PKY 4000 PI series DC/DC Converters, Input 36-75 V, Output 25 A/700 W

Key Features

- Full-brick Industry Standard 116.8 x 61.0 x 12.7 mm (4.6 x 2.4 x 0.50 in.)
- High efficiency, typ. 95 % at 28 Vout within 30%-100% load range.
- 1500 Vdc input to output isolation
- Meets isolation requirements equivalent to basic • insulation according to IEC/EN/UL 60950
- 1 million hours MTBF ٠

General Characteristics

- Excellent thermal performance
- Output over voltage protection •
- Input over voltage protection •
- Input under voltage shutdown ٠
- Over temperature protection •
- Monotonic startup •
- Remote sense •
- Remote control
- Over current protection •
- · Output voltage adjust function
- Power Good Function.
- AUX voltage 10V, 50mA
- Highly automated manufacturing ensures quality
- ISO 9001/14001 certified supplier

Safety Approvals

Meets requirements in hightemperature lead-free soldering processes.

Contents

Delivery Information

Product Qualification Specification

General Information Safety Specification	
Absolute Maximum Ratings	
Product Program	Ordering No.
28 V/21.5A Electrical Specification	PKY4616 PI5
28 V/25A Electrical Specification	PKY4716 PI8
EMC Specification Operating Information Thermal Consideration	
Connections	
Mechanical Information	
Soldering Information	

Preliminary Technical Specification

EN/LZT 146 380 R1A April 2007 © Ericsson Power Modules AB

PKY 4000 PI series DC/DC Converters, Input 36-75 V, Output 25 A/700 W

Preliminary Technical Specification

© Ericsson Power Modules AB

General Information

Ordering Information

See Contents for individual product ordering numbers.

Option	Suffix	Ordering No.
Standard		PKY 4716 PI
Non-threaded stand off	М	PKY 4716 PIM

Reliability

The Mean Time Between Failure (MTBF) is calculated at full output power and an operating ambient temperature (T_A) of +40°C, which is a typical condition in Information and Communication Technology (ICT) equipment. Different methods could be used to calculate the predicted MTBF and failure rate which may give different results. Ericsson Power Modules currently uses Telcordia SR332.

Predicted MTBF for the series is:

- 1 million hours according to Telcordia SR332, issue 1, Black box technique.

Telcordia SR332 is a commonly used standard method intended for reliability calculations in ICT equipment. The parts count procedure used in this method was originally modelled on the methods from MIL-HDBK-217F, Reliability Predictions of Electronic Equipment. It assumes that no reliability data is available on the actual units and devices for which the predictions are to be made, i.e. all predictions are based on generic reliability parameters.

Compatibility with RoHS requirements

The products are compatible with the relevant clauses and requirements of the RoHS directive 2002/95/EC and have a maximum concentration value of 0.1% by weight in homogeneous materials for lead, mercury, hexavalent chromium, PBB and PBDE and of 0.01% by weight in homogeneous materials for cadmium.

Exemptions in the RoHS directive utilized in Ericsson Power Modules products include:

- Lead in high melting temperature type solder (used to solder the die in semiconductor packages)
- Lead in glass of electronics components and in electronic ceramic parts (e.g. fill material in chip resistors)
- Lead as an alloying element in copper alloy containing up to 4% lead by weight (used in connection pins made of Brass)

Quality Statement

The products are designed and manufactured in an industrial environment where quality systems and methods like ISO 9000, 6σ (sigma), and SPC are intensively in use to boost the continuous improvements strategy. Infant mortality or early failures in the products are screened out and they are subjected to an ATE-based final test. Conservative design rules, design reviews and product qualifications, plus the high competence of an engaged work force, contribute to the high quality of our products.

Warranty

Warranty period and conditions are defined in Ericsson Power Modules General Terms and Conditions of Sale.

Limitation of Liability

Ericsson Power Modules does not make any other warranties, expressed or implied including any warranty of merchantability or fitness for a particular purpose (including, but not limited to, use in life support applications, where malfunctions of product can cause injury to a person's health or life).

PKY 4000 PI series DC/DC Converters, Input 36-75 V, Output 25 A/700 W

Safety Specification

General information

Ericsson Power Modules DC/DC converters and DC/DC regulators are designed in accordance with safety standards IEC/EN/UL60950, *Safety of Information Technology Equipment*.

IEC/EN/UL60950 contains requirements to prevent injury or damage due to the following hazards:

- Electrical shock
- Energy hazards
- Fire
- Mechanical and heat hazards
- Radiation hazards
- Chemical hazards

On-board DC-DC converters and DC/DC regulators are defined as component power supplies. As components they cannot fully comply with the provisions of any Safety requirements without "Conditions of Acceptability". Clearance between conductors and between conductive parts of the component power supply and conductors on the board in the final product must meet the applicable Safety requirements. Certain conditions of acceptability apply for component power supplies with limited stand-off (see Mechanical Information for further information). It is the responsibility of the installer to ensure that the final product housing these components complies with the requirements of all applicable Safety standards and Directives for the final product.

Component power supplies for general use should comply with the requirements in IEC60950, EN60950 and UL60950 *"Safety of information technology equipment"*. There are other more product related standards, e.g. IEEE802.3af "Ethernet LAN/MAN Data terminal equipment power", and ETS300132-2 "Power supply interface at the input to telecommunications equipment; part 2: DC", but all of these standards are based on IEC/EN/UL60950 with regards to safety.

Ericsson Power Modules DC/DC converters and DC/DC regulators are UL60950 recognized and certified in accordance with EN60950.

The flammability rating for all construction parts of the products meets requirements for V-0 class material according to IEC 60695-11-10.

The products should be installed in the end-use equipment, in accordance with the requirements of the ultimate application. Normally the output of the DC/DC converter is considered as SELV (Safety Extra Low Voltage) and the input source must be isolated by minimum Double or Reinforced Insulation from the primary circuit (AC mains) in accordance with IEC/EN/UL60950.

Isolated DC/DC converters

It is recommended that a slow blow fuse with a rating twice the maximum input current per selected product be used at the input of each DC/DC converter. If an input filter is used in the circuit the fuse should be placed in front of the input filter.

In the rare event of a component problem in the input filter or in the DC/DC converter that imposes a short circuit on the input source, this fuse will provide the following functions:

- Isolate the faulty DC/DC converter from the input power source so as not to affect the operation of other parts of the system.
- Protect the distribution wiring from excessive current and power loss thus preventing hazardous overheating.

The galvanic isolation is verified in an electric strength test. The test voltage (V_{iso}) between input and output is 1500 Vdc or 2250 Vdc for 60 seconds (refer to product specification).

Leakage current is less than 1 μ A at nominal input voltage.

24 V DC systems

The input voltage to the DC/DC converter is SELV (Safety Extra Low Voltage) and the output remains SELV under normal and abnormal operating conditions.

48 and 60 V DC systems

If the input voltage to the DC/DC converter is 75 Vdc or less, then the output remains SELV (Safety Extra Low Voltage) under normal and abnormal operating conditions.

Single fault testing in the input power supply circuit should be performed with the DC/DC converter connected to demonstrate that the input voltage does not exceed 75 Vdc.

If the input power source circuit is a DC power system, the source may be treated as a TNV2 circuit and testing has demonstrated compliance with SELV limits and isolation requirements equivalent to Basic Insulation in accordance with IEC/EN/UL60950.

Non-isolated DC/DC regulators

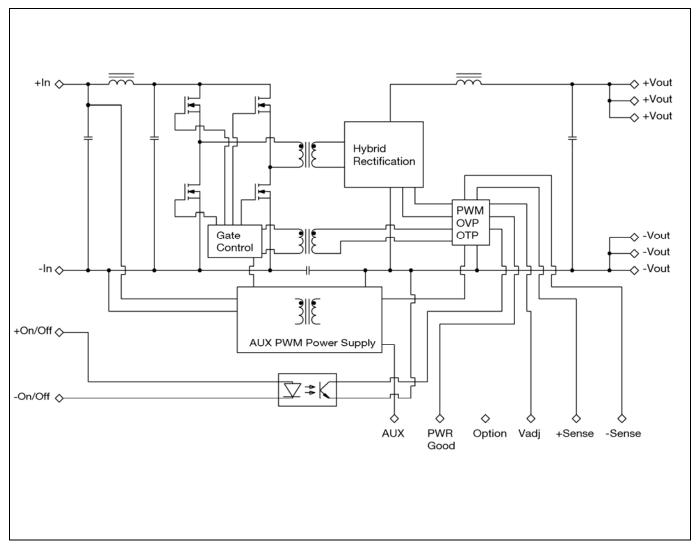
The input voltage to the DC/DC regulator is SELV (Safety Extra Low Voltage) and the output remains SELV under normal and abnormal operating conditions.

Preliminary Technical Specification

EN/LZT 146 380 R1A April 2007

© Ericsson Power Modules AB

PKY 4000 PI series DC/DC Converters, Input 36-75 V, Output 25 A/700 W


EN/LZT 146 380 R1A April 2007 © Ericsson Power Modules AB

Absolute Maximum Ratings

Characteristics			min	typ	max	Unit
T _{ref}	Operating Temperature (see Thermal Consi	ideration section)	-40		+110	°C
Ts	Storage temperature		-55		+125	°C
Vi	Input voltage		-0.5		+100	V
V _{iso}	Isolation voltage		1500			Vdc
V _{tr}	Input voltage transient (t _p 100 ms)				+100	V
V	Remote Control pin voltage	Positive logic option	-100		+12	V
V _{RC}	(see Operating Information section)	Negative logic option	-100		+12	V
V_{adj}	Adjust pin voltage (see Operating Information section)		-0.5		+10	V

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are normally tested with one parameter at a time exceeding the limits of Output data or Electrical Characteristics. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

Fundamental Circuit Diagram

PKY 4000 PI series

DC/DC Converters, Input 36-75 V, Output 25 A/700 W

EN/LZT 146 380 R1A April 2007 © Ericsson Power Modules AB

28V/21.5A Preliminary Electrical Specification

PKY 4616 PI

 $T_{ref} = -40 \text{ to } +100^{\circ}\text{C}, \text{ V}_{I} = 36 \text{ to } 75 \text{ V}, \text{ sense pins connected to output pins unless otherwise specified under Conditions.}$ Typical values given at: $T_{ref} = +25^{\circ}\text{C}, \text{ V}_{I} = 53 \text{ V}_{I} \text{ max } I_{O}, \text{ unless otherwise specified under Conditions.}$

Charac	cteristics	Conditions	min	typ	max	Unit
Vı	Input voltage range		36		75	V
V _{loff}	Turn-off input voltage	Decreasing input voltage	32.1	33	34.5	V
Vlon	Turn-on input voltage	Increasing input voltage	33.3	35	35.5	V
Cı	Internal input capacitance			35,2		μF
Po	Output power	Output voltage initial setting	0		600	W
SVR	Supply voltage rejection (ac)	f = 100 Hz sinewave, 1 Vp-p		60		dB
	50 % of max I _O , V _I = 53 V		95			
n		max I_0 , $V_1 = 53 V$	93.5	94,5		%
η	Efficiency	50 % of max I _O , V _I = 48 V		95		
		max I_0 , $V_1 = 48 V$	93.5	94,5		1
P _d	Power Dissipation	max I _{O,} V _I = 53 V		34.9	41.7	W
Pli	Input idling power	$I_0 = 0 A, V_1 = 53 V$		3	6.0	W
P _{RC}	Input standby power	$V_1 = 53 V$ (turned off with RC)		0.2	0.3	W
f _s	Switching frequency	0-100 % of max I _o	145	150	155	kHz
VIOVP	Input over voltage protection	0-100 % of max I ₀	80	83	86	V

V _{Oi}	Output voltage initial setting and accuracy	T_{ref} = +25°C, V ₁ = 53 V, I ₀ = 21.5 A	27.72	28.0	28.28	V
	Output adjust range	See operating information	10.0		32.0	V
	Output voltage tolerance band	10-100 % of max I ₀	27.44		28.42	V
Vo	Idling voltage	I ₀ = 0 A	27.44		28.42	V
	Line regulation	max I ₀		20	80	mV
	Load regulation	$V_{\rm I}$ = 53 V, 0-100 % of max $I_{\rm O}$		20	80	mV
V _{tr}	Load transient voltage deviation	$V_1 = 53$ V, Load step 25-75-25 % of		±800		mV
t _{tr}	Load transient recovery time	max I _o , di/dt = 1 A/µs		40		μs
tr	Ramp-up time (from 10–90 % of V _{Oi})	10-100 % of max lo		10	20	ms
ts	Start-up time (from V ₁ connection to 90 % of V _{Oi})			17	20	ms
t _f	V _I shut-down fall time	max I _o		0.06		ms
4	(from V_1 off to 10 % of V_0)	$I_{O} = 0 A$		2.7		S
	RC start-up time	max I _o		15		ms
t_{RC}	RC shut-down fall time	max I _o		0.06		ms
	(from RC off to 10 % of $V_{\rm O}$)	I ₀ = 0 A		2.7		s
lo	Output current	max I _o , V _I = 36-75 V	0		21.5	А
l _{lim}	Current limit threshold	T _{ref} < max T _{ref}	22	27	33.5	А
Isc	Short circuit current	T _{ref} = 25°C		27.5	34	А
V_{Oac}	Output ripple & noise	See ripple & noise section, max I_0, V_{0i}		70	250	mVp-p
OVP	Over voltage protection	T_{ref} = +25°C, V_{I} = 53 V, 0-100 % of max I_{O}	36.6	39	41.4	V
V_{aux}	Auxiliary output voltage	T_{ref} = +25°C, V_{I} = 53 V, 0-100 % of max I_{O}	8	10	12	V
I _{aux}	Auxiliary output current	max I _o , V _I = 36-75 V	0		0.05	A

DC/DC Converters, Input 36-75 V, Output 25 A/700 W

6 Preliminary Technical Specification EN/LZT 146 380 R1A April 2007

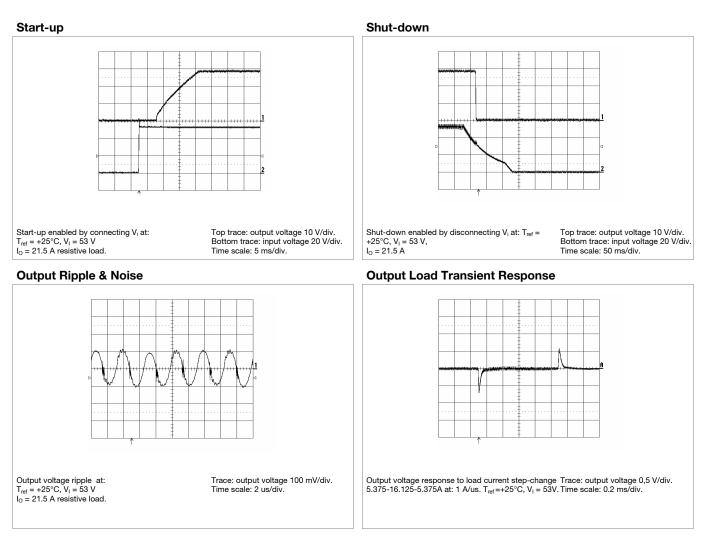
© Ericsson Power Modules AB

28V/21.5A Typical Characteristics

Efficiency **Power Dissipation** [%] [W] 50 100 40 95 36 V 90 30 36 V 48 V 85 20 48 V 53 V 53 V 75 V 80 10 - · 75 \ 75 0 0 5 10 15 20 [A] 10 15 20 5 [A] 0 Efficiency vs. load current and input voltage at $T_{ref} = +25^{\circ}C$ Dissipated power vs. load current and input voltage at $T_{ref} = +25^{\circ}C$ **Output Current Derating Thermal Resistance** [°C/W] [A] 5 20 3.0 m/s 4 2.0 m/s 15 1.5 m/s 3 10 1.0 m/s 2 $0.5 \, m/s$ 5 1 Nat. Conv 0 0 0.5 1.0 1.5 2.0 2.5 0.0 3,0 [m/s] 0 20 40 60 80 100 [°C] Available load current vs. ambient air temperature and airflow at Thermal resistance vs. airspeed measured at the converter. Tested in $V_I = 53 V$. See Thermal Consideration section. wind tunnel with airflow and test conditions as per the Thermal consideration section. **Output Characteristics Current Limit Characteristics** [V] [V] 28,4 25,00 28,2 20,00 36 V 36 V 28,0 48 V 48 V 15,00 53 V 53 V 27,8 10,00 - - ·75 V •75 V 27,6 5,00 0.00 27.4 22 23 24 25 26 27 28 29 30 31 32 33 34 [A] 2 4 6 8 10 12 14 16 18 20 0 [A] Output voltage vs. load current at T_{ref} = +25°C Output voltage vs. load current at $I_0 > max I_0$, $T_{ref} = +25^{\circ}C$

PKY 4616 PI

_....


DC/DC Converters, Input 36-75 V, Output 25 A/700 W

Preliminary Technical Specification

© Ericsson Power Modules AB

28V/21.5A Typical Characteristics

PKY 4616 PI

Output Voltage Adjust (see operating information)

Passive adjust

The resistor value for an adjusted output voltage is calculated by using the following equations:

Output Voltage Adjust Upwards, Increase:

$$R_{adj} = 10\left(\frac{1036}{\Delta\%} + 936\right) \,\mathrm{k}\Omega$$

Output Voltage Adjust Downwards, decrease:

$$R_{adj} = 10 \left(\frac{100}{\Delta\%} - 2 \right) \, \mathrm{k}\Omega$$

Active adjust

The output voltage may be adjusted using a current applied to the Vadj pin referred to -Sense. This current is calculated by using the following equations:

Output Voltage Adjust Upwards, Increase:

$$+1\%$$
 V₀ = 2,5 x 10⁻⁶ A into adjust pin

Output Voltage Adjust Downwards, decrease:

-1% V₀ = 2,5 x 10⁻⁶ A out of adjust pin

PKY 4000 PI series

DC/DC Converters, Input 36-75 V, Output 25 A/700 W

EN/LZT 146 380 R1A April 2007 © Ericsson Power Modules AB

28V/25A Preliminary Electrical Specification

PKY 4716 PI

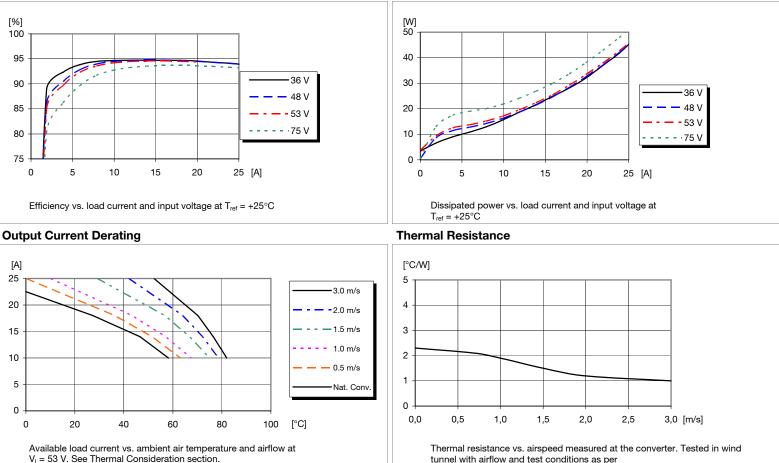
 T_{ref} = -40 to +100°C, V_I = 36 to 75 V, sense pins connected to output pins unless otherwise specified under Conditions. Typical values given at: T_{ref} = +25°C, V_I = 53 V_I max I_0 , unless otherwise specified under Conditions.

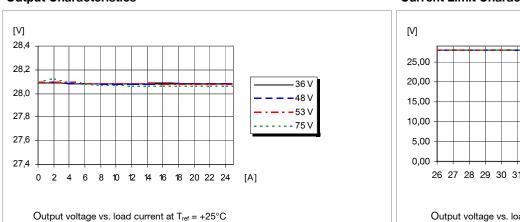
Charac	cteristics	Conditions	min	typ	max	Unit
Vı	Input voltage range		36		75	V
V _{loff}	Turn-off input voltage	Decreasing input voltage	32.1	33	34.5	V
Vlon	Turn-on input voltage	Increasing input voltage	33.3	35	35.5	V
Cı	Internal input capacitance			44		μF
Po	Output power	Output voltage initial setting	0		700	W
SVR	Supply voltage rejection (ac)	f = 100 Hz sinewave, 1 Vp-p		60		dB
	Etti sisa su	50 % of max I_0 , $V_1 = 53$ V		94.5		
n		max I _o , V _I = 53 V	93	94		%
η	Efficiency	50 % of max I_0 , $V_1 = 48$ V		94.5		
		$\max I_0, V_1 = 48 V$	93	94		
P _d	Power Dissipation	max I _{O,} V _I = 53 V		44.7	52.7	W
Pli	Input idling power	$I_0 = 0 A, V_1 = 53 V$		3	6.0	W
P _{RC}	Input standby power	$V_1 = 53 V$ (turned off with RC)		0.2	0.3	W
fs	Switching frequency	0-100 % of max I _o	145	150	155	kHz
VIOVP	Input over voltage protection	0-100 % of max I _o	80	83	86	V

V _{Oi}	Output voltage initial setting and accuracy	$T_{ref} = +25^{\circ}C, V_{I} = 53 V, I_{O} = 25 A$	27.72	28.0	28.28	V
	Output adjust range	See operating information	10.0		32.0	V
	Output voltage tolerance band	10-100 % of max I ₀	27.44		28.42	V
Vo	Idling voltage	I ₀ = 0 A	27.44		28.42	V
	Line regulation	max I _o		20	80	mV
	Load regulation	$V_{\rm I}$ = 53 V, 0-100 % of max $I_{\rm O}$		20	80	mV
V _{tr}	Load transient voltage deviation	V ₁ = 53 V, Load step 25-75-25 % of		±800		mV
t _{tr}	Load transient recovery time	max I _o , di/dt = 1 A/µs		40		μs
t _r	Ramp-up time (from 10–90 % of V _{oi})	10-100 % of max Io		10	20	ms
ts	Start-up time (from V ₁ connection to 90 % of V _{Oi})	10-100 % of max 10		17	20	ms
t _f	V _I shut-down fall time	max I _o		0.06		ms
4	(from V_1 off to 10 % of V_0)	$I_{O} = 0 A$		2.7		S
	RC start-up time	max I _o		15		ms
t_{RC}	RC shut-down fall time	max I _o		0.06		ms
	(from RC off to 10 % of $V_{\rm O})$	I ₀ = 0 A		2.7		S
lo	Output current	max I ₀ , V ₁ = 36-75 V	0		25	А
l _{lim}	Current limit threshold	T _{ref} < max T _{ref}	26	32	37.5	А
Isc	Short circuit current	T _{ref} = 25°C		32.5	38	А
V_{Oac}	Output ripple & noise	See ripple & noise section, max I _O , V _{Oi}		70	250	mVp-p
OVP	Over voltage protection	$T_{ref} = +25^{\circ}C, V_1 = 53 V, 0-100 \% of max I_0$	36.6	39	41.4	V
V_{aux}	Auxiliary output voltage	T_{ref} = +25°C, $V_{\rm I}$ = 53 V, 0-100 % of max $I_{\rm O}$	8	10	12	V
l _{aux}	Auxiliary output current	max I _o , V _I = 36-75 V	0		0.05	А

ERICSSON 💋

PKY 4000 PI series

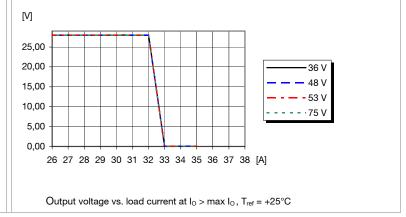

DC/DC Converters, Input 36-75 V, Output 25 A/700 W


9 Preliminary Technical Specification EN/LZT 146 380 R1A April 2007

© Ericsson Power Modules AB

28V/25A Typical Characteristics

Efficiency



Output Characteristics

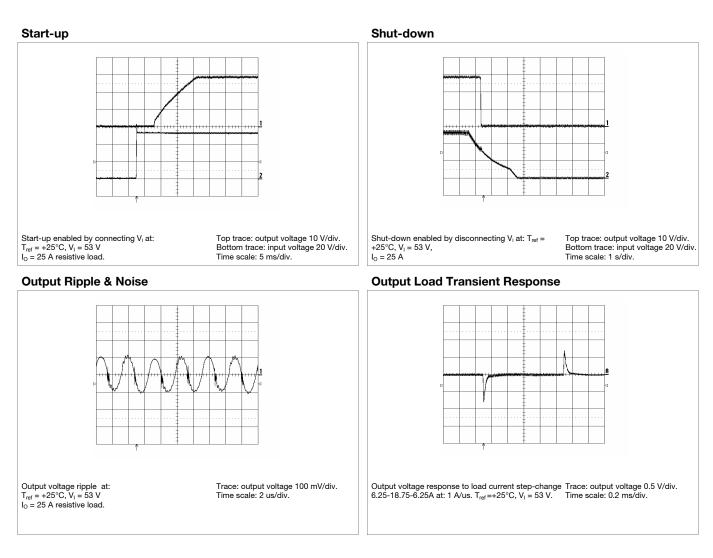
Current Limit Characteristics

the Thermal consideration section.

Power Dissipation

PKY 4716 PI

DC/DC Converters, Input 36-75 V, Output 25 A/700 W


28V/25A Typical Characteristics

PKY 4716 PI

10 Preliminary Technical Specification

EN/LZT 146 380 R1A April 2007

© Ericsson Power Modules AB

Output Voltage Adjust (see operating information)

Passive adjust

The resistor value for an adjusted output voltage is calculated by using the following equations:

Output Voltage Adjust Upwards, Increase:

$$R_{adj} = 10\left(\frac{1036}{\Delta\%} + 936\right) \,\mathrm{k}\Omega$$

Output Voltage Adjust Downwards, decrease:

$$R_{adj} = 10 \left(\frac{100}{\Delta\%} - 2 \right) \, \mathrm{k}\Omega$$

Active adjust

The output voltage may be adjusted using a current applied to the Vadj pin referred to -Sense. This current is calculated by using the following equations:

Output Voltage Adjust Upwards, Increase:

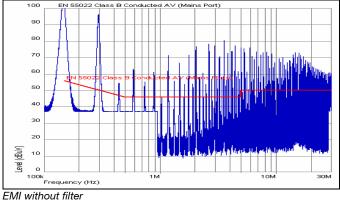
$$+1\%$$
 V₀ = 2,5 x 10⁻⁶ A into adjust pin

Output Voltage Adjust Downwards, decrease:

-1% V₀ = 2,5 x 10⁻⁶ A out of adjust pin

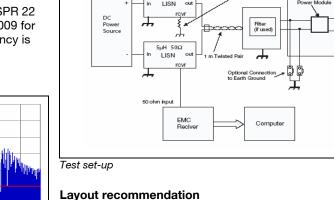
DC/DC Converters, Input 36-75 V, Output 25 A/700 W

Preliminary Technical Specification


Printed Circuit B

© Ericsson Power Modules AB

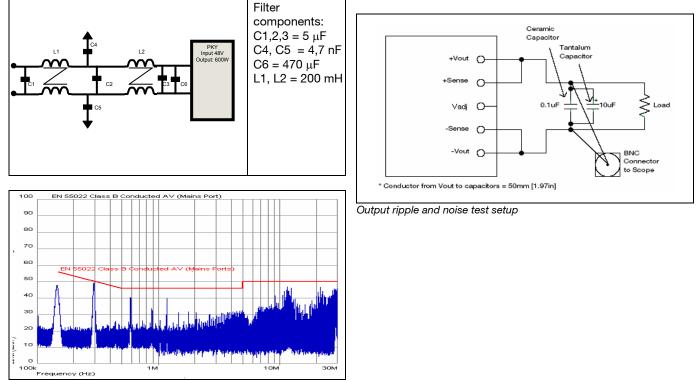
EMC Specification


Conducted EMI measured according to EN55022, CISPR 22 and FCC part 15J (see test set-up). See Design Note 009 for further information. The fundamental switching frequency is 150 kHz for PKY 4616 PI @ $V_I = 53$ V, max I_O .

Conducted EMI Input terminal value (typ)

External filter (class B)

Required external input filter in order to meet class B in EN 55022, CISPR 22 and FCC part 15J.


500

The radiated EMI performance of the DC/DC converter will depend on the PCB layout and ground layer design. It is also important to consider the stand-off of the product. If a ground layer is used, it should be connected to the output of the product and the equipment ground or chassis.

A ground layer will increase the stray capacitance in the PCB and improve the high frequency EMC performance.

Output ripple and noise

Output ripple and noise measured according to figure below. See Design Note 022 for detailed information.

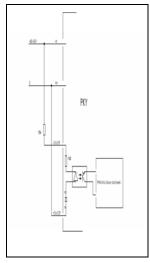
EMI with filter

PKY 4000 PI series DC/DC Converters, Input 36-75 V, Output 25 A/700 W

Operating information

Input Voltage

The input voltage range 36 to 75Vdc meets the requirements of the European Telecom Standard ETS 300 132-2 for normal input voltage range in -48 and -60 Vdc systems, -40.5 to - 57.0 V and -50.0 to -72 V respectively.


At input voltages exceeding 75 V, the power loss will be higher than at normal input voltage and T_{ref} must be limited to absolute max +110°C. The absolute maximum continuous input voltage is 100 Vdc.

Turn-off Input Voltage

The DC/DC converters monitor the input voltage and will turn on and turn off at predetermined levels.

The minimum hysteresis between turn on and turn off input voltage is 1V.

Remote Control (RC)

The products are fitted with a remote control function floating to the rest or the product by a photo coupler, with negative and positive logic options available. The remote control function is to either deactivate or activate the Vo. It also resets the power module after latching output voltage protection. The isolation from +On/Off. -On/Off to the rest of the power module is minimum 1500VDC. The power module has a standard remote control function "positive logic" and will be off until a current through the photocouplers diode is conducted.

The minimum current to guarantee activate function is 1,5mA. If 5V is applied over +On/Off and – On/Off, enough current is applied to guarantee function. Less then 50uA or 1,3V, guarantee off function.

Input and Output Impedance

The impedance of both the input source and the load will interact with the impedance of the DC/DC converter. It is important that the input source has low characteristic impedance. The converters are designed for stable operation without external capacitors connected to the input or output. The performance in some applications can be enhanced by addition of external capacitance as described under External Decoupling Capacitors. If the input voltage source contains significant inductance, the addition of a 100 μ F capacitor across the input of the converter will ensure stable operation. The capacitor is not required when powering the DC/DC converter from an input source with an inductance below 10 μ H.

© Ericsson Power Modules AB

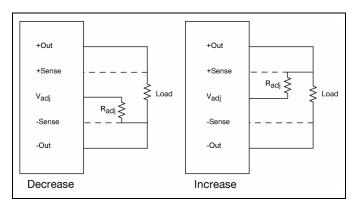
EN/LZT 146 380 R1A April 2007

External Decoupling Capacitors

When powering loads with significant dynamic current requirements, the voltage regulation at the point of load can be improved by addition of decoupling capacitors at the load. The most effective technique is to locate low ESR ceramic and electrolytic capacitors as close to the load as possible, using several parallel capacitors to lower the effective ESR. The ceramic capacitors will handle high-frequency dynamic load changes while the electrolytic capacitors are used to handle low frequency dynamic load changes. Ceramic capacitors will also reduce any high frequency noise at the load.

It is equally important to use low resistance and low inductance PCB layouts and cabling.

External decoupling capacitors will become part of the control loop of the DC/DC converter and may affect the stability margins. As a "rule of thumb", 100 μ F/A of output current can be added without any additional analysis. The ESR of the capacitors is a very important parameter. Power Modules guarantee stable operation with a verified ESR value of >10 m Ω across the output connections.


For further information please contact your local Ericsson Power Modules representative.

Output Voltage Adjust (Vadj)

The product has an Output Voltage Adjust pin (V_{adj}). This pin can be used to adjust the output voltage above or below Output voltage initial setting.

When increasing the output voltage, the voltage at the output pins (including any remote sense compensation) must be kept below the threshold of the over voltage protection, (OVP) to prevent the converter from shutting down. At increased output voltages the maximum power rating of the converter remains the same, and the max output current must be decreased correspondingly.

To increase the voltage the resistor should be connected between the V_{adj} pin and +Sense pin. The resistor value of the Output voltage adjust function is according to information given under the Output section for the respective product. To decrease the output voltage, the resistor should be connected between the V_{adj} pin and –Sense pin

PKY 4000 PI series DC/DC Converters, Input 36-75 V, Output 25 A/700 W

Operating information continued

Parallel Operation

Two or more products may be paralleled for redundancy or increased output power. External active load sharing circuit are recommended to provide the maximum balanced current sharing.

Remote Sense

The product has remote sense that can be used to compensate for voltage drops between the output and the point of load. The sense traces should be located close to the PCB ground layer to reduce noise susceptibility. The remote sense circuitry will compensate for up to 10% voltage drop between output pins and the point of load.

If the remote sense is not needed +Sense should be connected to +Out and -Sense should be connected to -Out.

Over Temperature Protection (OTP)

The product is protected from thermal overload by an internal Over Temperature Protection circuit (OTP). When the PCB temperature (TC reference point) exceeds the temperature trig point for the OTP, the output power will be decreased by adjusting down the output voltage. This will decrease power loss inside the DC/DC power module and protect it from hazardous temperatures.

Over Voltage Protection (OVP)

The products include output Over Voltage Protection (OVP). In the event of an output over voltage condition the products OVP circuit will latch and shut down the output voltage. Restart is necessary, either by cycling the input voltage or reactivate the RC signal.

Over Current Protection (OCP)

The product include current limiting circuitry for protection at continuous overload.

The output voltage will decrease towards zero for output currents in excess of max output current (max I_0). The converter will resume normal operation after removal of the overload. The load distribution should be designed for the maximum output short circuit current specified.

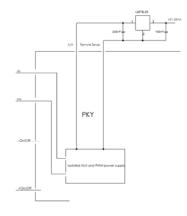
Pre-bias Start-up

The product has a Pre-bias start up functionality and will not sink current during start up if a pre-bias source is present at the output terminals.

EN/LZT 146 380 R1A April 2007 © Ericsson Power Modules AB

Power Good

Is an open collector function that is logic low level when the product is in normal operation mode.


It will turn to logic high level during fault conditions (e.g. over temperature or over voltage) or when the power train is deactivated.

Auxiliary output voltage (AUX)

The product is equipped with a power source referred to – sense. It is intended to be used as a power source for external circuits as for example a remote control system. The auxiliary output voltage is always active as soon as there is an input voltage over 35V and it will stop if input voltage is higher then 80V.

The nominal auxiliary output voltage is 10V. Maximum allowed load is 50mA The auxiliary output voltage is not short circuit protected, if the AUX pin is overloaded, the main converter will be switched off.

An example of a 5V/45mA power supply driven by the auxiliary output voltage is given in the figure below.

PKY 4000 PI series	
DC/DC Converters, Input 36-75 V, Output 2	25 A/700 W

EN/LZT 146 380 R1A April 2007

© Ericsson Power Modules AB

Thermal Consideration

General

The converters are designed to operate in different thermal environments and sufficient cooling must be provided to ensure reliable operation.

Cooling is achieved mainly by conduction, from the pins to the host board, and convection, which is dependant on the airflow across the converter. Increased airflow enhances the cooling of the converter.

The Output Current Derating graph found in the Output section for each model provides the available output current vs. ambient air temperature and air velocity at V_{in} = 53 V.

The DC/DC converter is tested on a 254 x 254 mm, 35 μm (1 oz), 8-layer test board mounted vertically in a wind tunnel with a cross-section of 305 x 305 mm.

Proper cooling of the DC/DC converter can be verified by measuring the temperature at positions P1, P2 and P3. The temperature at these positions should not exceed the max values provided in the table below.

Note that the max value is the absolute maximum rating (non destruction) and that the electrical Output data is guaranteed up to T_{ref} +100°C.

See Design Note 019 for further information.

Position	Device	Designation	max value
P ₁	Pcb	T _{ref}	125° C
P ₂	Diode	T _{ref}	120° C
P ₃	Mosfet	T _{ref}	120° C

\odot	•
1, 2,	,16 ,15
3,	+ ¹⁴
4	_13 _12
	,11 5,6,7,8,9,10, (

Definition of reference temperature (T_{ref})

The reference temperature is used to monitor the temperature limits of the product. Temperatures above maximum T_{ref} are not allowed and may cause degradation or permanent damage to the product. T_{ref} is also used to define the temperature range for normal operating conditions. T_{ref} is defined by the design and used to guarantee safety margins, proper operation and high reliability of the module.

Ambient Temperature Calculation

By using the thermal resistance the maximum allowed ambient temperature can be calculated.

1. The power loss is calculated by using the formula $((1/\eta) - 1) \times$ output power = power losses (Pd). η = efficiency of converter. E.g 95 % = 0.95

2. Find the thermal resistance (Rth) in the Thermal Resistance graph found in the Output section for each model. Calculate the temperature increase (Δ T). Δ T = Rth x Pd

3. Max allowed ambient temperature is: Max Tref - $\Delta T.$

E. g. PKY 4616 PI at 1m/s:

1.
$$\left(\left(\frac{1}{0.95}\right) - 1\right) \times 600 \text{ W} = 31.58 \text{ W}$$

2. 31.58 W × 1.9° C/W = 60° C

3. 110 °C - 60°C = max ambient temperature is 50°C

The actual temperature will be dependent on several factors such as the PCB size, number of layers and direction of airflow.

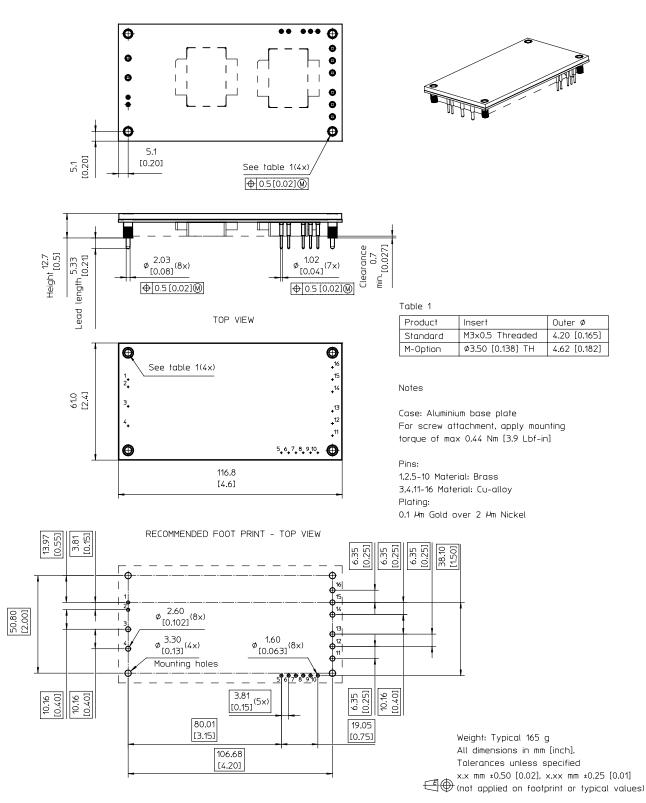
ERICSSON 💋

PKY 4000 PI series

DC/DC Converters, Input 36-75 V, Output 25 A/700 W

EN/LZT 146 380 R1A April 2007 © Ericsson Power Modules AB

Connections


	TOP VIEW
\odot	•
1, 2,*	_16 _15 _14
3,	+ ¹³
4+	+ ¹² + ¹¹
\odot	5, 6, 7, 8, 9, 10, (

Pin	Designation	Function
	Designation	
1	-In	Negative input
2	+ln	Positive input
3	-On/Off	Negative remote on/off
4	+On/Off	Positive remote on/off
5	AUX	Auxiliary power supply
6	PWR Good	Power Good
7	Optional	N/A
8	Vadj	Output Voltage Adjust
9	+Sense	Positive remote sense
10	-Sense	Negative remote sense
11	-Vout	Negative output voltage
12	-Vout	Negative output voltage
13	-Vout	Negative output voltage
14	+Vout	Positive output voltage
15	+Vout	Positive output voltage
16	+Vout	Positive output voltage

Preliminary Technical Specification

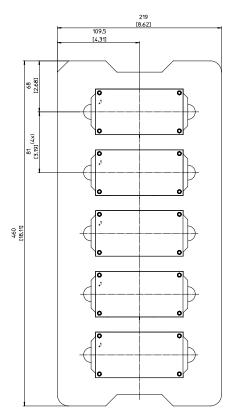
PKY 4000 PI series	EN/LZT 146 380 R1A April 2007
DC/DC Converters, Input 36-75 V, Output 25 A/700 W	© Ericsson Power Modules AB

Mechanical Information

PKY 4000 PI series	EN/LZT 146 380 R1A April 2007
DC/DC Converters, Input 36-75 V, Output 25 A/700 W	© Ericsson Power Modules AB

Soldering Information – Through Hole Mounting

The product is intended for manual or wave soldering. When wave soldering is used, the temperature on the pins is specified to maximum 270°C for maximum 10 seconds.


A maximum preheat rate of 4° C/s and a temperature of max of +150°C is suggested. When soldering by hand, care should be taken to avoid direct contact between the hot soldering iron tip and the pins for more than a few seconds in order to prevent overheating.

A no-clean flux is recommended to avoid entrapment of cleaning fluids in cavities inside the product or between the product and the host board. The cleaning residues may affect long time reliability and isolation voltage.

Delivery Package Information

The products are delivered in antistatic trays.

Tray Specifications				
Material	Antistatic PE Foam			
Surface resistance	10 ⁵ < Ohm/square < 10 ¹²			
Bakability	The trays are not bakable			
Tray capacity	5 products/tray			
Tray thickness	26.0 mm [1.024 inch]			
Box capacity	5 products (1 full tray/box)			
Tray weight	55 g empty, 880 g full tray			

PKY 4000 PI series

DC/DC Converters, Input 36-75 V, Output 25 A/700 W

EN/LZT 146 380 R1A April 2007 © Ericsson Power Modules AB

Product Qualification Specification

Characteristics			
External visual inspection	IPC-A-610		
Change of temperature (Temperature cycling)	IEC 60068-2-14 Na	Temperature range Number of cycles Dwell/transfer time	-40 to +100°C 1000 15 min/0-1 min
Cold (in operation)	IEC 60068-2-1 Ad	Temperature T _A Duration	-45°C 72 h
Damp heat	IEC 60068-2-67 Cy	Temperature Humidity Duration	+85°C 85 % RH 1000 hours
Dry heat	IEC 60068-2-2 Bd	Temperature Duration	+125°C 1000 h
Electrostatic discharge susceptibility	IEC 61340-3-1, JESD 22-A114 IEC 61340-3-2, JESD 22-A115	Human body model (HBM) Machine Model (MM)	Class 2, 2000 V Class 3, 200 V
Immersion in cleaning solvents	IEC 60068-2-45 XA Method 2	Water Glycol ether Isopropyl alcohol	+55°C +35°C +35°C
Mechanical shock	IEC 60068-2-27 Ea	Peak acceleration Duration	100 g 6 ms
Operational life test	MIL-STD-202G method 108A	Duration	1000 h
Resistance to soldering heat	IEC 60068-2-20 Tb Method 1A	Solder temperature Duration	270°C 10-13 s
Robustness of terminations	IEC 60068-2-21 Test Ua1	Through hole mount product	All leads
Solderability	IEC 60068-2-20 test Ta ²	Preconditioning Temperature, SnPb Eutectic Temperature, Pb-free	Steam ageing 235°C 245°C
Vibration, broad band random	IEC 60068-2-64 Fh, method 1	Frequency Spectral density Duration	10 to 500 Hz 0.07 g²/Hz 10 min in each perpendicular direction