Eighth-Brick Series 2nd Generation IBC

Total Power: 200-300W Input Voltage: 36-75VDC

Special Features

- 48 V input with isolated 12 V output
- Ultra-high efficiency, 95.5\% 12 V @ 25 A
- Unprecedented usable output power levels
- High power density (362 W/in³) open-frame technology
- Wide operating ambient temperature range
- Industry standard eighthbrick footprint and pinout
- Low profile, 0.40 " (10.2 mm)
- Meets basic insulation requirements of EN60950-1
- Remote ON/OFF and overtemperature protection
- Available RoHS compliant
- 2 year warranty

Rev.03.14.07
eighth_brick_300w_ibc

This is a new series of high power density, low profile Eighth-Brick Intermediate Bus Converters (IBC) targeted specifically at the computer, industrial electronics, and telecommunications distributed power markets. In a Distributed Power Arcitecture (DPA), these converters are intended to power multiple downstream non-isolated point-of-load (POL) converters. The elevated conversion efficiency, open-frame construction, and superior thermal performance of this series produces rated output currents up to 25 A and power densities as high as $362 \mathrm{~W} / \mathrm{in}^{3}$. These superior performance levels enable these eight-brick models to replace quarter-brick and half-brick converters in applications where footprint, profile, and cost are critical. The IBC25A fixed ratio model produces an unregulated 12 V output while the narrow and wide input IBC20A and IBC17A models produce a 12 V output semi-regulated with line and load variations. All models are fully protected against overcurrent, overvoltage, and overtemperature. A positive logic primary referenced remote ON/OFF input is included as standard with negative logic available as an option.

Specifications

All specifications are typical at nominal input, full load at $25^{\circ} \mathrm{C}$ unless otherwise stated.

OUTPUT SPECIFICATIONS			EMC CHARACTERISTICS			
Output setpoint accuracy See Table			Immunity: ESD air enclosure Input transients:	EN61000-4-2 8 kV, 6 kV IBC25AET4812 IBC20AES4812 IBC17AEW4812	$\begin{gathered} \text { (air, contact) } \\ 60 \mathrm{~V}, 100 \mathrm{~ms} \\ 60 \mathrm{~V}, 100 \mathrm{~ms} \\ 100 \mathrm{~V}, 100 \mathrm{~ms} \end{gathered}$	
Line regulation	Low line to high line	See Table				
Load regulation	Full load to min. load	See Table				
Total error band (Including setpoint, line, load and temperature)	IBC25AET4812 IBC20AES4812 IBC17AEW4812	$\begin{array}{r} 9.70-13.40 \mathrm{Vdc} \\ 11.52-12.48 \mathrm{Vdc} \\ 11.40-12.60 \mathrm{Vdc} \end{array}$	GENERAL SPECIFICATIONS			
			Efficiency		See Table	
Minimum load		0 A	Basic insulation	Input/output	2250 Vdc	
Overshoot	At turn-on and turn-off	None	Switching frequency	Fixed	600 kHz typ.	
Undershoot		None	Approvals and standards (See Note 5)		EN60950-1 VDE UL/CUL60950-1	
Ripple and noise $5-20 \mathrm{MHz}$	(See Note 2)	60 mV pk-pk typ. 20 mV rms typ.				
			Material flammability		UL94V-0	
INPUT SPECIFICATIONS			Weight		33 g (1.16 oz)	
Input voltage range See Table			MTBF Representative model:	Telcordia Tech SR-332 48 Vin, $40^{\circ} \mathrm{C}, 50 \%$ load ground benign	5,500,000 hours	
Input current	Remote OFF 6 mA typ .					
Input current (max.)	(See Note 1)	9 A max. @ lo max. ad $\mathrm{Vin}=$ min. rated	ENVIRONMENTAL SPECIFICATIONS			
Input reflected ripple (See Note 4)	IBC25AET4812 IBC20AES4812 IBC17AEW4812	550 mA (pk-pk) 230 mA (pk-pk) 230 mA (pk-pk)	Thermal performance	Operating ambient temperature Non-operating	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	
Remote ON/OFF Logic compatibility ON OFF	(See Note 6) Open collector ref. to -input$\begin{aligned} & >2.4 \mathrm{Vdc} \\ & <0.4 \mathrm{Vdc} \end{aligned}$		PROTECTION			
			Short-circuit		Hiccup	
			Overvoltage		Non-latching	
Undervoltage lockout: IBC25AET4812 and IBC20AES4812 IBC17AEW4812	Power up Power down Power up Power down	$\begin{array}{r} 40 \mathrm{~V} \\ 38 \mathrm{~V} \\ 35.2 \mathrm{~V} \\ 34 \mathrm{~V} \end{array}$	Thermal		$125^{\circ} \mathrm{C}$ hot spot	
Start-up time (See Note 3)	Power up Remote ON/OFF	$\begin{gathered} 15 \mathrm{~ms} \\ 5 \mathrm{~ms} \end{gathered}$				

Specifications Contd.

OUTPUT	INPUT VOLTAGE	OUTPUT VOLTAGE	OUTPUT CURRENT (MIN.)	OUTPUT CURRENT (MAX.)	$\begin{aligned} & \text { EFFICIENCY } \\ & \text { (TYP.) } \end{aligned}$	REGULATION			MODEL NUMBER ${ }^{(67,0)}$
POWER (MAX.)						SET POINT ACCURACY\%	$\begin{gathered} \text { LINE } \\ \% \end{gathered}$	LOAD	
300 W	$42-53 \mathrm{Vdc}$	12 V	0 A	25 A	95.5\%	----	+10,-12.5\%	$\pm 1.5 \%$	IBC25AET4812]
240 W	$42-53 \mathrm{Vdc}$	12 V	0 A	20 A	94.5\%	$\pm 0.25 \%$	$\pm 0.3 \%$	$\pm 1.5 \%$	IBC20AES4812]
200 W	$36-75 \mathrm{Vdc}$	12 V	0 A	17 A	94.0\%	$\pm 0.25 \%$	$\pm 1.0 \%$	$\pm 1.5 \%$	IBC17AEW4812]

Part Number System with Options

IBC 17A E W4812-RANJ

Notes

1 Recommended input fusing is a 20 A HRC 250 V rated fuse.
2 Measured with external filter. See Application Note 182 for details.
3 Start-up into resistive load.
4 Peak to peak measured without external Pi filter. Significant reduction possible with external filter. See Application Note 182 for details.
5 This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.
6 Active-low remote ON/OFF option is also available. Please add the suffix '-R' to the part number, e.g. IBC17AEW4812-RAJ.
7 TSE RoHS 5/6 (non Pb-free) compliant versions may be available on special request, please contact your local sales representative for details.
8 NOTICE: Some models do not support all options. Please contact your local Artesyn representative or use the on-line model number search tool at http://www.artesyn.com/powergroup/products.htm to find a suitable alternative.

[^0]

PIN CONNECTIONS	
PIN NUMBER	FUNCTION
1	+Vin
2	Remote ON/OFF
3	-Vin
4	-Vout
5	+ Vout

Figure 1 - Mechanical Drawing and Pinout Table

Americas

5810 Van Allen Way
Carlsbad, CA 92008
USA
Telephone: +1 7609304600
Facsimile: +1760930 0698

Europe (UK)

Waterfront Business Park
Merry Hill, Dudley
West Midlands, DY5 1LX
United Kingdom
Telephone: +44 (0) 1384842211
Facsimile: +44(0)1384843355

Asia (HK)

16th - 17th Floors, Lu Plaza 2 Wing Yip Street, Kwun Tong Kowloon, Hong Kong
Telephone: +852 21763333
Facsimile: +852 21763888

For global contact, visit: www.powerconversion.com
technicalsupport@powerconversion.com
While every precaution has been taken to ensure
accuracy and completeness in this literature, Emerson Network Power assumes no responsibility, and disclaims all liability for damages resulting from use of this information or for any errors or omissions.

Emerson Network Power.
The global leader in enabling business-critical continuity.

EmersonNetworkPower. com

Emerson Network Power and the Emerson Network Power logo are trademarks and service marks of Emerson Electric Co. ©2007 Emerson Electric Co.

[^0]: CAUTION: Hazardous internal voltages and high temperatures. Ensure that unit is not user accessible.

