洁净室测试准则

場

TECHNOLOGY

为证明洁净室工作得令人满意,必须证明其满足了下述准则的要求:

- 1.洁净室的送风量充足,足以稀释或消除室内产生的污染。
- 2.洁净室内的空气是从洁净区向洁净程度差的区域流动,受污染空气的流动达到最低程度,空气在门口 处和室内建筑中的流动方向正确。
- 3.洁净室的送风不会显著增加室内的污染。
- 4.室内空气的运动状态可保证密室内没有高浓度聚集区域。

如果洁净室达到了上述这些准则的要求,就可以测量其粒子浓度或微生物浓度(必要时),以确定其达到了规定的洁净室标准。

洁净室的测试:

- 1. 送风量与排风量:如果是紊流洁净室,那么就要测量其送风量与排风量。若为单向流洁净室,则要测量其风速。
- 2. 各区之间的气流控制:为证明各区之间气流运动方向正确,也就是从洁净区向洁净度差的区域流动,必须检测: (1)各区间的压差正确; (2)门口处或墙、地板等处的开口处气流运动方向正确,即从洁净区向洁净程度差的区域流动。
- 3. 过滤器检漏:对高效过滤器及其外框要进行检验,以保证悬浮污染物不会穿过:
- (1) 损坏了的过滤器;
- (2) 过滤器与其外框间的缝隙;
- (3) 过滤器装置的其他部位而侵入室内。
- 4. 隔离检漏: 这项测试是为了证明悬浮污染物不穿过建筑材料侵入洁净室。
- 5. 室内气流控制:气流控制测试的类型要依洁净室的气流模式——是紊流还是单向流而定。若洁净室 气流为紊流,则必须验明室内没有气流运行不足的区域。若是单向流洁净室,则必须验明整个室内的风 速和风向是符合设计要求的。
- 6. 悬浮粒子浓度和微生物浓度:如果上述这些测试满足要求,则最后对粒子浓度和微生物浓度(需要时)进行测量,以便验明其符合洁净室设计的技术条件。
- 7. 其他测试:除了上述这些污染控制方面的测试以外,有时还必须进行下述一项或若干项测试:
- ●温度●相对湿度●室内加热与冷却容量●噪声值●光照度●振动值

无尘室洁净度参照标准

■ 美国联邦标准(USA Federal Standard)209E(1992 年)

洁净度级别	粒 径 (um)					
	0.1	0.2	0.3	0.5	5.0	
1	35.0	7.50	3.00	1.00	NA	
10	350	75.0	30.0	10.0	NA	
100	NA	750	300	100	NA	
1000	NA	NA	NA	1000	7.0	
10000	NA	NA	NA	10000	70.3	
100000	NA	NA	NA	100000	700	

单位: 尘埃数量个/ft³

■中国药品生产洁净室(区)的空气洁净度标准

洁净度级别	尘埃最允许	午数/立方米	微生物最大允许数		
	≥0.5um	≥5um	浮游菌个/立方米	沉降菌个/皿.30min	
100	3500	0	5	1	
10000	350,000	2,000	100	3	
100000	3,500,000	20,000	500	10	
300000	10,500,000	61,800	NA	15	

国家药品监督管理局1999年8月1日发布实施

■洁净室及洁净区空气中悬浮粒子洁净度等级

TECHNOLOGY

空气洁净度等级(N)	大于或等于表中粒径的最大浓度限值(pc/m³)							
	0.1um	0.2um	0.3um	0.5um	1um	5um		
1	10	2						
2	100	24	10	4				
3	1000	237	102	35	8			
4	10000	2370	1020	352	83			
5	100000	23700	10200	3520	832	29		
6	1000000	237000	102000	35200	8320	293		
7				352000	83200	2930		
8				3520000	832000	29300		
9				35200000	8320000	293000		