Isolation and Measuring transducers
SIM - Current transducer for AC conversion

22.5 mm housing

Application

For the current monitoring of alternating voltage systems.

Description

The SIM current transducer uses the terminals A1 and A2 for connection to 24 V AC/DC and 230 V AC (please specify). The green LED indicates the connection of the power supply, which must be continuously connected to the transducer.

Function

The SIM transducer converts a flowing alternating current connected to the terminals B1 and B2 into an independent current or voltage signal. The desired output signal can be adjusted with the DIP switches located on the relay's front panel. The current or voltage signals are connected to different terminals (1 out or U out). The SIM has three-way isolation.

Options

Other supply voltages available upon request.

Part number

013006	SIM	0...20mA AC	24V AC/DC
013007	SIM	0...100mA AC	24V AC/DC
013008	SIM	0...500mA AC	24V AC/DC
013009	SIM	0...1A AC	24 V AC/DC
013010	SIM	0...5A AC	24V AC/DC
013030	SIM	0...20mA AC	230 V AC
013031	SIM	0...100mA AC	230V AC
013032	SIM	0...500mA AC	230 V AC
013033	SIM	0...1A AC	230 V AC
013034	SIM	0...5A AC	230 V AC

DIP switch adjustments

Approvals
 C

Mounting

Snap-on mounting using a standard DIN rail EN 50022. The unit is designed to allow side-by-side mounting, with an ambient temperature of $<60^{\circ} \mathrm{C}$.
22.5 mm housing

Technical data

Supply

Supply voltage		or：	24 V AC／DC	－15／＋10\％	
		230 V AC	－15／＋10\％		
Frequency range：			$0 / 50$ ．．．60Hz		
Power consumption：			approx．2VA		
Operating mode：			continuous		
Insulation voltage：			$\begin{array}{lll} 24 \mathrm{~V} & -> & 1 \mathrm{kV} \\ 230 \mathrm{~V} & \text {-> } & 3,75 \mathrm{kV} \end{array}$		
Measuring range					
Measuring accuracy：				0.5% over the temperature range	e entire and voltage
			10\％continuous， 100% 1s		
Insulation voltage：			$3,75 \mathrm{kV}$		
Part number					
24V AC／DC	230 V AC				
013006	013030		0．．．20mA AC		
013007	013031		0．．．100mA AC		
013008	013032		0．．．500mA AC		
013009	013033		0．．．1A AC		
013010	013034		0．．．5A AC		

Output values

Voltage loss in measuring range：max 150 mV
Output：
Ohmic resistance：
Insulation voltage：

Operation indicators

Supply voltage：
General data
Ambient temperature：
Climate resistance：
Mounting position：
Vibration resistance：
Test voltage：
Isolation group：
Protection class：
Connection terminals：
Connection cross section：

Finger touch proof：
Mounting：
Dimensions I x w x h：

Weight：

24 V AC／DC version 76 g
230V AC version
max． 150 mV
0 （4）．．．20mA DC
0 （2）．．．10V DC
current output 750Ω
voltage output $2 \mathrm{k} \Omega$ 3，75kV

LED，green
$-25 \ldots+60^{\circ} \mathrm{C}$
VDE 0435T． 2021
any
VDE 0435T． 2021
2.5 kV

VDE 0110 Group C 250
Terminals IP 20
Housing IP 40
Crosshead screws；
M3．5 self opening
Multi－strand wire with wire sleeves $2 \times 2.5 \mathrm{~mm}^{2}$ single wire $2 \times 2.5 \mathrm{~mm}^{2}$
VDE 0106T． 100 and VBG4
Symmetrical DIN rail EN 50022
$78 \mathrm{~mm} \times 22.5 \mathrm{~mm} \times$ 110 mm

150 g

Example

The SIM converts the load current into a voltage signal．The load current is digitally displayed using the HSB4824D．

Dimensions

Connections

The terminal assignment for the connections is located on the front panel of the relay．Reading the front panel from top to bottom，the connections are in the following order：

Upper side	Right：	$n c-n c-n c-n c$
	Left：	$B 1-A 1-I_{\text {out }}-U$ out
Lower side	Right：	$n c-n c-n c-n c$
		$B 2-A 2-n c-G N D$

