
Advanced Specification 15-20A DC/DC Power Modules 48V Input, 5V Output

- High efficiency 89% Typ (5V) at full load
- Fast dynamic response, 200µs,
 ± 150 mVpeak Typ
- Low output ripple, 60 mVp-p Typ
- High power density, 61 W/in³
- Wide input voltage range (36-75V)
- Industry standard footprint & pin-out
- 1,500Vdc isolation voltage
- Max case temperature + 100°C
- Designed to meet UL 1950 and EN 60950

The PKM series represents a "third generation" of High Density DC/DC Power Modules in an industry standard package with unparalleled power densities and efficiencies. These breakthrough performance features have been achieved by using the most advanced patented topology, utilizing integrated magnetics and synchronous rectification on a low resistivity multilayer PCB. The product features fast dynamic response times and low output ripple, which are important parameters when supplying low voltage logics. The PKM series is especially suited for limited board space and high dynamic load applications such as demanding microprocessors.

Ericsson's PKM Power Modules address the converging "New Telecoms" market by specifying the input voltage range in accordance with ETSI specifications. The PKM series also offers over-voltage protection, under-voltage protection, over-temperature protection, soft-start, and is short circuit proof.

These products are manufactured using highly automated manufacturing lines with a world-class quality commitment and a five-year warranty. Ericsson Components AB has been an ISO 9001 certified supplier since 1991.

For a complete product program please reference the back cover.

General

Connections

Designation	Function
-In	Negative input
RC	Remote control (primary).
	To turn-on and turn-off the output
+In	Positive input
-Out	Negative output
-Sen	Negative remote sense
Trim	Output voltage adjust
+Sen	Positive remote sense
+Out	Positive output

Note: If the remote sense is not needed the -Sen should be connected to -Out and +Sen should be connected to +Out.

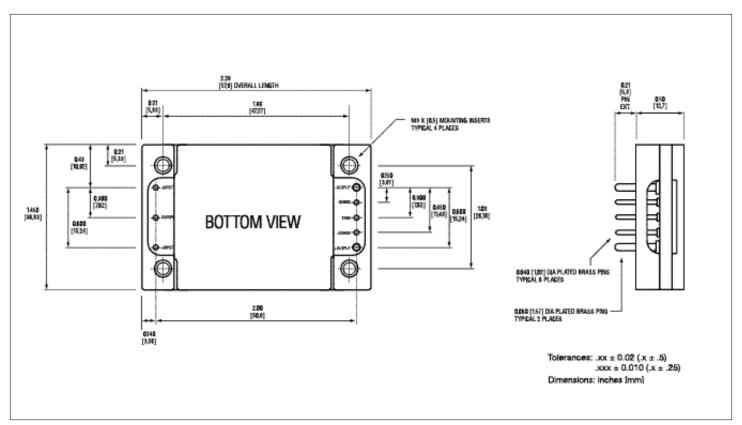
Weight

55 grams

Case

Aluminum baseplate with metal standoffs.

Pins


Pin material: Brass

Pin plating: Tin/Lead over Nickel.

Input $T_C < T_{Cmax}$

Chara	cteristics	Conditions		min	typ	max	Unit
VI	Input voltage range			36		75	Vdc
V _{loff}	Turn-off input voltage	Ramping from higher voltage		31	33		Vdc
V _{Ion}	Turn-on input voltage	Ramping from lower voltage			34	36	Vdc
Cı	Input capacitance			1.5		μF	
I _{lac}	Reflected ripple current	5 Hz to 20 MHz			10		mA p-p
I _l max	Maximum input current	$V_I = V_I \; min$	75 W 100 W			1.8 2.3	А
P _{li}	Input idling power		I _O = 0		3.5	7.5	W
P _{RC}	Input stand-by power (turned off with RC)	V _I = 50V	RC open		0.5	1.0	W
TRIM	Maximum input voltage on trim pin					6	Vdc

Mechanical Data

PKM 4111 PI (100W) $T_C = -40...+100^{\circ}$ C, $V_I = 36...75$ V dc unless otherwise specified.

Output

Characteristics		Conditions		Output		
			min	typ	max	Unit
V_{Oi}	Output voltage initial setting and accuracy	$T_C = +25^{\circ}C$, $V_I = 53V$, $I_O = I_{Omax}$	4.9	5.0	5.1	V
	Output adjust range	I _O = 0 to I _{Omax} , V _I = 3875V dc	4.0		5.5	V
lo	Output current		0		20	А
Vo	Output voltage tolerance band	I _O = 0 to I _O max	4.85		5.15	V
	Line regulation	V _I = 3875V, I _O = I _O max		5	15	mV
	Load regulation	$V_I = 53V$, $I_O = 0$ to I_{Omax}		5	15	mV
V _{tr}	Load transient voltage deviation	Load step = $0.25 \times I_{Omax}$ dl/dt = $1A/\mu s$		±150		mV _{peak}
t _{tr}	Load transient recovery time			200		μs
ts	Start-up time	From V_I connection to $V_O = 0.9 \text{ x } V_{O^{nom}}$		60	90	ms
I _{lim}	Current limit threshold	V _O = 0.96 V _{Onom} @ T _C <100°C	21	24	26	A
I _{SC}	Short circuit current			24	28	A
V _{Oac}	Output ripple and noise	I _O = I _{Omax} f ≤ 20 MHz		85	150	mVp-p
SVR	Supply voltage rejection (ac)	f<1kHz	-53			dB
OVP	Over voltage protection	Vin = 50V	5.8	6.2	6.5	V

Miscellaneous

Characteristics		Conditions	min typ	max	Unit
	Efficiency	$T_A = +25^{\circ}C, V_I = 53V, I_O = I_{Omax}$	89		%
P_{d}	Power dissipation	$I_O = I_{Omax}, V_I = 53V$	12.4		W

Absolute Maximum Ratings

Cha	aracteristics	min	max	Unit
T _C	Case temperature @ max output power	-40	+100	°C
T _S	Storage temperature	-40	+125	°C
VI	Continuous input voltage	-0.5	+75	Vdc
V _{ISO}	Isolation voltage (input to output test voltage)	1,500		Vdc
V _{RC}	Remote control voltage		12	Vdc
I ² t	Inrush transient		1	A ² s

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as "no destruction limits," are normally tested with one parameter at a time exceeding the limits of output data or electrical characteristics. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

Product Program

Vı	V _O /I _O	P _{Omax}	Ordering Number
48/60 V	5V/20A	100W	PKM 4111 PI
48/60 V	5V/15A	75W	PKM 4711 PI

Ericsson Energy Systems' Sales Offices:

	0,		
Brazil:		Phone: +55 11 681 0040	Fax: +55 11 681 2051
Denmark:		Phone: +45 33 883 109	Fax: +45 33 883 105
Finland:		Phone: +358 9 299 4098	Fax: +358 9 299 4188
France:		Phone: +33 1 4083 7720	Fax: +33 1 4083 7741
Germany:		Phone: +49 211 534 1516	Fax: +49 211 534 1525
Great Britain:		Phone: +44 1793 488 300	Fax: +44 1793 488 301
Hong Kong:		Phone: +852 2590 2356	Fax: +852 2590 7152
Italy:		Phone: +39 2 7014 4203	Fax: +39 2 7014 4260
Japan:		Phone: +81 3 5216 9091	Fax: +81 3 5216 9096
Norway:		Phone: +47 66 841 906	Fax: +47 66 841 909
Russia:		Phone: +7 095 247 6211	Fax: +7 095 247 6212
Spain:		Phone: +34 91 339 1858	Fax: +34 91 339 3145
Sweden:		Phone: +46 8 721 6258	Fax: +46 8 721 7001
United States:		Phone: +1 888 853 6374	Fax: +1 972 583 7999

Information given in this data sheet is believed to be accurate and reliable. No responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Ericsson Inc. These products are sold only according to Ericsson Inc.'s general conditions of sale, unless otherwise confirmed in writing.

The contents of this document are subject to revision without notice due to continued progress in design and manufacturing.

Ericsson Inc.

701 North Glenville Drive Richardson, Texas 75081 Phone: 888-85-ENERGY www.ericsson.com/us/energy **Advanced Specification**

AE/LZT 108 3406 R1 © Ericsson Inc., December 1999