DC/DC Power Modules 46–60 W PKG 2000 I

- Efficiency typ 84% @ 5 V and full load
- Low profile 11.0 mm (0.43 in.)
- 1,500 V dc isolation voltage (duals = 1,000 V dc)
- *MTBF* > 200 years at +75 °C case
- Rugged mechanical design and efficient thermal management, max +100 °C case
- EMI measured according to EN 55 022 and FCC part 15J

The PKG 2000 I series of low profile DC/DC Power Modules are intended as distributed power sources in decentralized +24 V DC power systems. They can be used as on-board distributed power modules, or serve as building blocks for more centralized power boards. The PKG series of DC/DC power modules provide up to 60 W of output power utilizing the standard EriPower™ PKA/PKE pin-out, with an even smaller footprint, and a power density of 20 W/cu.in. The high efficiency makes it possible to operate over a wide temperature range without any extra heatsinks. At forced convection cooling >200 lfm (1 m/s), the PKG units can deliver full power without heatsinks up to +60 °C ambient. With derated output power it can also operate in

Product Program

temperature controlled environments with free convection cooling.

By adding external heatsinking, the temperature range can be extended even further. Thanks to their peak power capability, the PKG series is ideal for applications where max power is only required during short durations e.g. in disc drives.

The PKG series use ceramic substrates with plated copper in order to achieve good thermal management, low voltage drops and a high efficiency.

The products are manufactured in highly automated production lines using SMT, laser trimming, 100% burn-in and ATE final inspection.

Since 1991, Ericsson Components AB is an ISO 9001 certified supplier.

	V ₀ /I ₀ n	nax		
VI	Output 1	Output 2	P ₀ max	Ordering No.
24 V	3.3 V/14 A ¹⁾ 5 V/12 A 12 V/4 A 15 V/3.2 A	12 V/4 A 15 V/3.2 A	46 W 60 W 60 W 60 W	PKG 2410 PI PKG 2611 PI PKG 2623 PI PKG 2625 PI

1) Adjustable to 2.5 V

General

Absolute Maximum Ratings

Charac	teristics	min	max	Unit
T _C	Case temperature @ max output power	- 45	+ 100	°C
Ts	Storage temperature	- 55	+125	°C
VI	Input voltage	- 0.5	+40	V dc
VISO	Isolation voltage Singel output (input to output test voltage) dual output	1,500 1,000		V dc
V _{RC}	Remote control voltage pin 1	- 10	+10	V dc
Vadj	Output adjust voltage pin 10	-10	+10	V dc

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are normally tested with one parameter at a time exceeding the limits of Output data or Electrical Characteristics. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

Input T_C < T_C max

Charac	teristics	Conditions	min typ		max	Unit
VI	Input voltage range ¹⁾		18		36	V
VIoff	Turn-off input voltage	(See Operating Information)		16		V
VIon	Turn-on input voltage	(See Operating Information)		17		V
r _I rush	Equivalent inrush current resistance			10		mΩ
CI	Input capacitance			3.6		μF
P _{Ii}	Input idling power	$I_O=0, T_C=-30+90$ °C		1.0	2.0	W
P _{RC}	Input stand-by current	$ V_I = 26 \ V, \ T_C = +25 \ ^\circ C \\ RC \ connected \ to \ pin \ 4 $		1.0		W

Environmental Characteristics

Characteristics		Test procedure & cond	litions
Vibration (Sinusoidal)	IEC 68-2-6 F _c	Frequency Amplitude Acceleration Number of cycles	10–500 Hz 0.75 mm 10 g 10 in each axis
Random vibration	IEC 68-2-34 E _d	Frequency Acceleration Spectral density Duration Reproducibility	10500 Hz 0.5 g ² /Hz 10 min in 3 directions medium (IEC 62-2-36)
Shock (Half sinus)	IEC 68-2-27 E _a	Peak acceleration Shock duration	200 g 3 ms
Temperature change	IEC 68-2-14 N _a	Temperature Number of cycles	-40°C to +125°C 100
Accelerated damp heat	IEC 68-2-3 C _a with bias	Temperature Humidity Duration	85°C 85% RH 1000 hours
Solder resistability	IEC 68-2-20 T _b 1A	Temperature, solder Duration	260°C 10 13s
Resistance to cleaning solvents	IEC 68-2-45 XA Method 1	Water Isopropyl alcohol Terpens Method	+55 ±5 °C +35 ±5 °C +35 ±5 °C with rubbing

Safety

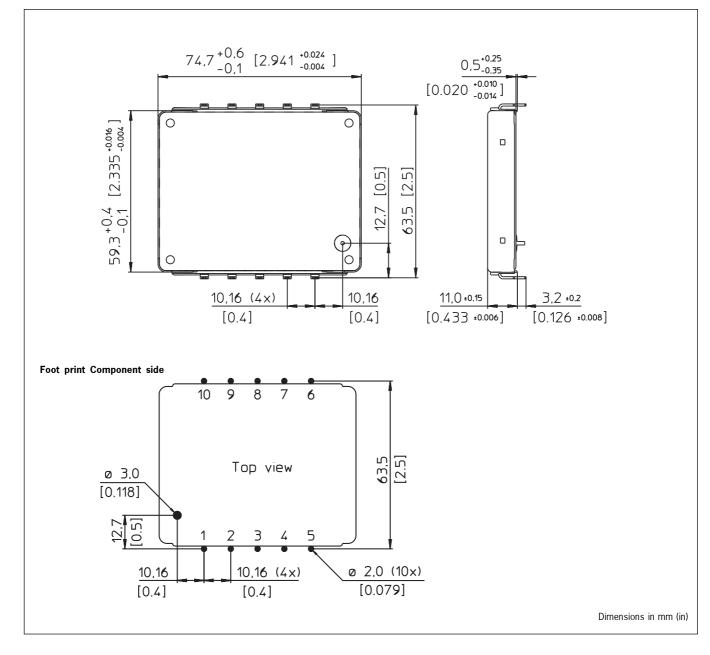
The PKG 2000 I Series DC/DC power modules are designed in accordance with EN 60 950, *Safety of information technology equipment including electrical business equipment.* SEMKO certificate no. 9738244.

The PKG power modules are recognized by UL and meet the applicable requirements in UL 1950 *Safety of information technology equipment*, the applicable Canadian safety requirements and UL 1012 *Standard for power supplies*.

The DC/DC power module shall be installed in an end-use equipment and considerations should be given to measuring the case temperature to comply with T_{Cmax} when in operation. They are intended to be supplied by isolated secondary circuitry and shall be installed in compliance with the requirements of the ultimate application. If connected to a 24 V DC power system reinforced insulation must be provided in the power supply that isolates the input from the ac mains. The isolation in the DC/DC power module is an operational insulation in accordance with EN 60 950. One pole of the input and one pole of the output is to be grounded or both are to be kept floating.

The terminal pins are only intended for connection to mating connectors of internal wiring inside the end-use equipment.

The isolation voltage is a galvanic isolation and is verified in an electric strength test. Test voltage $(V_{\rm ISO})$ between input and output and between case and output is 1,500 V dc (duals = 1,000 V dc) for 60 s. In production the test duration may be decreased to 1 s.


The capacitor between input and output has a value of 4.7 nF (duals = 22 nF) and the leakage current is less than $1\mu A @ 26$ Vdc.

Flammability ratings of the terminal support and internal plastic construction details meets UL 94V-0.

Note:

¹⁾ The input voltage range 19...36 V meets the requirements for Normal input voltage range in 24 V DC power systems, 20...30 V. At input voltages exceeding 36 V (abnormal voltage) the power loss will be higher than at normal input voltage and T_C must be limited to max +90 °C. Absolute max continuous input voltage is 40 V dc. Output characteristics will be marginally affected at 18 V (see also Turn-off Input Voltage).

Mechanical Data

Connections

Pin	Designation	Function
1	RC	Remote control. To turn-on and turn-off the output.
2	TOA	Turn-on/off input voltage adjust (see Operating information).
3	– In	Negative input. Connected to case.
4	+In	Positive input.
5	NC	Not connected.
6	– Out 2	Negative output 2.
7	+Out 2	Positive output 2.
8	– Out 1	Negative output 1.
9	+Out 1	Positive output 1.
10	Vadj	Output voltage adjust.

Weight

Maximum 75 g (2.66 oz).

Case

Blue anodized aluminium casing with embedded tin plated copper pins.

Thermal Data

Two-parameter model

Power dissipation is generated in the components mounted on the ceramic substrate. The thermal properties of the PKG DC/DC power module is determined by thermal conduction in the connected pins and thermal convection from the substrate via the case.

The two-parameter model characterize the thermal properties of the PKG power module and the equation below can be used for thermal design purposes if detailed information is needed. The values are given for a power module mounted on a printed board assembly (PBA).

Note that the thermal resistance between the substrate and the air, $R_{th \ sub-A}$ is strongly dependent on the air velocity.

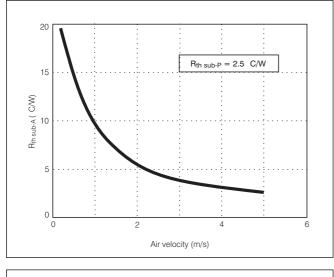
 $\begin{array}{l} T_{sub} = P_d \times R_{th \; sub \cdot P} \times R_{th \; sub \cdot A} / (R_{th \; sub \cdot P} + R_{th \; sub \cdot A}) \; + \; (T_P - T_A) \\ \times \; R_{th \; sub \cdot A} / (R_{th \; sub \cdot P} + R_{th \; sub \cdot A}) \; + \; T_A \end{array}$

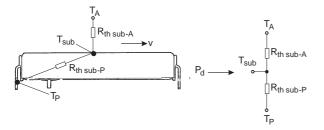
Where:

 P_d : dissipated power, calculated as $P_O \times (1/\eta-1)$

 T_{sub} : max average substrate temperature, $\approx T_{Cmax}$

T_A : ambient air temperature at the lower side of the power module


 $T_P \qquad \ \ :$ average pin temperature at the PB solder joint

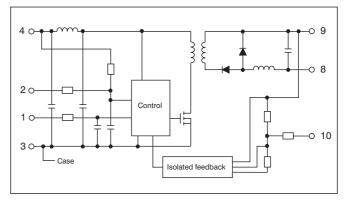

 $R_{th \ sub-P}$: thermal resistance from T_{sub} to the pins

 $R_{th sub-A}$: thermal resistance from T_{sub} to T_A

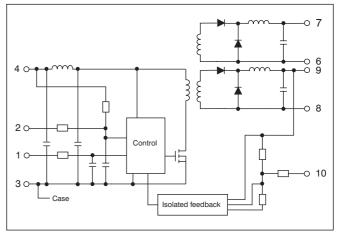
v : velocity of ambient air.

Air velocity in free convection is 0.2–0.3 m/s (40-60 lfm).

Over-Temperature Protection


The PKG DC/DC power modules are protected from thermal overload by an internal over-temperature shutdown circuit.

When the case temperature exceeds +115 °C, the converter will automatically shut down. It will automatically restart when the case temperature cools below +115 °C.


Electrical Data

Fundamental circuit diagrams

Single output

PKG 2410 PI

 T_C = $-30\ldots+90^\circ C,\,V_I$ = $19\ldots36\,V$ unless otherwise specified.

Output

Charao	teristics	Conditions			Output 1		Unit
Charac	teristics	Conditions		min	typ	max	Unit
V _{Oi}	Output voltage initial setting and accuracy	$T_c = \pm 25^{\circ}C$ Io = I	omay VI = 26 V	3.28	3.30	3.32	V
•01	Output adjust range ¹⁾	- 1(-+25 0, 1() -1	$\int du $	2.40		3.65	V
Vo	Output voltage tolerance band	Long term drift included	$I_{O} = 0.1 \dots 1.0 \times I_{O \max}$	3.10		3.40	V
	Idling voltage	$I_{O} = 0 A$				4.0	V
	Line regulation	$I_O = I_O \max$			10		mV
	Load regulation	$I_0 = 0.1 \dots 1.0 \times I_0$	max, V _I = 26 V 35		mV		
t _{tr}	Load transient recovery time				100	150	μs
V	Load transient voltage	$I_O=0.1\ldots 1.0 \times I_O \text{ max}, V_I=26 \text{ V}$ load step = $0.5 \times I_O \text{max}$			+200		mV
Vtr	Load transient voltage				-300		mV
T _{coeff}	Temperature coefficient ²⁾	$I_O = I_O \max$, $T_C < T_C r$	nax	see PKG 2	410 Temperature cha	aracteristics	
tr	Ramp-up time	Io-	$0.1\ldots0.9\times V_O$		10	15	ms
ts	Start-up time	$\begin{tabular}{ c c c c c } \hline I & I & I \\ \hline I_{O} = 0 & A & I_{O} = I_{O} max & I_{O} = I_{O} max & I_{O} = 0.1 \dots 1.0 \times I_{O} max & I_{O} = 0.1 \dots 1.0 \times I_{O} max & I_{O} = I_{O} max, T_{C} < T_{C} max & I_{O} = I_{O} max, T_{C} < T_{C} max & I_{C} < I_{C} max & I_{O} = I_{O} max & I_{O} max & I_{O} = I_{O} max & I_{O} max & I_{O} = I_{O} max & I_{O}$	From V_I connection to $V_O = 0.9 \times V_{Oi}$		15		ms
Io	Output current			0		14	А
P _O max	Max output power ³⁾	Calculated value			46		W
I _{lim}	Current limiting threshold	$T_C < T_C \max$		14.4			А
Isc	Short circuit current	$V_{\rm O} = 0.2 \dots 0.5 \text{V},$	$T_A = 25 \degree C$		18		А
17		TT	20 Hz5 MHz		60	100	mV _{p-p}
V_{Oac}	Output ripple & noise	$I_{O} = I_{O} \max$	0.6030 MHz			70	dBµV
SVR	Supply voltage rejection (ac)	f = 100 Hz sine wa (SVR = 20 log (1 V	ve, 1 Vp-p, $V_I = 26 V$ Vp-p/V _{Op} -p))	45			dB
OVP	Over voltage protection	$I_{\rm O} > 0.1 \times I_{\rm Omax}$			4		V

See Operating information.
 Temperature coefficient is positive at low temperatures and negative at high temperatures.
 See also Typical Characteristics, Power derating.

Miscellaneous

Charact	eristics	Conditions	min typ i		max	Unit
η	Efficiency	$I_{O} = I_{O max}, V_{I} = 26 V$		79.5		%
Pd	Power dissipation	$I_O = I_O \max, V_I = 26 V$		12		W

PKG 2611 PI

 $T_C = -30...+90^{\circ}C$, $V_I = 19...36V$ unless otherwise specified.

Output

01		O			Output 1		11
Charac	teristics	Conditions		min	typ	max	— Unit
V _{Oi}	Output voltage initial setting and accuracy	$-T_{C} = +25^{\circ}C, I_{O} = I$	omay $V_{\rm f} = 26 \rm V$	5.12	5.15	5.18	v
•01	Output adjust range ¹⁾	10-120 0,10-1		4.60		typ max	V
Vo	Output voltage tolerance band	Long term drift included	$I_O\!=\!0.1\ldots\!1.0\!\times\!I_O\max$	5.05		5.25	V
	Idling voltage	$I_{O} = 0 A$				5.80	V
	Line regulation	I _O =I _O max			10		mV
	Load regulation	$I_0 = 0.11.0 \times I_0$	max, $V_I = 26 \text{ V}$		30		
t _{tr}	Load transient recovery time				100	150	μs
Vtr	tr Load transient voltage		$ I_O = 0.1 \dots 1.0 \times I_O \text{ max}, V_I = 26 \text{ V} \\ load step = 0.5 \times I_O \text{max} $		+350		mV
v _{tr}	Load transient voltage				-500		mV
T _{coeff}	Temperature coefficient ²⁾	$I_O = I_O \max, T_C < T_C r$	nax	see PKG 2	611 Temperature cha	aracteristics	
tr	Ramp-up time	- Io=	$0.1\dots0.9\times V_O$		10	15	ms
ts	Start-up time	$0.11.0 \times I_{O}$ max	From V_I connection to V_O = 0.9 \times V_{Oi}		20	5.18 5.60 5.25 5.80 150 racteristics 15 12 12	ms
IO	Output current			0		12	Α
P _O max	Max output power ³⁾	Calculated value			60		W
I _{lim}	Current limiting threshold	$T_C < T_C \max$		12.1			А
Isc	Short circuit current	$V_{\rm O} = 0.2 \dots 0.5 \text{V},$	$T_A = 25 \degree C$		17		Α
V	Output ringle 8 pairs	тт	20 Hz5 MHz		50	100	mV _{p-p}
V_{Oac}	Output ripple & noise	$I_O = I_O \max$	0.6030 MHz			80	dBµV
SVR	Supply voltage rejection (ac)	f = 100 Hz sine wa (SVR = 20 log (1 V					dB
OVP	Over voltage protection	$I_O > 0.1 \times I_O \max$			6		V

See Operating information.
 Temperature coefficient is positive at low temperatures and negative at high temperatures.
 See also Typical Characteristics, Power derating.

Miscellaneous

Charact	eristics	Conditions	min	typ	max	Unit
η	Efficiency	$I_O = I_{Omax}, V_I = 26 V$		84		%
Pd	Power dissipation	$I_O = I_O \max, V_I = 26 \ V$		11.5		W

PKG 2623 PI

 T_C = -30...+90°C, V_I = 19...36 V unless otherwise specified. $I_{O1}\ \text{nom}$ = 2.5 A, $I_{O2}\ \text{nom}$ = 2.5 A.

Output

	Conditions			Output 1		Output 2			11
teristics	Conditions		min	typ	max	min	typ	max	Unit
Output voltage initial setting and accuracy	$T_{c} = +25^{\circ}C$ $I_{c} = 2$	$25 \text{ A} \text{ V}_{r} = 26 \text{ V}$	11.98	12.10	12.22	11.98	12.10	12.22	V
Output adjust range ¹⁾			8.50		13.20	8.50		13.20	V
Output voltage tolerance band	Long term drift included	$ \begin{matrix} I_{O}\!=\!0.1 \dots 1.0 \times I_{O} \mathrm{nom} \\ I_{O1}\!=\!I_{O2} \end{matrix} $	11.70		12.50	11.70		12.60	V
Idling voltage	$I_O = 0 A$				12.95			20	V
Line regulation	$I_O = I_O$ nom	$V_I = 1936 V$		10					mV
Load regulation	$ \begin{matrix} I_{O1} = 0.1 \dots 1.0 \times I_{O} \\ V_{I} = 26 \ V \end{matrix} $	1 nom, $I_{O2} = I_{O2}$ nom,		10					
Load transient recovery time		$10 - 0.1 + 1.0 \times 10 \text{ rm}$ $V_{t} = 26 V_{t}$					100		μs
I and transient voltage		load step = $0.5 \times I_{Onom}$, $I_{O1} = I_{O2}$		+500			+500		mV
Load transient voltage				-850			-850		mV
Temperature coefficient ²⁾	$I_O = I_O \text{ nom}, T_C < T_C T_C$	nax	see PKG 2623 Temperature characteristics					cs	
Ramp-up time	I.e	$0.1\ldots0.9\times V_O$		15			15		ms
Start-up time	$0.11.0 \times I_{Onom}$	From V_I connection to $V_O = 0.9 \times V_{Oi}$		25			25		ms
Output current			0		4.0	0		4.0	А
Max total output power ³⁾	Calculated value				(30			W
Current limiting threshold	$T_C < T_C \max$				min 1.05	× P _{O max}	4)		
Short circuit current	$V_0 = 0.2 \dots 0.5 V, T$	$_{\rm A} = 25 ^{\circ}{\rm C}, {\rm R}_{\rm SC} > 0.1 \Omega$		6			6		А
	TT	20 Hz 5 MHz		60	150		60	150	mV _{p-p}
Output ripple & noise	$I_{O} = I_{O}$ nom	0.6030 MHz			75			75	dBµV
Supply voltage rejection (ac)	f = 100 Hz sine wa (SVR = 20 log (1 V	ve, $1 V_{p-p}$, $V_I = 26 V$ V_{p-p}/V_{Op-p})	43			43			dB
Over voltage protection	$I_O > 0.1 \times I_O max$			15					V
	setting and accuracy Output adjust range ¹⁾ Output voltage tolerance band Idling voltage Line regulation Load regulation Load transient recovery time Load transient voltage Temperature coefficient ²⁾ Ramp-up time Output current Max total output power ³⁾ Current limiting threshold Short circuit current Output ripple & noise Supply voltage rejection (ac)	Output voltage initial setting and accuracy $T_C = +25 ^{\circ}C$, $I_O = 2$ Output adjust range ¹⁾ $T_C = +25 ^{\circ}C$, $I_O = 2$ Output voltage tolerance bandLong term drift includedIdling voltage $I_O = 0 ^{\circ}A$ Line regulation $I_O = I_O ^{\circ}N$ Load regulation $I_O = I_O ^{\circ}N$ Load regulation $I_O = 0.1 \dots 1.0 \times I_O$ Load transient recovery time $I_O = 0.1 \dots 1.0 \times I_O ^{\circ}N$ Load transient voltage $I_O = I_O ^{\circ}N, T_C < T_C ^{\circ}N$ Ramp-up time $I_O = I_O ^{\circ}N, T_C < T_C ^{\circ}N$ Start-up time $I_O = 0.1 \dots 1.0 \times I_O ^{\circ}N$ Output current $I_O = 0.1 \dots 1.0 \times I_O ^{\circ}N$ Max total output power ³)Calculated valueCurrent limiting threshold $T_C < T_C ^{\circ}N ^{\circ}N$ Short circuit current $V_O = 0.2 \dots 0.5 ^{\circ}N ^{\circ}N$ Output ripple & noise $I_O = I_O ^{\circ}N ^{\circ}$	$\begin{tabular}{ c c c c } \hline & & & & & & & & & & & & & & & & & & $	$\begin{tabular}{ c c c c } \hline \mbox{with constraints} & \begin{tabular}{ c c c c c c } \hline \mbox{with constraints} & \begin{tabular}{ c c c c c c c } \hline \mbox{with constraints} & \begin{tabular}{ c c c c c c } \hline \mbox{with constraints} & \begin{tabular}{ c c c c c c } \hline \mbox{with constraints} & \begin{tabular}{ c c c c c } \hline \mbox{with constraints} & \begin{tabular}{ c c c c c c } \hline \mbox{with constraints} & \begin{tabular}{ c c c c c c } \hline \mbox{with constraints} & \begin{tabular}{ c c c c c c c } \hline \mbox{with constraints} & \begin{tabular}{ c c c c c c c } \hline \mbox{with constraints} & \begin{tabular}{ c c c c c c c } \hline \mbox{with constraint} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ConditionsmintypeOutput voltage initial setting and accuracy $T_C = +25 ^{\circ}C$, $I_O = 2.5 ^{\circ}A$, $V_I = 26 ^{\circ}V$ 11.9812.10Output adjust range ¹⁾ $C_C = +25 ^{\circ}C$, $I_O = 2.5 ^{\circ}A$, $V_I = 26 ^{\circ}V$ 8.50 11.70Output voltage tolerance band $Long term driftincludedI_O = 0.1 \dots 1.0 \times I_O nom11.70Idling voltagetolerance bandI_O = 0 ^{\circ}AI_O = 0.1 \dots 1.0 \times I_O nom11.70Idling voltagetolerance bandI_O = 0 ^{\circ}A1010Load regulationI_O = 0.1 \dots 1.0 \times I_O nom, I_O = 1_O 2^{nom},V_I = 26 ^{\circ}V10Load transientrecovery timeI_O = 0.1 \dots 1.0 \times I_O nom, V_I = 26 ^{\circ}V100Load transient voltageI_O = 0.1 \dots 1.0 \times I_O nom, V_I = 26 ^{\circ}V+500Load transient voltageI_O = I_O nom, T_C < T_C \maxsee PKG 2Ramp-up timeI_O = I_O nom, T_C < T_C \maxsee PKG 2Start-up timeI_O = I_O nom0.1 \dots 0.9 \times V_O15Start-up timeI_O = I_O nom\Gamma_C < T_C \max25Output current0Max total output power3)Calculated value0Max total output power3)Calculated value6Output ripple & noiseI_O = I_O nom20 ^{\circ}Hz \dots 5 ^{\circ}MHz60Output ripple & noiseI_O = I_O nom20 ^{\circ}Hz \dots 5 ^{\circ}MHz60Output ripple & noiseI_O = I_O nom20 ^{\circ}Hz \dots 5 ^{\circ}MHz60Supply voltagerejection (ac)f = 100 ^{\circ}Hz$	$\begin{tabular}{ c c c c c } \hline with a link of the set in t$	$\begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		$\begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

¹⁾ See Operating information.
 ²⁾ Temperature coefficient is positive at low temperatures and negative at high temperatures.
 ³⁾ See also Typical Characteristics, Power derating.
 ⁴⁾ I_{lim} on each output is set by the total load.

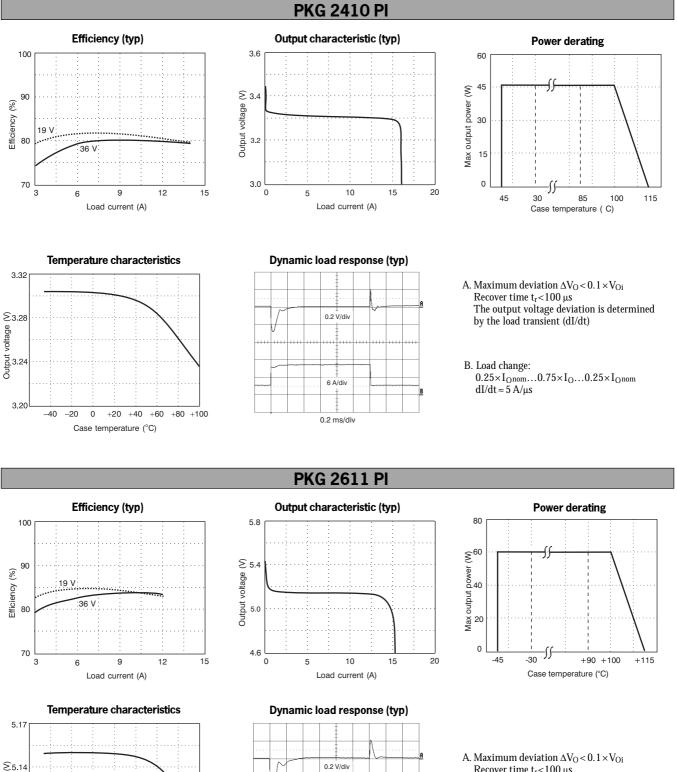
Miscellaneous

Charact	eristics	Conditions	min	typ	max	Unit
η	Efficiency	$I_O = I_O \max, V_I = 26 V$		88		%
Pd	Power dissipation	$I_O = I_O \max, V_I = 26 \text{ V}$		8.2		W

PKG 2625 PI

 $T_C = -30...+90^{\circ}C$, $V_I = 19...36$ V unless otherwise specified. I_{O1} nom = 2.0 A, I_{O2} nom = 2.0 A.

Output


Charran		Canditiana			Output 1		Output 2			Unit
Cnarac	teristics	Conditions		min	typ	max	min	typ	max	Unit
Voi	Output voltage initial setting and accuracy	$T_{\rm C} = +25 ^{\circ}{\rm C}, I_{\rm O} = 2$	4.5 A. V _I = 26 V	14.90	15.00	15.10	14.90	15.00	15.10	V
•01	Output adjust range ¹⁾			10.5		16.5	10.5		16.5	V
Vo	Output voltage tolerance band	Long term drift included		14.20		15.65	14.20		16.10	V
	Idling voltage	$I_{O} = 0 A$				17			26	V
	Line regulation	I _O =I _O nom	$V_I = 1936 \text{ V}$		10					mV
	Load regulation	$\begin{matrix} I_{O1}{=}0.1{\dots}1.0{\times}I_{O} \\ V_{I}{=}26V \end{matrix}$	$\begin{array}{l} I_{O1}=0.1\ldots 1.0\times I_{O1} \text{nom},\ I_{O2}=I_{O2} \text{nom},\\ V_{I}=26\ V \end{array}$		10					mV
t _{tr}	Load transient recovery time		$_{O}=0.11.0 \times I_{O nom}, V_{I}=26 V$					100		μs
Vtr	Load transient voltage	load step = $0.5 \times I_{Onom}$, $I_{O1} = I_{O2}$			+500			+500		mV
vtr	Load transferit vortage							-1000		mV
T_{coeff}	Temperature coefficient ²⁾	$I_O = I_O \text{ nom, } T_C < T_C r$	nax	see PKG 2625 Temperature characteristics					CS .	
tr	Ramp-up time	I _O =	$0.1\dots0.9\times V_O$		5			5		ms
t _s	Start-up time	$0.11.0 \times I_{O}$ nom	From V_I connection to $V_O = 0.9 \times V_{Oi}$		15			15		ms
IO	Output current		·	0		3.2	0		3.2	А
$P_{O} \max$	Max total output power ³⁾	Calculated value				(30			W
I _{lim}	Current limiting threshold	$T_C < T_C \max$				min 1.05	× P _{O max}	4)		
Isc	Short circuit current	$V_{\rm O} = 0.2 \dots 0.5 \text{V}, \text{T}$	$_{\rm A} = 25 ^{\circ}{\rm C}, {\rm R}_{\rm SC} > 0.1 \Omega$		5			5		А
V	Output ringle 8 mains	тт	20 Hz 5 MHz		60	150		60	150	mV _{p-p}
V_{Oac}	Output ripple & noise	I _O =I _O nom	0.6030 MHz			75			75	dBµV
SVR	Supply voltage rejection (ac)	f = 100 Hz sine wa (SVR = 20 log (1 V	ve, 1 Vp-p, $V_I = 26 V$ $V_{p-p}/V_{Op-p}))$	43			43			dB
OVP	Over voltage protection	$I_O > 0.1 \times I_O \max$			18					V

¹⁾ See Operating information.
 ²⁾ Temperature coefficient is positive at low temperatures and negative at high temperatures.
 ³⁾ See also Typical Characteristics, Power derating.
 ⁴⁾ I_{lim} on each output is set by the total load.

Miscellaneous

Charact	eristics	Conditions	min	typ	max	Unit
η	Efficiency	$I_O = I_O max$, $V_I = 26 V$		88		%
Pd	Power dissipation	$I_O = I_O \max, \ V_I = 26 \ V$		8.2		W

Typical Characteristics

6 A/div

0.2 ms/div

Recover time $t_r < 100 \ \mu s$ The output voltage deviation is determined by the load transient (dI/dt)

B. Load change:

 $0.25 \times I_{Onom} \dots 0.75 \times I_{O} \dots 0.25 \times I_{Onom}$ $dI/dt \approx 5 A/\mu s$

Preliminary Data Sheet EN/LZT137 23 R5 © Ericsson Components AB, May 1998

+60

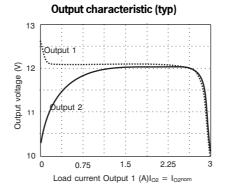
+20 +40

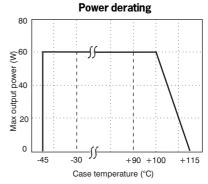
Case temperature (°C)

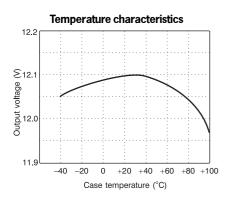
+80 +100

Output voltage

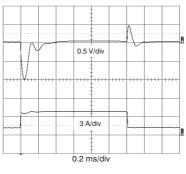
5.08


____20

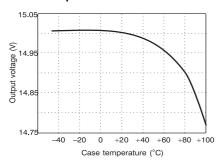

0


-40

PKG 2623 PI


Efficiency (typ) 90 19 V . 36 V 80 Efficiency (%) 70 60 ∟ 0.5 1.5 2.0 2.5 1.0 Load current (A) $I_{O1} = I_{O2}$

Dynamic load response (typ)1)

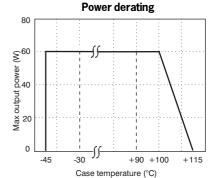


A. Maximum deviation $\Delta V_O < 0.1 \times V_{Oi}$ Recover time $t_r{<}100~\mu s$ The output voltage deviation is determined by the load transient (dI/dt)

B. Load change: $0.25{\times}I_{O}\texttt{nom}{\dots}0.75{\times}I_{O}{\dots}0.25{\times}I_{O}\texttt{nom}$ $I_{Onom} = I_{O1nom} + I_{O2nom}$ $dI/dt \approx 5 A/\mu s$

Efficiency (typ) 90 19 V 80 Efficiency (%) 70 60 0.40 0.80 1.20 1.60 2.00 Load current (A) I_{O1} = I_{O2}

Output characteristic (typ) 16 Output 1 Output voltage (V) 14

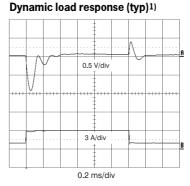

Output 2

0.8

13

0

PKG 2625 PI



1.6

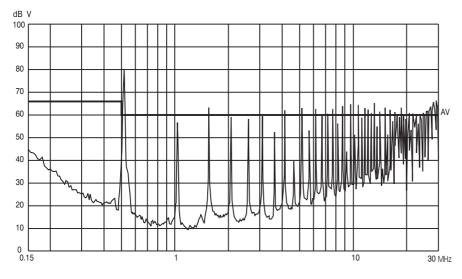
Load current Output 1 (A) $I_{O2} = I_{O2nom}$

2.4

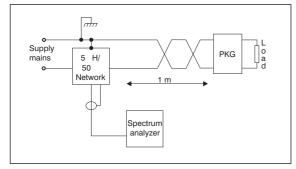
3.2

A. Maximum deviation $\Delta V_O < 0.1 \times V_{Oi}$ Recover time $t_r < 100 \ \mu s$ The output voltage deviation is determined by the load transient (dI/dt)

B. Load change: $0.25 \times I_{O}$ nom... $0.75 \times I_{O}$... $0.25 \times I_{O}$ nom $I_{Onom} = I_{O1nom} + I_{O2nom}$ $dI/dt \approx 5 A/\mu s$


1) Outputs paralleled.

¹⁾ Outputs paralleled.


EMC Specifications

The PKG power module is mounted on a double sided printed circuit board (PB) with ground plane during EMC measurements. The fundamental switching frequency is 510 kHz \pm 5% @ V_I = 26 V, I_O = (0.1...1.0) × I_O max.

Conducted EMI Input terminal value (typ)

Test Set-up according to CISPR publ. 1A.

Radiated EMS

(Electro-Magnetic Fields)

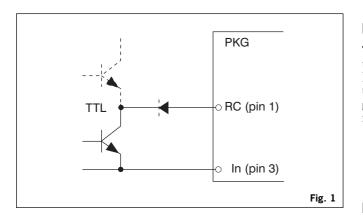
Radiated EMS is measured according to test methods in IEC Standard publ. 801-3. No deviation outside the V_O tolerance band will occur under the following conditions:

Frequency range	Voltage level
0.01200 MHz	3 Vrms/m
2001,000 MHz	3 V _{rms} /m
112 GHz	10 Vrms/m

EFT

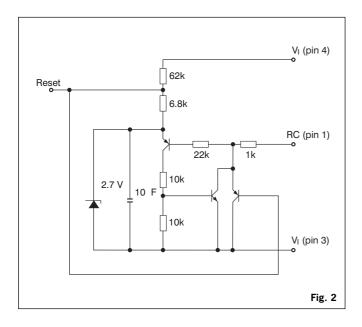
Electrical Fast Transients on the input terminals may cause output deviations outside what is tolerated by the electronic circuits, i.e. ±5%.

The PKG power module can withstand EFT levels of 0.5 kV keeping V_O within the tolerance band and 2.0 kV without destruction. Tested according to IEC publ. 801-4.


Output Ripple & Noise (Voac)

Output ripple is measured as the peak to peak voltage of the fundamental switching frequency.

Operating information


Remote Control (RC)

Remote turn-on and turn-off can be realized by using the RC-pin. Normal operation is achieved if pin 1 is open (NC). If pin 1 is connected to pin 3 the PKG power module turns off. To ensure safe turn-off the voltage difference between pin 1 and 3 shall be less than 1.0 V. RC is TTL open collector compatible (see fig. 1).

Over Voltage Protection (OVP)

The PKG series has an internal Over Voltage Protection circuitry. The circuitry will detect over voltage conditions on the output and limit the output voltage to a safe level. During OVP conditions there are continuous attempt to start up (non-latching mode). If latching mode is preferred an external circuit can be used to change the function and will make the output remain in off mode after over voltage detection. (The OVP level can be found in the output data section.)

Turn-on/off Input Voltage (TOA)

The power module monitors the input voltage and will turn on and turn off at predetermined levels. The levels can be decreased by means of an external resistor connected between pin 2 and pin 4. A 0.2 M Ω resistor will decrease the turn-off input voltage approximately 10%.

Output Voltage Adjust (Vadj)

The utput voltage, V_O , can be adjusted by using an external resistor. A 0.1 M Ω resistor will change V_O approximately 5%. To decrease the output voltage the resistor should be connected between pin 10 and pin 9 (+ Out 1). To increase the output voltage the resistor should be connected between pin 10 and pin 8 (– Out 1).

Maximum Capacitive Load

The PKG series has no limitation of maximum connected capacitance on the output. The power module may operate in current limiting mode during start-up, affecting the ramp-up and the start-up time. For optimum performance we recommend maximum 100 $\mu F/A$ of I_O for dual outputs. Connect capacitors at the point of load for best performance.

Parallel Operation

The load regulation characteristic and temperature coefficient of the PKG DC/DC Power Modules are designed to allow parallel operation. Paralleling of several modules is easily accomplished by connection of the output voltage terminal pins. The connections should be symmetrical, i.e. the resistance between the output terminal and the common connection point of each module should be equal. Good paralleling performance is achieved if you allow the resistance to be 10 m Ω . 10 m Ω equals 50 mm (2 in) of 35 μ m (1 oz/ft²) copper with a trace width of 2.5 mm (0.1 in).

It is recommended not to exceed $P_{\rm O}=n\times0.8\times P_{\rm Omax}$, where $P_{\rm Omax}$ is the maximum power module output power and n the number of paralleled units, not to overload any of them and thereby decrease the reliability performance.

Paralleling performance may be further improved by voltage matching. Voltage matching is accomplished by using the Output Adjust function and trim the outputs to the same voltage.

Current Limiting Protection

The output power is limited at loads above the output current limiting threshold $(I_{\rm lim}),$ specified as a minimum value.

Input and Output Impedance

Both the source impedance of the power feeding and the load impedance will interact with the impedance of the DC/DC power module.

It is most important to have the ratio between L and C as low as possible, i.e. a low characteristic impedance, both at the input and output, as the power modules have a low energy storage capability. Use an electrolytic capacitor across the input or output if the source or load inductance is larger than 10 μ H. Their equivalent series resistance together with the capacitance acts as a lossless damping filter. Suitable capacitor values are in the range 10–100 μ F.

Quality

Reliability

Meantime between failure (MTBF) is calculated to >1.7 million hours at full output power and a case temperature of +75°C (T_A = +40 °C), using the Ericsson failure rate data system. The Ericsson failure rate data system is based on field failure rates and is continously updated. The data correspond to actual failure rates of component used in Information Technology and Telecom equipment in temperature controlled environments (T_A =-5...+65°C). The data is considered to have a confidence level of 90%. For more information see Design Note 002.

Quality Statement

The products are designed and manufactured in an industrial environment where quality systems and methods like ISO 9000, $6\,\sigma$ and SPC, are intensively in use to boost the continuous improvements strategy. Infant mortality or early failures in the products are screened out by a burn-in procedure and an ATE-based final test. Conservative design rules, design reviews and product qualifications, plus the high competence of an engaged work force, contribute to the high quality of our products.

Warranty

Ericsson Components warrants to the original purchaser or end user that the products conform to this Data Sheet and are free from material and workmanship defects for a period of five (5) years from the date of manufacture, if the product is used within specified conditions and not opened. In case the product is discontinued, claims will be accepted up to three (3) years from the date of the discontinuation. For additional details on this limited warranty we refer to Ericsson Components AB's "General Terms and Conditions of Sales", EKA 950701, or individual contract documents.

Limitation of Liability

Ericsson Components does not make any other warranties, expressed or implied including any warranty of merchantability or fitness for a particular purpose (including, but not limited to, use in life support applications, where malfunctions of product can cause injury to a person's health or life).

Ericsson Components Sales Offices:

Brazil:	Phone: +55 11 759 6622 Fax: +55 11 759 5208
Denmark:	Phone: +45 33 883 109 Fax:+45 33 883 105
Finland:	Phone: +358 9 299 4098 Fax: +358 9 299 4188
France:	Phone: +33 1 4083 7720 Fax: +33 1 4083 7588
Germany:	Phone: +49 211 534 1516 Fax: +49 211 534 1525
Great Britain:	Phone: +44 1793 488 300 Fax: +44 1793 488 301
Hong Kong:	Phone: +852 2590 2356 Fax: +852 2590 7152
Italy:	Phone: +39 2 7014 4207 Fax: +39 2 7014 4260
Japan:	Phone: + 81 3 5216 9091 Fax: +81 3 5216 9096
Norway:	Phone: +47 66 841 906 Fax: +47 66 841 909
Russia:	Phone: +7 095 247 6211 Fax: +7 095 247 6212
Spain:	Phone: +34 91 339 1809 Fax: +34 91 339 3145
Sweden:	Phone: +46 8 721 7500 Fax: +46 8 721 7001
United States:	Phone: +1 888 853 6374 Fax: +1 972 583 7999

Information given in this data sheet is believed to be accurate and reliable. No responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Ericsson Components. These products are sold only according to Ericsson Components' general conditions of sale, unless otherwise confirmed in writing. Specifications subject to change without notice.

Ericsson Components AB Energy Systems Division SE-164 81 Kista-Stockholm, Sweden Phone: +46 8 721 7500 Fax: +46 8 721 7001 http://energy.ericsson.se

Preliminary Data Sheet

EN/LZT 137 23 R5 © Ericsson Components AB, May 1998