} + ⁶ _{Battery} ,退出电池放电容量测试。	20.000V	0.000A
		0.00 <u>0</u> A	CCH OFF

INP	OFF	;	关闭负载。
BATT	ON	;	打开电池放电容量测试界面。
BATT:TERM:VOLT	15V	;	设定电池终止电压15v。
BATT: CURR	3A	;	设定电池放电电流3A。
INP	ON	;	打开负载,开始放电容量测试。
INP	OFF	;	关闭负载,暂停电池放电容量测试。
BATT	OFF	;	退出电池放电容量测试。

4.10 载保存和调用

负载保存和调用操作步骤如下:

- 按组合键^{2nd} + ¹_{save},,进入电子负载保存菜单,或按组合键^{2nd} + ²_{Recall},进入电子负载调用菜单。
- 2. 按数字键或旋钮,选择保存或调用位置。
- 按Enter键确定同时退出电子负载保存菜单或电子负载调用菜单。如是保存,表 2-1 的参数值保存到该位置指定的 EEPROM 里。如是调用,表 2-1 的参数值为该位置指定的 EEPROM 里得值。

例 1: 设置电子负载为 CCL 模式,电流值为 2A。打开电子负载。保存该状态到位置 0 指定的 EEPROM 里,开机自动加载。

步骤	操作细节	液	晶显示
第一步	设置电子负载为 CCL 模式,电流值为 2A,打开负载。	0.000V	0.000A
	(详细操作参照 4.5.1 节)	2.000 <u>0</u> A	CCL ON

站一止		Save File
カーク	按组合键[] + [save)进入电宁贝软保仔来单。	No. <u>1</u>
<i>达</i> 一上	拉粉宫键武选团 选择但方位罢 0	Save File
舟二 少	按数于键以旋钮,起往休行位直 0。	No. <u>0</u>
第四步		0.000V 0.000A
	按 上 週键 确定 同时 退出 电 子 负 载 保 存 亲 早 。	2.0000A CCL ON

MODE	ССН	;	设置负载 CCH 模式。
CURR	2	;	设置电流值 2A。
INP	ON	;	打开负载。
*SAV	0	;	保存当前状态到位置0指定的 EEPROM 里。

例 2: 在上例的基础上,设置电子负载为 CV 模式,电压值为 40V。关闭电子负载。现在调用保存在位置 0 指定的 EEPROM 里的值。具体操作步骤如下:

步骤	操作细节	液晶显示		
第一步	设置电子负载为 CV 模式,设定电压值为 40V。关闭电子负载。(详细操作参照 4.5.2 节)	0.000V 0.000A 40.00 <u>0</u> V CV OFF		
第二步	按组合键 ^{2nd} + ² _{Recall} ,进入电子负载调用菜单。	Recall File: No. <u>0</u>		
第三步	按数字键或旋钮,选择调用位置0。	Recall File: No. <u>0</u>		
第四步	按 ^{Enter} 键确定并返回。	0.000V 0.000A 2.0000A CCL ON		

上述步骤对应的 SCPI 命令为:

MODE	CV	;	设置负载 CV 模式。
VOLT	40	;	设置电压值 40V。
INP	OFF	;	关闭负载。
*RCL	0	;	调用位置0指定的 EEPROM

4.11 负载保护状态清除

负载保护状态清除操作步骤如下:

- 1. 排除引起电子负载保护的原因。
- 2. 按组合键^{2nd} + ^{Clear}_{Prot Clear}。

例 1: 清除电子负载 RV 保护状态。具体操作步骤如下:

步骤	操作细节	液晶显示
第一步	重新正确连接电源与电子负载。	0.000V 0.0000A 2.000 <u>0</u> A RV OFF

里的值。

岱一止	0.000V	0.0000A
第二少	2.000 <u>0</u> A	CCL OFF

INP:PROT:CLE;清除负载保护状态。

4.12 负载错误信息

当负载有错误发生时,操作步骤如下:

1. 按组合键^{2nd} + ³_{Error},液晶显示错误信息。

例 1: 一个命令发错,错误指示灯亮(红色)。查看错误信息。具体操作步骤如下:

步骤	操作细节	液晶显示
第一步	按组合键 ^{2nd} + ³ , 液晶显示错误信息。	ERROR -103
第二步	如还有错误没有查看,重复第一步操作。	
第三步	如错误已查看完毕,错误指示灯熄灭。此时如重复第一步操作, 液晶屏显示无错误信息。	NO ERROR

上述步骤对应的 SCPI 命令为:

SYST:ERR?; 查询错误代码和信息。

4.13 负载触发

在触发模式为外部(EXTernal)模式时,触发操作如下:

1. 设置待触发功能(详细内容见 2.8 节)。

2. 按组合键^{2nd} + Trigger或触发端子(TRIG IN) 接收到 TTL 低电平, 触发一次触发对象。

例 1: 在触发功能选择 List, 触发一个序列测试。序列为 4.8.1 节例 1 的序列。具体操作步骤如下:

步骤	操作细节
第一步	在主菜单中触发功能选择 List(详细操作参照 4.14.6 节)。
第二步	按组合键 ^{2nd} + ^{Trigger} 或触发端子(TRIG IN) 接收到 TTL 低电平,负载输入根据序列参数进行改变。此时按组合键 ^{2nd} + ^{Trigger} 功能和按组合键 ^{2nd} + ⁴ star功能相同。

上述步骤对应的 SCPI 命令为:

TRIG:FUNC LIST ; 触发功能选择 LIST。

TRIG ;执行一次触发。

4.14 电子负载主菜单

电子负载主菜单操作步骤如下:

1. 按^{Menu}键进入主菜单。

- 2. 使用▲、▼键选择菜单项。
- 使用旋钮或 ◀、 ▶ 键选择参数,或使用数字键或者旋钮结合 ◀、 ▶ 键输入设定 值。按^{Clear}键退出参数修改或退出主菜单。
- 4. 按^{Enter}键确定。
- 5. 按^{Clear}键退出主菜单。

4.14.1 加载缺省值

举例:加载缺省值(Load Default)。具体操作步骤如下:

步骤	操作细节	液晶显示
笛	+ ····································	Load Default:
- \$P	妆—————————————————————————————————————	Yes *No
笛一上	使用旋钮或 < 键选择参数 Yes。按 Enter 键确定。	Load Default:
第 —少		*Yes No
第三步	按PetClass键退出主菜单。	

4.14.2 短路测试

举例: CV 短路测试(Short)。具体操作步骤如下:

步骤	操作细节	液晶显示	
笛—		Load Default:	
わ ク	按	Yes *No	
hote La	使用♥键选择菜单项 Short。使用旋钮或◀键选择参数	Short	
第二步	On。按 ^{Enter} 键确定。	*On Off	
第三步	按 ^{Clear} 键退出主菜单。		
	按Set键进入模式与参数设定菜单。使用▲、▼键选择	0.000V 0.000A	
弟四步	CV 模式。按Enter 键确定同时退出模式与参数设定菜单。	0.000V sCV OFF	
笛五北		0.000V 0.000A	
おユ少	按[mm]) 谜后初电丁贝轼。	0.000V sCV ON	

上述步骤对应的 SCPI 命令为:

INP :SHOR	ON	; 设定负载短路
MODE	CV	; 设定模式
INP	ON	; 打开负载

4.14.3 启动电压锁定及启动电压

举例:设置负载启动电压锁定(Von Latch)关闭,启动电压(Von Point)为1V,打开电子负载。 此例实现负载输入自动打开和关闭,有效简化测试操作。具体操作步骤如下:

步骤 操作细节 液晶显示

笛一生		Load Default:
ヵ 少	按	Yes *No
第二步	使用 🛡 键选择菜单项 Von Latch。使用旋钮或 🕨 键选	Von Latch:
	择参数 Off。按 ^{Enter} 键确定。	*On Off
第三步	使用 🛡 键选择菜单项 Von Point。使用数字键或者旋钮	Von Point:
	结合 🔍 🕨 键输入电压值 1V。按 ^{Enter} 键确定。	1.00 <u>0</u> V
笠田屯		0.000V 0.000A
	按哪哪選退出土采里。	0.00 <u>0</u> A CCH OFF
签工止		0.000V 0.000A
第 山少	按[mm]) 谜 后 初 电 丁 贝 软 。	0.00 <u>0</u> A CCH ON

INP: LATC	OFF	; 负载启动电压锁定关闭。
INP: LATC:VOLT	1	; 启动电压为 1V。
INP	ON	; 打开负载

4.14.4 定电压模式电流限制值

举例:设置电子负载为 CV 模式,电压值为 2V,定电压模式电流限制值(CV Curr Limit) 为 20A。负载打开。具体操作步骤如下:

步骤	操作细节	液晶显示	
笛—	设置电子负载为 CV 模式,电压值为 2V。	0.000V 0.000A	
おシ	(详细操作参照 4.5.2 节)	2.00 <u>0</u> V CV OFF	
' 生		Load Default:	
匊 —少	按 一 一一键进入王采毕。	Yes *No	
第三步	使用 🔽 键选择菜单项 CV Curr Limit。使用数字键或者	CV Curr Limit:	
	旋钮结合◀、▶键输入电流值 20A。按 ^{Enter} 键确定。	20.000A	
笠田止		0.000V 0.000A	
 弗四少	投 ^{Mattem} 键退出王采申。	2.00 <u>0</u> A CCH OFF	
第五步		0.000V 0.000A	
	按[m/off]键启动电子负载。	2.00 <u>0</u> A CCH ON	

上述步骤对应的 SCPI 命令为:

MODE	CV	;	设定模式。
VOLT	2	;	设定电压值 2V。
INP:LIM:CURR	20A	;	设置定电压模式电流限制值 20A。
INP	ON	;	打开负载。

4.14.5 定电流模式电流上升速率及电流下降速率

举例:设置电子负载为 CCH 模式,电流值为 2A,定电流模式电流上升速率(Curr Rise Rate)

为 0.002A/us, 电流下降速率(Curr Fall Rate) 为 0.005A/us。负载打开。负载关闭。具体操作步骤 如下:

步骤	操作细节	液晶显示
第一步	设置电子负载为 CCH 模式,电流值为 2A。	0.000V 0.000A 2.00 <u>0</u> A CCH OFF
第二步	按 ^{Menu} 键进入主菜单。	Load Default: Yes *No
第三步	使用♥键选择菜单项 Curr Rise Rate。使用数字键或者旋 钮结合◀、▶键输入电流值 0.002A/us。按 ^{Enter} 键确定。	Curr Rise Rate: 0.00 <u>2</u> A/us
第四步	使用♥键选择菜单项 Curr Fall Rate。使用数字键或者旋 钮结合◀、▶键输入电流值 0.002A/us。按 ^{Enter} 键确定。	Curr Fall Rate: 0.00 <u>5</u> A/us
第五步	按ProtClear键退出主菜单。	0.000V 0.000A 2.00 <u>0</u> A CCH OFF
第六步	按「mput]键启动电子负载。	0.000V 0.000A 2.00 <u>0</u> A CCH ON
第七步	按「monthing]键关闭电子负载。	0.000V 0.000A 2.00 <u>0</u> A CCH OFF

上述步骤对应的 SCPI 命令为:

MODE	ССН	; 设定模式。
CURR	2	;设定电流值 2V。
CURR:RISE:RATE	0.002	; 定电流模式电流上升速率为 0.002A/us。
CURR:FALL:RATE	0.005	; 定电流模式电流上升速率为 0.005A/us。
INP	ON	;打开负载。
INP	OFF	;关闭负载。

4.14.6 触发功能选择

举例:设定触发功能选择(Trig Fonction)为 Tran。

步骤	操作细节	液晶显示
第一步	按 ^{Menu} 键进入主菜单。	Load Default: Yes *No
第二步	使用♥键选择菜单项 Trig Fonction。使用旋钮或◀ 键选择参数 Tran。按 ^{Enter} 键确定。	Trig Fonction: *Tran List
第三步	按PetClear键退出主菜单。	0.000V 0.000A 0.00 <u>0</u> A CCH OFF

上述步骤对应的 SCPI 命令为:

TRIG:FUNC TRAN ; 触发功能选择瞬态测试。

4.14.7 旋钮功能

举例:设定旋钮功能(Knob)打开。

步骤	操作细节	液晶显示
笛—	+か Menulate 24 3 子 本 出	Load Default:
[−] <i>□</i> 按 [□] · · · · · · · · · · · · · · · · · · ·		Yes *No
第二步	使用♥键选择菜单项 Knob。使用旋钮或◀键选择参	Knob:
	数 On。按 ^{Enter} 键确定。	*On Off
第三步		0.000V 0.000A
	按哪種退出土米里。	0.00 <u>0</u> A CCH OFF

4.14.8 按键声音

举例:设定按键声音(Key Sound)打开。

步骤	操作细节	液晶显示
第一步	按 ^{Menu} 键进入主菜单。	Load Default: Yes *No
第二步	使用♥键选择菜单项 Key Sound。使用旋钮或◀键选择参数 On。按 ^{Enter} 键确定。	Key Sound: *On Off
第三步	按 ^{Elear} 键退出主菜单。	0.000V 0.000A 0.00 <u>0</u> A CCH OFF

4.14.9 通信接口

例 1: 选择 RS232 通信接口(Interface),设置波特率为 9600,奇偶检验为无,数据位为 8, 停止位为 2,流控制为打开。

步骤	操作细节	液晶显示
第一步	按 ^{Menu} 键进入主菜单。	Load Default: Yes *No
第二步	使用♥键选择菜单项 Interface。使用旋钮或◀键选择参数 RS232。按 ^{Enter} 键确定。	Interface: *RS232 USB GPIB
第三步	使用▼键选择菜单项 Baud Rate。使用旋钮或◀、▶ 键选择参数 9600。按 ^{Enter} 键确定。	Baud Rate: *9600 19200
第四步	使用▼键选择菜单项 Parity Check。使用旋钮或▼键 选择参数 None。按 ^{Enter} 键确定。	Parity Check: *None Even Odd
第五步	使用▼键选择菜单项 Data Bit。使用旋钮或▼键选择 参数 8。按 ^{Enter} 键确定。	Data Bit: *8 7
第六步	使用▼键选择菜单项 Stop Bit。使用旋钮或▶键选择参数 2。按 ^{Enter} 键确定。	Stop Bit: 1 *2

第七步	使用 V键选择菜单项 Flow Control。使用旋钮或 4键	Flow Control: *On Off
	选择奓致 On。按 一进 键 啪 定。	011 011
第八步		0.000V 0.000A
	[女 ^{[[[]}]][[]]][[]]][[]]][[]]][[]]][[]]]	0.00 <u>0</u> A CCH OFF

例 2:选择 GPIB 通信接口,设置地址为 18。

步骤	操作细节	液晶显示
第一步	Hennight Hennight A	Load Default:
	按[] 键进入土采毕。	Yes *No
第二步	使用♥键选择菜单项 Interface。使用旋钮或▶键选	Interface:
	择参数 GPIB。按 ^{Enter} 键确定。	RS232 USB *GPIB
第三步	使用 🔽 键选择菜单项 GPIB Address。使用数字键或者	GPIB Address:
	旋钮结合◀、▶键输入参数18。按 ^{Enter} 键确定。	18
第四步		0.000V 0.000A
	牧 ^(mused))堤退出土米平。	0.00 <u>0</u> A CCH OFF

第五章 远程操作

本电子负载支持本地手动操作和计算机远程控制两种操作模式,如何使用仪器自带的按键 或者旋钮操作电子负载在前面章节已经详细介绍,本章将要介绍如何使用远程端口对电子负载 进行操作。在本地和远程编程的一些相似性随着你读这一段将会显现出来。

本章首先帮助你快速熟悉电子负载的远程操作,编程的例子用的是 SCPI 最简形式,更详细的编程说明请参见《Array 372X 系列电子负载编程参考手册》。

5.1 通信端口

5.1.1 RS232

RS232 串口通信端口是本负载的标准配置。用随机自带的串口连接线将负载和计算机正确 连接,在仪器 MENU 菜单选择 RS232 通信端口,并设置相应的波特率,奇偶校验位,数据位, 停止位,流控制通信参数,计算机软件设置相同的参数,在计算机软件界面输入合法的 SCPI 命令即可操作电子负载。

5.1.2 USB

USB 通信端口是仪器的选配端口。只有在负载装入 USB 通信模块和计算机上装入 USB 通 信模块驱动才能使用该功能。用 USB 连接线将仪器和计算机正确连接,在仪器 MENU 菜单里 选中 USB 端口,在计算机软件界面输入合法的 SCPI 命令即可操作电子负载。

5.1.3 GPIB

GPIB 通信端口是仪器的选配端口。只有在负载和计算机上装入相应的 GPIB 通信模块和计算机上装入相应的 GPIB 通信模块驱动才能使用该功能。用 GPIB 连接线将仪器和计算机正确连接,在仪器 MENU 菜单里选中 GPIB 端口,设置 GPIB 地址,计算机软件选择不同的 GPIB 地址,在计算机软件界面输入合法的 SCPI 命令即可操作电子负载。

5.2 流控制选择

在使用 RS232 通信端口时,可选择有流控制或无流控制。仪器有两个选项,ON 和 OFF。 ON 为打开流控制; OFF 为关闭流控制。当流控制选择为 OFF 时,应选择较低的波特率以确保 通信正常。

5.3 远程控制指示灯

仪器面板有个名为 REM 的远程状态指示灯。当电子负载通过 RS232 接收到远程命令 SYSTem:REMote 或者通过 GPIB 接收到命令时, REM 远程状态指示灯点亮, 负载进入远程控制 状态。在远程控制状态下, 所有的键盘和旋钮操作均无效(组合键^{2nd} + ⁰ → ⁰ 除外), 电子负载 的一切操作均受远程控制器控制。在接收到返回本地控制的指令 SYSTem:LOCal 后, REM 远程 状态指示灯熄灭,电子负载返回本地控制状态。在远程控制状态下,也可以通过按下组合键^{2nd}+⁰,让电子负载返回本地控制状态。

5.4 发送一个远程设置命令

如同本地操作仪器一样,可以使用计算机远程设置仪器的工作模式,工作参数。

5.5 返回数据

电子负载可以返回参数设置值、输入电压值、输入电流值、输入功率值等参数到计算机, 也可以返回关于它内部信息和仪器标识的信息。举个例子,"MEASure:CURRent?"查询命令是 要求电子负载返回输入端的实际电流。查阅《Array 372X 系列电子负载 SCPI 编程参考手册》可 以得到查询命令的详细信息。电子负载的输出缓冲区一直保存这些反馈信息直到它被计算机读 取或者新的消息替代。

5.6 远程编程命令

SCPI 命令中有许多为编程者提供的可选关键字,熟悉这些关键字会使您对编程有更加深刻的了解。大多数命令有一个查询语法,查询语法是用来把目前的参数设定值返回到控制器,详细内容参见《Array 372x 系列电子负载 SCPI 编程参考手册》。电子负载的主要功能通过相关的一些命令可以远程编程。当你远程编程电流值,电阻值,电压值和功率值时,下面的一些点是很有必要去记住的。

5.6.1 基本测试模式

不管相应的基本测试模式是否处于工作状态,定电流,定电压,定电阻,定功率的值可以 远程编程。假如输入打开,当相应的模式被选择,相应的编程值将会在输入端起效。

5.6.2 瞬态值

瞬态的定电压,定电流,定电阻高值必须大于各自的瞬态低值,否则瞬态测试关闭。

5.6.3 可编程电流保护

当可编程电流保护功能打开时,电流保护值和电流延迟时间都超过时,电子负载输入关闭。

5.7 定电流模式的例子

这个例子设置了电流值为0.5A,然后读回实际的电流值。

1 "INP O	FF" ;	关闭电子负载输入
2 "MODE C	CL" ;	选择小电流定电流模式
3 "CURR 0.:	5";	设置电流值为 0.5A
4 "INP O	N" ;	打开负载输入

5 "MEAS:CURR?" ; 测量实际输入电流

5.8 定电压模式的例子

这个例子预先设置了触发电压值为 5V,选择了外部触发源。

1 "INP OFF"	;关闭电子负载输入
2 "MODE CV"	;选择定电压模式
3 "VOLT:TRIG 5"	; 预先设置触发电压值 5V
4 "TRIG:SOUR EXT"	;选择外部输入作为触发源
5"INP ON"	;打开负载输入
在这个例子中,当电子负载	接收到外部触发信号,输入电压值将会设置到5V。

5.9 定电阻模式的例子

这个例子设置了电流保护限制值为 3A,电流保护延迟时间 10s,电阻值 10 欧姆以及返回计 算的功率。

1. "INP OFF"	; 关闭电子负载输入
2. "MODE CRM"	;选择中电阻模式
3. "CURR:PROT 3"	;设置电流保护限制值 3A
4. "CURR:PROT:DEL 10"	;设置电流保护延迟时间 10s
5. "CURR:PROT:STAT ON"	; 打开电流保护
6. "RES 10"	;设置电阻值10欧姆
7. "INP ON"	; 打开电子负载输入
8. "MEAS:POW?"	; 测量计算的输入功率值

5.10 连续方式瞬态测试的例子

这个例子设置了电压瞬态高值,电压瞬态低值,上升沿时间,下降沿时间,高值时间,低 值时间及瞬态方式参数。

1 "INP OFF"	;	关闭电子负载输入
2 "MODE CV"	;	选择定电压模式
3 " VOLT:LOW 0.5"	;	设置瞬态低值为 0.5v
4 " VOLT:HIGH 1"	;	设置瞬态高值为 1v
5 "TRAN:LTIM 200us"	;	设置瞬态低值时间为 200us
6 "TRAN:HTIM 300us"	;	设置瞬态高值时间为 300us
7 "TRAN:RTIM 10us"	;	设置瞬态上升沿时间为 10us
8 "TRAN:FTIM 20us"	;	设置瞬态下降沿时间为 20us
9 "TRAN:MODE CONT "	;	选择连续瞬态操作
10 "TRAN ON"	;	打开瞬态测试功能
11 "INP ON"	;	打开电子负载输入

5.11 脉冲方式瞬态测试的例子

这个例子选择了定电压脉冲方式瞬态测试,选择了总线作为触发源,设置了 1ms 高电平脉 冲宽度。

1 "INP OFF"	;	关闭电子负载输入
2 "MODE CV"	;	选择定电压模式
3 "TRIG:SOUR BUS"	;	选择触发源为总线
4 " VOLT:LOW 0.5"	;	设置瞬态低值为 0.5v
5 " VOLT:HIGH 1"	;	设置瞬态高值为 1v
6 "TRAN:HTIM 1ms"	;	设置瞬态高值时间为 1ms
7 "TRAN:RTIM 10us"	;	设置瞬态上升沿时间为 10us
8 "TRAN:FTIM 10us"	;	设置瞬态下降沿时间为 10us
9 "TRAN:MODE PULSE "	;	选择脉冲瞬态操作
10 "TRAN ON"	;	打开瞬态操作功能
11 "INP ON"	;	打开电子负载输入
12 "*TRG"	;	*TRG 命令使电子负载输入端产生一个 1ms 高电平的脉冲

主要技术参数

型号	3720A	3721A		
额定输入	·			
电流	0~30A	0~40A		
电压	$0 \sim 80 V$	$0\sim 80V$		
功率*1	250W at 40°C	400W at 40°C		
输入特性				
输入特性曲线	80V 80V 8. 3V 0. 6V 0 3. 1A 3CA	$\begin{array}{c} V \\ 80V \\ 10V \\ 0. 6V \\ 0 \overline{5A} \end{array} \begin{array}{c} 400W \\ 400W \\ 10V \\ 40A \end{array}$		
最小工作电压 @最大电流	0. 6V	0. 6V		
低量程	0~3A	0~4A		
分辨率	0.1mA	0. 1mA		
精度	0.1%+5mA	0.1%+5mA		
高量程	0~30A	0~40A		

分辨率

分辨率	1mA	1mA
精度	0.1%+10mA	0.1%+10mA
定电压模式		
量程	0~80V	0~80V
分辨率	$1 \mathrm{mV}$	$1 \mathrm{mV}$
精度	0.1%+10mV	0.1%+10mV
定电阻模式		
低量程	$0.02\sim 2.\Omega$	$0.02\sim 2.\Omega$
公轴索	0.1 m Ω	$0.1m\Omega$
ガルー 精度 @I>4A	$0.5\% + 12m\Omega$	$0.5\% + 12m \Omega$
	2~200 Ω	$2 \sim 200 \Omega$
分辨率	8. 611S*2	8. 6115
精度 @V>8V	0. 3%+1. 25mS	$0.3\% \pm 1.25$ mS
高量程	20~2000.9	20~2000.9
公辨率	0.96115	0.96uS
精度 @V>8V	0. 3%+0. 625mS	0. 3%+0. 625mS
定功率模式		
量程	$0{\sim}250$ W	$0{\sim}400$ W
 分辨率 @P<100₩	1 mW	1 mW
@P≥100W	1 OmW	1 OmW
精度	0.2%+600mW	0.2%+600mW
电流测量值		•
低量程	0~3A	0~4A
分辨率	0.1mA	0.1mA
精度	0.05%+4mA	0.05%+4mA
高量程	0~30A	0~40A
分辨率	1mA	1mA
精度	0.05%+8mA	0.05%+8mA
电压测量值		
量程	$0\sim 80V$	$0 \sim 80 V$
分辨率	1mV	1mV
精度	0.1%+8mV	0.1%+8mV
功率测量值		
量程	$0\sim\!250W$	$0\sim\!400$ W
分辨率 @P<100W	$1\mathrm{mW}$	1 mW
@P≥100₩	10mW	1 OmW
精度	0.1%+600mW	0.1%+600mW
电流速率		•
设定范围 CCH	1mA/us \sim 3A/us	1mA/us~4A/us
CCL^{*3}	100 uA/us ~ 300 mA/us	100 uA/us \sim 400mA/us

1mA/us

1mA/us

精度*4	3% + 10us	3% + 10us
瞬态测试		
瞬态模式	连续、脉冲、翻转	连续、脉冲、翻转
频率范围*5	0.38 Hz \sim 50kHz	0.38Hz~50kHz
高/低值时间	$0{\sim}655.35{ m ms}$	0∼655.35ms
分辨率	10us	10us
精度	0.2%+10us	0.2%+10us
上升/下降沿时间	10us~655.35ms	10us~655.35ms
分辨率	10us	10us
精度	0.2%+10us	0.2%+10us
序列测试		
步长定时	10us~100000s	10us~100000s
分辨率	10us	10us
精度	0.2%+10us	0.2%+10us
序列长度	1~50步	1~50步
循环次数	$1{\sim}65535$	$1{\sim}65535$
存储容量	7 组	7 组
扩展功能	Chain	Chain
电池放电		
放电时间	1s~100h	1s~100h
分辨率	1s	1s
精度	0.2%+1s	0. 2%+1s
电池容量	1 mAh \sim 3000Ah	1 mAh \sim 4000Ah
分辨率	1mAh	1mAh
精度	0.3%+0.01Ah	0.3%+0.01Ah
短路测试		
定电流低量程	3. 3A	4.4A
定电流高量程	33A	44A
定电压模式	OV	OV
定电阻低量程	0. 018 Ω	0.018Ω
定电阻中量程	1.8Ω	1.8Ω
定电阻高量程	$18 \ \Omega$	18Ω
定功率电压源模式	270W	420W
定功率电流源模式	OW	OW
最大速率		
电流	3A/us	4A/us
电压	0.6V/us	0.6V/us
开路电阻	$\geq 20 \mathrm{k} \Omega$	$\geq 20 \mathrm{k} \Omega$
触发输入		
触发电平	TTL 下降沿	TTL 下降沿
触发脉冲宽度	≥10us	≥10us
最大直流输入		

电流	33A	44A
电压	84V	84V
伊拉古纶	过流,过压,过温,过功率,	过流,过压,过温,过功率,
体扩功能	极性反转	极性反转
反向电流容量		
输入 OFF	25A	30A
输入 0N	40A	50A
纹波和噪声		
电流(rms/p-p)	3mA/30mA	3mA/30mA
电压(rms)	5mV	5mV
工作环境		
温度	$0 \sim 50^{\circ} \text{C}$	0~50° C
相对湿度	≪85%	≪85%
远程接口* ⁶	RS232, GPIB, USB	RS232, GPIB, USB
编程语言	SCPI	SCPI
交流输入		
电压	AC110V 或 AC220V±15%	AC110V 或 AC220V±15%
频率	48 to 63Hz	48 to 63Hz
净重	5.8kg	5.8kg

型号	3722A	3723A	
额定输入			
电流	0~20A	$0\sim$ 30A	
电压	$0 \sim 200 V$	$0{\sim}200V$	
功率 *1	200W at 40°C	350W at 40°C	
输入特性			
输入特性曲线	10V 1. 2V 0 1A 2CA I	200V 11. 7V 1. 2V 0 1. 75A 350W 1. 2V 0 1. 75A 30A	
最小工作电压 @最大电流	1. 2V	1. 2V	
定电流模式			
低量程	$0\sim$ 2A	0~3A	
分辨率	0. 1mA	0.1mA	
精度	0.1%+5mA	0.1%+5mA	
高量程	0~20A	0~30A	
分辨率

分辨率	1mA	1mA
精度	0.1%+10mA	0.1%+10mA
定电压模式		
量程	0~200V	0~200V
分辨率	2mV	2mV
精度	0.1%+25mV	0.1%+25mV
定电阻模式		I
低量程	$0.0666 \sim 6.66 \Omega$	$0.0666 \sim 6.66 \Omega$
分辨率	0. $1 \text{m} \Omega$	$0.1 \mathrm{m} \Omega$
精度 @I>3A	0. 5%+40m Ω	0. 5%+40m Ω
中量程	6. $66 \sim 666 \Omega$	$6.66{\sim}666\Omega$
分辨率	2.6uS	2.6uS
精度 @V>20V	0.3%+375uS	0.3%+375uS
高量程	66.6 \sim 6660 Ω	66.6~6660Ω
分辨率	0.29uS	0. 29uS
精度 @V>20V	0.3%+188uS	0.3%+188uS
定功率模式		
量程	$0\sim 200$ W	$0{\sim}350$ W
分辨率 @P<100W	1 mW	$1\mathrm{mW}$
@P≥100₩	1 OmW	1 OmW
精度	0.2%+600mW	0.2%+600mW
电流测量值		
低量程	$0\sim$ 2A	0~3A
分辨率	0. 1mA	0.1mA
精度	0.05%+4mA	0.05%+4mA
高量程	$0\sim$ 20A	0~30A
分辨率	1 mA	1mA
精度	0.05%+8mA	0.05%+8mA
电压测量值		
量程	$0 \sim 200 V$	$0 \sim 200 V$
分辨率	1mV	$1 \mathrm{mV}$
精度	0.1%+50mV	0.1%+50mV
功率测量值		
量程	$0\sim 200 W$	$0{\sim}350$ W
分辨率 @P<100W	$1\mathrm{mW}$	1mW
@P≥100₩	1OmW	1 OmW
精度	0.1%+600mW	0.1%+600mW
电流速率		
设定范围 CCH	1mA/us \sim 2A/us	1mA/us~3A/us
CCL^{*3}	100 uA/us ~ 200 mA/us	100 uA/us \sim 300mA/us

1mA/us

1mA/us

精度*4	3% + 10us	3% + 10us
瞬态测试		
瞬态模式	连续、脉冲、翻转	连续、脉冲、翻转
频率范围*5	0.38 Hz \sim 50kHz	0.38 Hz \sim 50kHz
高/低值时间	$0{\sim}655.35\mathrm{ms}$	0~655.35ms
分辨率	10us	10us
精度	0.2%+10us	0.2%+10us
上升/下降沿时间	10us~655.35ms	10us~655.35ms
分辨率	10us	10us
精度	0.2%+10us	0.2%+10us
序列测试		
步长定时	10us~100000s	10us~100000s
分辨率	10us	10us
精度	0.2%+10us	0.2%+10us
序列长度	1~50步	1~50步
循环次数	$1{\sim}65535$	$1{\sim}65535$
存储容量	7组	7组
扩展功能	Chain	Chain
电池放电		
放电时间	1s~100h	1s~100h
分辨率	1s	1s
精度	0.2%+1s	0.2%+1s
电池容量	1 mAh \sim 2000Ah	1 mAh \sim 3000Ah
分辨率	1mAh	1mAh
精度	0.3%+0.01Ah	0.3%+0.01Ah
短路测试		
定电流低量程	2.2A	3. 3A
定电流高量程	22A	33A
定电压模式	OV	OV
定电阻低量程	0.06Ω	0.06Ω
定电阻中量程	6 Ω	6Ω
定电阻高量程	60 Ω	60 Ω
定功率电压源模式	220W	370W
定功率电流源模式	OW	OW
最大速率		
电流	2A/us	3A/us
电压	0.6V/us	0.6V/us
开路电阻	$\geq 20 \mathrm{k} \Omega$	$\geqslant 20 \mathrm{k} \Omega$
触发输入		
触发电平	TTL 下降沿	TTL 下降沿
触发脉冲宽度	≥10us	≥10us
最大直流输入		

电流	22A	33A		
电压	210V	210V		
保护功能	过流,过压,过温,过功率,	过流,过压,过温,过功率,		
	极性反转	极性反转		
反向电流容量				
输入 0FF	25A	25A		
输入 0N	35A	40A		
纹波和噪声				
电流(rms/p-p)	3mA/30mA	3mA/30mA		
电压(rms)	12mV	12mV		
工作环境				
温度	0~50° C	0~50° C		
相对湿度	≪85%	≪85%		
远程接口* ⁶	RS232, GPIB, USB	RS232, GPIB, USB		
编程语言	SCPI	SCPI		
交流输入				
电压	AC110V 或 AC220V±15%	AC110V 或 AC220V±15%		
频率	48 to 63Hz	48 to 63Hz		
净重	5.8kg	5.8kg		

*1、环境温度在40°C以下时仪器最大连续输入功率可达到额定功率,40°C以上 至50°C,最大连续输入功率由额定功率的100%线性下降至75%。

- *2、"S"为电导单位西门子,电导是电阻的倒数。
- *3、CCL模式下的电流变化率是设定值的1/10。
- *4、转变时间是指输入变化从10%到90%所需要的时间。
- *5、瞬态测试频率由高/低值时间和上升/下降沿时间决定。

*6、标准配备 RS232 接口,另可选配 GPIB 和 USB 接口。

