



# AEH60F48 Isolated DC/DC Converter Module Industry Standard <sup>1</sup>/<sub>2</sub> Brick – 36-75V Input, 5.0V Output

Astec's Ultra High Density ½ Brick capable of running 60Amps at 5.0V output. With Efficiencies up to 90% typical at 5.0V, 60Amps this product provides a 1% to 2% performance increase in efficiency over the leading 60Amp. The operating temperature range (-40C to 100C baseplate) assures maximum reliability. The new single-output model also features superior transient response with excellent stability in high capacitance/low ESR load applications.



### **Special Features**

- High efficiency, 5.0V@90%
- -40°C to 100°C baseplate operating temperature
- Positive and Negative enable function
- Low output ripple and noise
- High capacitive load limit on start-up
- Remote sense compensation
- Regulation to zero load
- Fixed frequency switching (400 kHz)

#### **Environmental Specifications**

- Operating temperature:
- -40°C to +100°C (Baseplate)
- Storage temperature: -55°C to +125C
- MTBF: >1 million hours

#### **Electrical Parameters**

#### <u>Input</u>

Input range Input Surge Efficiency

36-75 VDC 100V / 100ms 90%@5.0V (Typical)

<u>Control</u> Enable TTL compatible (positive & negative enable options)

#### <u>Output</u>

Regulation (Line, Load, Temp) <2%

**Ripple and noise** 

Remote sense

Output voltage adjust range

+/-10% of nominal output

Up to 10%Vout

2% typical (100mV p-p

Transient Response4% max deviation with<br/>50% to 75% full load<br/>300 µS (max) recovery

max)

Overvoltage Protection 130% nominal output

#### Safety

| UL, cUL | 1950 Recognized  |
|---------|------------------|
| TUV     | EN60950 Licensed |





AEH60A48 series

THIS SPECIFICATION COVERS THE REQUIREMENTS FOR AN INDUSTRY STANDARD ½ BRICK (MAX 300W @ 5.0V) SINGLE OUTPUT ULTRA HIGH EFFICIENCY ISOLATED DCDC CONVERTER

#### PART NUMBERS

| MODEL NAME / SIS CODE | Construction | Vout, Iout |
|-----------------------|--------------|------------|
| AEH60A48N             | Heatsinkable | 5.0V/60A   |
| AEH60A48              | Heatsinkable | 5.0V/60A   |

#### **OPTIONS**

| Suffix    | Option                |
|-----------|-----------------------|
| Ν         | Negative Logic Enable |
| No Suffix | Positive Logic Enable |





#### ELECTRICAL SPECIFICATIONS

Unless otherwise indicated, specifications apply over all operating input voltage and temperature conditions. Standard test condition on a single unit.

| Tambient :  | 25°C                     |
|-------------|--------------------------|
| +Vin :      | 48V +/ -2%               |
| -Vin :      | return pin for +Vin      |
| Enable :    | Open                     |
| +Vout :     | connect to load          |
| -Vout :     | connect to load (return) |
| Trim(Vadj): | Open                     |
| +Sense :    | connected to +Vout       |
| -Sense :    | connected to -Vout       |

#### ABSOLUTE MAXIMUM RATINGS

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device in not implied at these or any other conditions in excess of those given in the operational sections of the IPS. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

| Parameter                                                                   | Device | Symbol           | Min | Тур | Max  | Unit |
|-----------------------------------------------------------------------------|--------|------------------|-----|-----|------|------|
| Input Voltage:                                                              |        |                  |     |     |      |      |
| Continuous:                                                                 | All    | $V_{I}$          | 0   | -   | 75   | Vdc  |
| Transient (100ms)                                                           | All    | $V_{I, trans}$   | 0   | -   | 100  | Vdc  |
| Operating Base/Ambient<br>Temperature                                       | All    | Tc/Ta            | -40 | -   | 100  | °C   |
| Storage Temperature                                                         | All    | T <sub>STG</sub> | -55 | -   | 125  | °C   |
| Operating Humidity                                                          | All    | -                | -   | -   | 85   | %    |
| I/O Isolation<br>(Conditions : 50μA for 5 sec,<br>slew rate of 1500V/10sec) |        |                  |     |     |      |      |
| Input-Output                                                                | All    | -                | -   | -   | 1500 | Vdc  |
| Input-Case                                                                  |        | -                | -   | -   | 1500 | Vdc  |
| Output-Case                                                                 |        | -                | -   | -   | 1500 | Vdc  |
| Output Power                                                                | 5.0V   | Po,max           | -   | -   | 300  | W    |





#### **INPUT SPECIFICATIONS**

| Parameter                                                                                                   | Device | Symbol         | Min | Тур | Max  | Unit            |
|-------------------------------------------------------------------------------------------------------------|--------|----------------|-----|-----|------|-----------------|
| a) Operating Input Voltage                                                                                  | All    | $V_{I}$        | 36  | 48  | 75   | $V_{\text{DC}}$ |
| b) Maximum Input Current<br>( $V_I = 0$ to $V_{I,max}$ : Io = Io,max)                                       | All    | $I_{I,max} \\$ | -   | -   | 10.0 | А               |
| c) Input Reflected-ripple Current<br>(5Hz to 20MHz: 12uH source<br>impedance: $T_A = 25$ °C.) See Figure 1. | All    | II             | -   | -   | 20   | mAp-p           |
| d) No Load Input Power $(V_I = V_{I,nom})$                                                                  | All    | -              | -   | -   | 8    | W               |

CAUTION: This power module is not internally fused. An input line fuse must always be used.



# Technical Reference Note AEH60A48 Preliminary



#### **OUTPUT SPECIFICATIONS**

| Parameter                                                                                                              | Device | Symbol      | Min | Тур | Max   | Unit                  |
|------------------------------------------------------------------------------------------------------------------------|--------|-------------|-----|-----|-------|-----------------------|
| Output Voltage Setpoint<br>( $V_I = V_{I,min}$ to $V_{I,max}$ : Io = Io,max;<br>$T_A = 25$ °C )                        | 5.0V   | $V_{o,set}$ | 4.9 | 5.0 | 5.1   | Vdc                   |
| Output Regulation:<br>Line                                                                                             | All    | -           | -   | 0.1 | 0.4   | %                     |
| Load(Io = Io,min to Io,max)                                                                                            | All    | -           | -   | 0.1 | 0.4   | %                     |
| Temperature (Tc = -40 °C to $+100$ °C)                                                                                 | All    | -           | -   | -   | 1.0   | %Vo                   |
| Output Ripple and Noise<br>(Across 1μF @50V, X7R ceramic capacitor<br>& 10μF @25V tantalum capacitor)<br>See Figure 2. | All    | -           | -   | 60  | 100   | mVp-p                 |
| Peak-to-Peak (5 Hz to 20 MHz)                                                                                          |        |             |     |     |       |                       |
| External Load Capacitance<br>(See Stability Curves for Detail)                                                         | All    | -           | -   | -   | 50000 | μF                    |
| Rated Output Current                                                                                                   | All    | Іо          | 0   | -   | 60    | А                     |
| Output Current-limit Inception (Hiccup mode)                                                                           | All    | Іо          | 65  | -   | 77    | А                     |
| Maximum Overload Current<br>(Hiccup Mode)                                                                              | All    | -           | -   | -   | 150   | %I <sub>out,max</sub> |
| Efficiency<br>( $V_I = V_{I,nom}$ ; $I_{o,max}$ ; $T_A = 25^{\circ}C$ )                                                | All    | -           |     | 90  | -     | %                     |
| Switching Frequency                                                                                                    | All    | -           | 190 | 200 | 210   | KHz                   |





#### **OUTPUT SPECIFICATIONS (Cont)**

| $\begin{array}{l} \textbf{Parameter} \\ \text{Dynamic Response :} \\ (\Delta Io/\Delta t = 1A/10 \mu s \ ; \ V_I = V_{I,nom} \ ; \\ TA = 25^{\circ}\text{C}) \end{array}$ | Device | Symbol | Min | Тур | Max      | Unit        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-----|-----|----------|-------------|
| Load Change from Io = 50% to<br>75% of Io,max :<br>Peak Deviation Settling Time (to<br>$V_{o,nom}$ )                                                                      | All    | -      | -   | -   | 6<br>250 | %Vo<br>μsec |
| Load Change from Io = 50% to<br>25% of Io,max :<br>Peak Deviation Settling Time (to<br>$V_{o,nom}$ )                                                                      | All    | -      | -   | -   | 6<br>250 | %Vo<br>μsec |
| Turn-On Time<br>(Io = Io,max ; Vo within 1%)                                                                                                                              | All    | -      | -   | 4   | 10       | msec        |
| Output Voltage Overshoot<br>(Io = Io,max ; $T_A = 25^{\circ}C$ )                                                                                                          | All    | -      | -   | 0   | 4        | %Vo         |

#### FEATURE SPECIFICATIONS

| Parameter                           | Device    | Symbol              | Min  | Тур  | Max  | Unit       |
|-------------------------------------|-----------|---------------------|------|------|------|------------|
| Enable pin voltage :                | A 11      |                     | 07   |      | 1.0  | <b>N</b> 7 |
| Logic Low                           | All       |                     | -0.7 | -    | 1.2  | V          |
| Logic High                          | All       |                     | 2.5  | -    | 10   | V          |
| Enable pin current :                |           |                     |      |      |      |            |
| Logic Low                           | All       |                     | _    | _    | 1.0  | mA         |
| Logic High(leakage current,         | All       |                     | _    | _    | 50   |            |
| @10V)                               | All       |                     | -    | _    | 50   | μA         |
| @10V)                               |           |                     |      |      |      |            |
| Module Output voltage               | AEH60A48N |                     | _    | _    | 1.2  | V          |
| @ Logic High                        |           |                     |      |      | 1.2  | v          |
| e Logie Ingli                       |           |                     |      |      |      |            |
| Module Output voltage               | AEH60A48  |                     | -    | _    | 1.2  | V          |
| @ Logic Low                         |           |                     |      |      | 1.2  | •          |
| Output Voltage Adjustment Range     | All       | _                   | 90   | _    | 110  | %Vo        |
| Sulput Voluge Aujustitient Range    | 7 111     |                     | 70   |      | 110  | /0 0 0     |
| Output Overvoltage Clamp            | All       | Vo <sub>clamp</sub> | 5.90 | -    | 6.00 | V          |
| Undervoltage Lockout                |           | Clamp               |      |      |      |            |
| Turn-on Point                       | All       | -                   | -    | 35   | 35.5 | V          |
| Turn-off Point                      | All       | -                   | 33   | 33.5 | -    | V          |
| Isolation Capacitance               | All       | -                   | _    | 2700 | -    | PF         |
| Isolation Resistance                | All       | -                   | 10   | -    | -    | MΩ         |
| Calculated MTBF                     | All       | -                   | _    | TBD  | -    | Hours      |
| $(Io = Io, max; T_A = 25^{\circ}C)$ |           |                     |      |      |      |            |
| Weight                              | All       | -                   | -    | -    | TBD  | g(oz.)     |
| 5                                   |           |                     |      |      |      | 0. /       |





## **Basic Operation and Features**

The AEH/ALH60 was designed specifically to address applications where ultra high power density is required. This modules provides basic insulation and 1500V isolation with very high output current cability in an Industry Standard Half Size Module. It operates from a 36 to 75V and has several standard features such as Sense, Trim, OVP, OCP, OTP protection. The AEH60 series is designed to accept industry standard heatsinks which will enhance the modules thermal performance in application where conductive cooling is required.

### Remote Sense (+Sense, -Sense)

Connect the + Sense and – Sense pins directly to the load to allow the module to compensate for the voltage drop across the conductors carrying the load current. IF remote sense is not required (For example if the load is close to the module) the sense pins should be connected directly to the corresponding output pins. The maximum compensation is limited to 10% Vout.

# **Output Overvoltage Clamp**

The output overvoltage clamp consists of a separate control loop, independent of the primary control loop. This control loop has a higher voltage setpoint than the primary loop. In a fault condition the converter goes into "Hiccup Mode", and the output overvoltage clamp ensures that the output voltage does not exceed Vo,clamp,max. This secondary control loop provides a redundant voltage-control that reduces the risk of output overvoltage.

# **Output Current Protection**

To provide protection in an output overload or short circuit condition, the converter is equipped with current limiting circuitry and can endure the fault condition for an unlimited duration. At the point of current-limit inception, the converter goes into "Hiccup Mode", causing the output current to be limited both in peak and duration. The converter operates normally once the output current is brought back into its specified range.

# **Enable Function**

Two enable option are available. Positive Logic Enable, no suffix, and Negative Logic Enable, suffix "N". Positive Logic Enable turns the converter on during a logic-high voltage on the enable pin, and off during a logic-low. Negative Logic Enable turns the converter off during a logic-high and on during a logic-low.

# **Trim Function**

Output voltage adjustment is accomplished by connecting an external resistor between the Vadj Pin and either the +Sense or –Sense Pins.

With an external resistor(Radj\_up) connected between the Trim Pin and +Sense Pin the output voltage set point (Vo,adj) increases. See Figure 4 for connection. The following equation determines the required external resistor value to obtain an adjusted output voltage:

Radj\_up=
$$\left[\frac{5.1 \text{Vo}(100+\% \text{Vo}, \text{adj})}{1.225\% \text{Vo}, \text{adj}} - \frac{510}{\% \text{Vo}, \text{adj}} - 10.2\right] \cdot \text{kohm}$$





## **Trim Function**

Where Radj-up is the resistance value in kOhm and %Vo,adj is the percent change in the output voltage.

With an external resistor(Radj\_down) connected between the Trim Pin and -Sense Pin (Radj-up) the output voltage set point (Vo,adj) decreases. See Figure 5 for connection. The following equation determines the required external resistor value to obtain an adjusted output voltage:

Radj\_down=
$$\left(\frac{510}{\% \text{ Vo, adj}} - 10.2\right)$$
 · kohm

Where Radj-down is the resistance value in kOhm and %Vo,adj is the percent change in the output voltage.

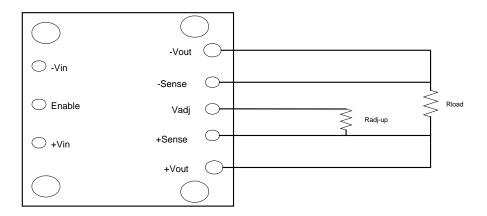
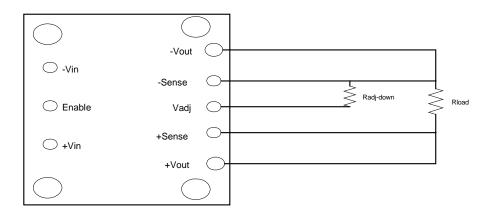
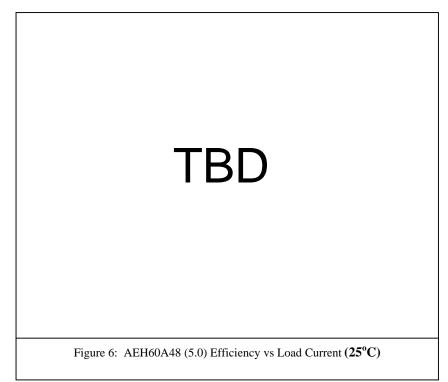
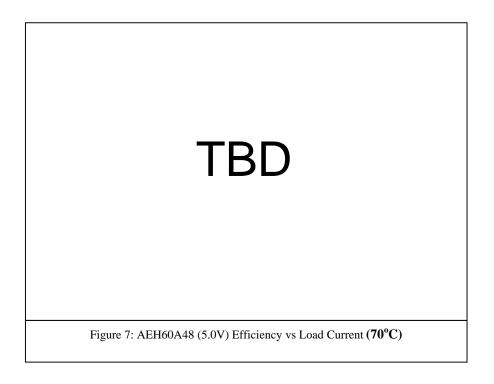



Figure 4. Circuit Configuration to Increase Output Voltage.





Figure 5. Circuit Configuration to Decrease Output Voltage.


| DATE: | September 2005 |  |
|-------|----------------|--|
|-------|----------------|--|

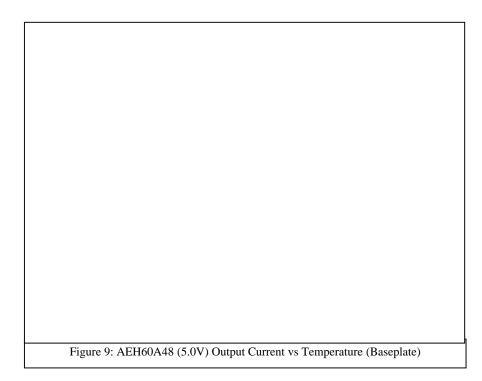




### **Performance Curves – Efficiency (AEH60A48)**






DATE: , September 2005

MODEL : AEH60A48 Series





**Performance Curves – Output Performance Curves** 



DATE: , September 2005

MODEL : AEH60A48 Series





**Performance Curves** – Transient Reponse

| Figure 10: AEH60FA8 (5.0V) – 50% to 75% to 50% load with no Ext Cap. (1.0A/uS) | Figure 11: AEH60A48 (5.0V) – 50% to 75% to 50% load with 9.4KuF Ext Cap. (1.0A/uS) |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------|

# **Performance Curves – Startup Characteristics**

| AEH60A48 (5.0V) – No Ext. Cap, 20A Resistive Load | AEH60A48 (5.0V) - 9.4K uF Ext. Cap, 20A Resistive Load |
|---------------------------------------------------|--------------------------------------------------------|
|                                                   |                                                        |





# **Input Filtering Considerations for FCC Class B Conducted:**

A reference design for an input filter that can provide FCC Class B conducted noise levels is shown below. Two common mode connected inductors are used in the circuit along with balanced bypass capacitors to shunt common mode currents into the ground plane and back to the converter thereby reducing the amount of energy reaching the input LISN for measurement.

The application circuit shown has an earth ground (frame ground) connected to the converter output (-) terminal. Such a configuration is common practice to accommodate safety agency requirements. Grounding an output terminal results in much higher conducted emissions as measured at the input LISN because a hard path for common mode current back to the LISN is created by the frame ground. "Floating" loads generally result in much lower measured emissions. The electrical equivalent of a floating load, for EMI measurement purposes, can be created by grounding the converter output (load) through a suitably sized inductor(s) while maintaining the necessary safety bonding.

Also shown is a sketch of a PCB layout used to achieve Class B conducted noise levels. It is important to avoid extending the ground plane or any other conductors under the inductors (particularly L2) because capacitive coupling to that track or plane can effectively bypass the inductor and degrade high frequency performance of the filter.

Components:

| L1, L2           | Pulse Engineering    | P0353 | 590 uh |
|------------------|----------------------|-------|--------|
| C1,3,4,5,6,11,12 | 0.01uf/2000V         |       |        |
| C2,7,9           | 100uf / 100V Alur    | ninum |        |
| C13,14           | 470pf / 100V Ceramic |       |        |
| C8,10            | 2.2uf / 100V Film    | L     |        |

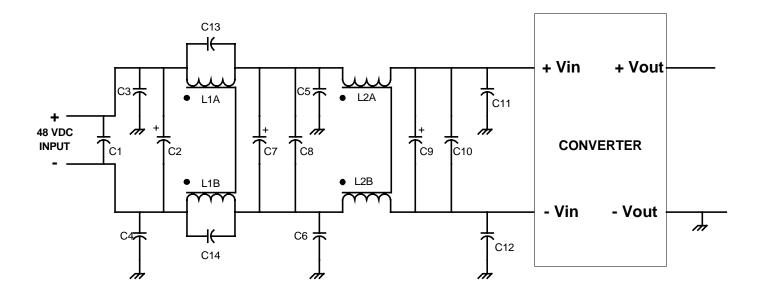



Figure 12: Class B Filter Circuit





**Input Filtering: (Cont)** 

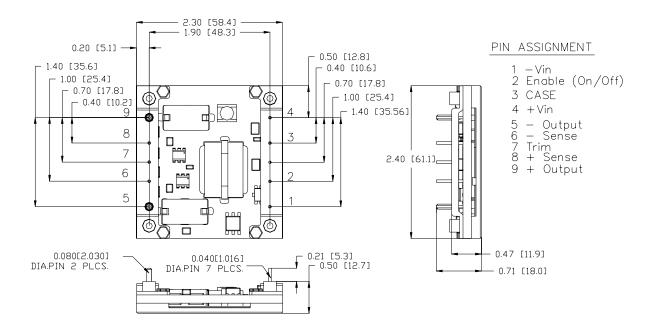
# TBD

Figure 13: Recommended PCB Layout for Class B Filter

# TBD

Figure 14: AEH60A48 Noise Spectrum

DATE: , September 2005

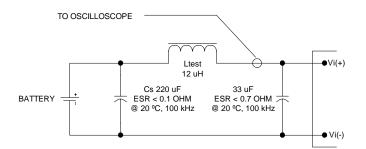

MODEL : AEH60A48 Series



•

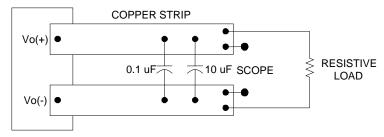


#### Mechanical Dimensions and Module Pin Assignment




**Figure 19 : Outline Drawing for AEH60** 






TEST SETUP



Note: Measure input reflected-ripple current with a simulated source inductance (Ltest) of 12 uH. Capacitor Cs offsets possible battery impedance. Measure current as shown above.

#### Figure 23: Input Reflected-ripple Test Setup.



Note: Use a 0.1µF @50V X7R ceramic capacitor and a 10µF @ 25V tantalum capacitor. Scope measurement should be made using a BNC socket. Position the load between 51 mm and 76 mm (2 in. and 3 in.) from module.

#### Figure 24.: Peak-to-Peak Output Noise Measurement Test Setup.





SOLDERING CONSIDERATIONS



#### **Recommend Storage Condition**

Maximum storage period: Storage condition:

6 months 30 deg C, 60%RH

Recommend baking the module at 100degC for 24 hours if storage period is longer than 6 months.