矢量网络分析仪高级应用 之混频器测试 应用指南

Products:

I	R&S	ZVA8	I	R&S	ZVA67
I	R&S	ZVA24	I	R&S	ZVT8
I	R&S	ZVA40	I	R&S	ZVT20
L	R&S	ZVA50			

此应用文档描述了利用矢量网络分析 仪测量混频器及变频模块的变频损耗(增 益),端口驻波,隔离度,1dB压缩点, 三阶交调点,相移特性,群延时特性的具 体方法。并分别介绍了针对混频器和变频 模块的三种主要技术:标量混频器测量技 术,矢量混频器测量技术,内置本振变频 模块群延时测量技术。

目录

1 育	行言	
ว	左县网级 丛	
۲,	大里內给力位	们仅侧里低侧奋的刀石
2.1	标量混频器测词	技术9
2.1.	1 变频损耗测量	
2.1.	2 隔离度测量	
2.1	3 射频和本振回	波损耗测量(端口驻波测量) 36
2.1.	4 三阶交调测试	40
2.2	矢量混频器测词	
2.2	1 混频器的相位	特性49
2.2	2 参考混频器测	量法50
2.2	3双向矢量混频	器测量法51
2.3	内置本振变频模	缺群延时测量
2.3	1 群延时测量基	础59
2.3	2 R&S 双音测词	载技术60
2.3	3 内置本振变频	模块群延时测试61
2.3	4 如何降低群延	时轨迹噪声67
2.3.	5 校准	70
3、	总结	72
4、	订货信息	73

2

1 前言

为了用电磁波将信息传播到目的地,无线通信要求把含有信息的基带信号搬移到适合电磁传播的频率上。在目的地再将这个过程逆转,把接收到的射频(RF)信号搬回基带,以恢复信号中的信息。这种频率搬移功能传统上称为"混频",完成混频的装置称为混频器。任何具有非线性特性的器件都可以作为一个混频器,因为,器件对输入端信号的非线性失真会产生新的频率信号,甚至在天线单元上生锈的螺钉或螺栓也能充当混频器,使接收机的输入端产生不希望的 IMD 成分。

尽管混频器在无线发射与接收中同样重要,但是传统上的混频器主要是指接收端的混频器,因为混频器首先是应用在接收领域。在接收机中,把需要进行频率搬移的信号加在混频器的射频端口,把搬移频率的功率或电压(来自本地振荡器,即LO)加在混频器的本振口, 在混频器的中频(IF)口就可以得到两个信号输出。如果需要中频信号的频率比射频低,那 么这个混频器就是下变频器,否则是上变频器。

对于一个给定的射频信号,具有理想本振(即没有谐波和噪声边带的本振)的理想混频器只产生两个中频输出:一个是射频与本振的频率之和,另一个是两者频率之差。滤波器能用来选出所希望的中频信号,而抑制不需要的中频。这个不需要的信号有时称为中频镜像。

$$A_{RF}\cos(2pf_{RF}) * A_{LO}\cos(2pf_{LO})$$
$$= \frac{A_{RF}*A_{LO}}{2}\cos 2p(f_{RF} - f_{LO}) + \frac{A_{RF}*A_{LO}}{2}\cos 2p(f_{RF} + f_{LO})$$

式中:

 A_{RF} 为射频信号的幅度, f_{RF} 为射频信号的频率, A_{LO} 为本振信号的幅度, f_{LO} 为本振信号的频率。

同时产生两个频率输出不是因为混频器偏离了理想性能,而是混频器本身的数学运算。 实际混频器的输出包含大量附加的,不希望的成分,包括噪声、混频器的 RF 和 LO 信号的基 波及其谐波、以及 RF 和 LO 的基波及谐波的和差分量。在射频端口存在多个信号时产生互调 失真,这些使混频器的输出频谱进一步复杂,并可能危害系统性能。

混频器的主要性能指标

1、变频损耗(增益)

变频损耗是混频器输入端口(RF)的信号功率与输出端口(IF)的信号功率之比:

变频损耗(增益) =
$$\frac{P_{out}(IF)}{P_{in}(RF)}$$

1 前言

习惯上,变频损耗(增益)采用 dB 表示:

变频损耗(增益)=
$$10 \lg \frac{P_{out}(IF)}{P_{in}(RF)}$$

一般来说,变频损耗主要来源有电路失配损耗,管芯的结损耗,非线性谐波产生的损耗。

2、噪声系数

噪声系数定义为输入端与输出端各自的信噪比之比:

$$F = \frac{(S/N)_{input}}{(S/N)_{output}}$$

也就是用来描述信噪比恶化的物理量,是影响接收机接收灵敏度的重要参数。

在很长一段时间内,人们一直认为:无源混频器的噪声系数等于混频器的插入损耗,而 噪声系数与混频器的电路结构无关。但是这里忽略了混频器二极管中白噪声的影响。

3、线性特性

3.1 1dB 压缩点

混频器 RF 输入端口电平增加 1dB, IF 输出口电平也增加 1dB, 这两者之间的关系是线性的,这时混频器工作在"线性"状态。但输入信号不断增大时,输出 IF 的电平会偏离线性。定义偏离线性 1dB 为混频器的 1dB 压缩点。如下图所示,混频器的 1dB 压缩点对应的 RF 口(*P_{in}*)输入功率点,称为混频器输入 1dB 压缩点(*P_{in1dB}*),同时对应着 IF 口的中频功率点则称为混频器输出 1dB 压缩点(*P_{out1dB}*)。

现代通信技术对混频器的双音三阶互调产物提出了较为苛刻的要求。混频器的 RF 输入 口常有多个频率的信号输入,为了分析问题简单起见,设 RF 口输入两个信号频率 w_{s1}和 w_{s2}的信号。在理想情况下(设为高本振下混频),所产生的频率分量应该为w_L - w_{s2}和 w_L - w_{s2},其中,w_L为混频器本振频率;但实际上混频器还会产生交叉调制,其影响最为 严重的三阶互调,定义三阶互调项为:

 $w_{m3} = w_L \pm (2w_{s1} \pm w_{s2})$ $w_{m3} = w_L \pm (2w_{s2} \pm w_{s1})$

当 w_{s1} 和 w_{s2} 频率靠得很近时,产生得 w_{m3} 一定在带内,中频滤波器无法滤除这些杂散产物。

4、本振激励电平

混频器的产品手册上的指标通常是在特定 LO 激励电平下给出。一般来说,混频器需要 合适的 LO 激励功率,才能获得最佳性能。如果 LO 激励不足,会降低混频器的性能;如果本 振激励过高,也会降低性能,并且可能烧毁混频器。因此,在混频器的产品测量中,需要找 出其本振的最佳工作电平。

5、端口间隔离度

在混频器中,隔离度定义为任一端口处输入信号与任一其它端口处该信号电平的 dB 衰 减量。其中一般包含射频到中频,本振到中频,本振到射频之间的隔离度。

其中:

隔离度
$$(RF \rightarrow IF) = \frac{P_{out_IFport}(RF)}{P_{in}(RF)}$$

隔离度
$$(LO \rightarrow IF) = \frac{P_{out_IFport}(LO)}{P_{in}(LO)}$$

隔离度
$$(LO \rightarrow RF) = \frac{P_{out} RF_{port}(LO)}{P_{in}(LO)}$$

6、端口驻波(回波损耗)

电压驻波比是指传输信号驻波的电压峰值与电压谷值之比。

$$VSWR = \left| \frac{V_{\text{max}}}{V_{\text{min}}} \right| = \frac{1+r}{1-r}$$

其中 V_{\max} 为传输电磁波的电压峰值, V_{\min} 为传输电磁波的电压谷值,

$$r = |r|$$
 r为反射系数

回波损耗:

$$L = -20 \log r$$

因此无论是电压驻波比或回波损耗,都是反映器件输入输出端口的反射特性参量。

2 矢量网络分析仪测量混频器的方法

对于变频损耗的测试,在矢量网络分析仪中可以采用标量混频器测试或矢量混频器测试 法进行测量。

对于矢量网络分析仪,其内部的所有接收机都共用同一本振源(如下图所示)。这就意 味着在测量 S 参数时,在同一时刻,矢量网络分析仪中的各个测量接收机只能测量同一频率 的信号。而对于变频器件来说,由于其输入与输出频率并不相同,因此测量其传输特性(如 变频损耗等参数)就需要应用特殊的测量技术。

而对于利用矢量网络分析仪测量混频器或变频模块的应用中,目前一般有三大类测量技术。

标量混频器测试技术

矢量混频器测试技术

内置本振变频模块测试技术

2.1 标量混频器测试技术

标量混频器测试技术是采用交替法测量混频器的输入和输出信号分量。也就是说,在t1的时刻,在被测混频器的输入端口,利用矢量网络分析仪内部的参考接收机测量 RF 信号的特性,完成测量后,在t2时刻,在被测混频器的输出端口,利用矢量网络分析仪的内部测量接收机测量 IF 信号的特性。这一交替的测量过程则很好克服了由于矢网内部接收机共用同一本振所带来的问题。但是由于输入分量与输出分量是采用交替的方式测量,因此无法比较它们之间的相位特性,所以该方法不能测量混频器的相位和群延时特性,故称为标量混频器测试技术。

接下来以实际的例子来说明标量混频器的具体测量方法。

2.1.1 变频损耗测量

变频损耗是混频器输入端口(RF)的信号功率与输出端口(IF)的信号功率之比。

典型的变频损耗测试包括:

§ 变频损耗(增益)相对于频率测试

§ 射频输入端口的压缩特性

§ 变频损耗(增益)相对于本振功率测试

变频损耗测量连接

为了测量变频相对于频率或功率的损耗/增益,需要把混频器连接到 4 端口矢网 ZVA 的端口 1,2 和 3 (或 4) 上。4 端口 ZVA 具有内部双源,因此可以用作射频和本振激励。

如果是两端口 ZVA,则可采用外部射频信号源提供本振信号。当需要进行本振扫描测试时,ZVA 可通过 GPIB 或 LAN 口进行外部信号源的控制。ZVA 与外部信号源必须通过 BNC 连接以实现共频率参考信号。【外部信号源的配置方法请参考 ZVx 的操作手册】

四端口矢量网络分析仪测量连接

两端口矢量网络分析仪测量连接

2.1.1.1 变频损耗测量(扫频测量)

按 PRESET 键,复位仪器

按 MODE 键, 然后按 Scalar Mixer Meas 和 Define Scalar Mixer Meas 软按键开始测量 设置。

在 ZVA 中,端口 1 (port 1)和端口 2 (port 2)已经默认为混频器的射频(RF)和中频(IF) 端口。第一步首先选择源以提供本振(LO)信号。可以选择端口 3 (port 3),端口 4 (port 4)或外 部射频信号源。

下一步设置频率(Set Frequencies...)和功率(Set Powers...)

在设置频率菜单中(Set Frequencies...),

我们可以根据被测件情况设置合适的变频测量方式: (以固定中频, 扫射频和本振信号 测量为例)

RF Frequency = Swept

IF Frequency = Fixed

LO Frequency = Auto

【*请注意,当选定任意两个频率为* Swept 和 Fixed 后,另外一个只能设为 Auto。】 同时我们还需要选择变频类型;在 ZVA-K4 测量模式中,提供了以下三种变频模式:

- § IF=RF-LO(Down USB)
- § IF=LO-RF(LSB)
- **§** IF=RF+LO(UP USB)

在该例子中我们选择 IF=LO-RF(LSB),采用高本振的下变频方式。

然后设置开始频率(Start Frequency)和终止频率(Stop Frequency)。

最后,定义IF频率,输入70MHz。

Sec Programoles				8	SHIT FOWERS				8
RF Frequence States OFixed OAvo	×		E Fix O Sw © Fix O Aw	est id 0	Por Power (E)(2)M () Fixed		_		
Parts		S		Port2	Port1	-	SA-		Port2
13GHz.16G	Hz D			70 MHz	-10 dBm Att Auto				
	137 (2+9167		oquancy wept xect sto			7.d Po	Bm OC #3 OF	AV cond	
Swept Frequency	RF.		Fixed Firequency F		OW Power RF			Fixed Power U	0
Enter & Display	FIFSberce	1	70 M#12	281-	Error & Display	RF Source	4	7 dBm	\$x -
Starl Frequency:	13.GHz	201-	Conversion		Start Power		1:04		
Stop Prequency:	160Hz	1×1-1	OF+RF-L0 (00	wn USE) D)	Stop Power.		-		
OW Frequency:	T KANU	Het.	Orservisid	r, visiel	CW Power	-10 dBm	22-		
		QK .	Carcel	Help		0		Cancel	Hwp

在功率设置菜单中(Set Powers...),根据被测件要求分别输入 RF 和 LO 信号的功率 值。

在变频测量中, CW Power (射频输入功率)应该避免超过混频器的 1dB 压缩点(在混频器测试中,一般建议≤0dBm),在这例子中我们设置-10dBm。

本振功率(Fixed Power:LO)必须足够高以便推动混频器正常工作(通常大部分混频器的本振功率电平介于+7dBm 到+15dBm 之间)。

按 OK 键退出并激活混频器测量功能。

【请注意在此功能下,测量的参数是 b2/a1 而不 S 参数。原因是该测量结果是基于波量 功率的测量,而没有进行如 S 参数一样的矢量误差修正;在标量混频器测量中,需要进行功 率校准,详细过程请参考功率校准一节(2.1.1.4)。】

a1 表示 RF 输入功率波量或参考功率, b2 为 IF 功率波量或测量功率。

2.1.1.2 混频器 1dB 压缩点测量

在射频输入压缩测量中,需要设置矢量网络分析仪为功率扫描工作方式。通过测量变频 损耗相对功率变化的特性,从而测量混频器的1dB压缩点。

按 CHAN SELECT 按键,然后按 Add Channel + Trace + Diag Area 软按键。从而建立 了新的测量通道。【在不同的测量通道(Channel)中,可以根据需要设置不同的仪器设置 和测量参数。有关 Channel 的详细定义请参考 ZVx 的操作手册。】

按 SWEEP 按键,然后按 Sweep Type 和 Power 软按键,选择功率扫频方式。

按 **START CENTER** 按键,然后按 **CW Frequency** 软按键,输入测量频率 1.5GHz(在 不同测量应用,请根据需要设置合适的测量频率)

按 MEAS 按键,然后按 Ratio 和 b2/a1 Src Port1 软按键

按 MODE 按键,然后按 Scalar Mixer Meas 和 Define Scalar Mixer Meas 软按键进入标 量混频测量配置菜单,然后按 Set Powers 进行功率设置。

Set Powers					8
RF Power Swapt Fixed					
Port 1		.6	2		Port 2
-25 dBm12 dBm Att. Auto		Rt	LOPO	wer	
- Swept Power RF		7 dBm Port 3	OSv @Fo	rept red Fixed Power I	.0
Enter & Display:	RF Source		-	7 dBm	\$ <u>8</u> -
Start Power:	-25 dBm		5≠ -		
Stop Power	12 dBm)			
CW Power:	F10 dBm		-10		
		OK.		Cancel	Help

在上图的对话框中,设定:

RF Power: Swept

LO Power: Fixed

在 Start Power 和 Stop Power 一栏中输入功率扫描范围,请注意确定 Enter & Display 中为 RF Source。

按 OK 键退出并激活混频器功率扫描测量。

测量曲线 b2/a1 显示在混频器的线性区中变频损耗大概为 5dB。在 0dBm 时,我们看到 该混频器到达其压缩区域,变频损耗随着功率的增加而增大。另外两条曲线是分别显示混频器的 RF 输入功率和 IF 输出功率。

在 ZVA 的曲线统计功能中,可以自动统计压缩点。同时显示在该压缩点上所对应的输入和输出功率。

按 **TRACE FUNCT** 按键,然后按 **Trace Statistics** 和 **Compression Point** 软按键。按 **Define Compression Value** 软按键,然后输入 1dB,以设置统计 1dB 压缩点特性。同样,也 可以根据需要输入"n"dB,以统计混频器或变频模块的"n"dB 压缩特性。

2.1.1.3 变频损耗相对本振功率测试

关于变频损耗的另一个重要测量是其相对于本振功率的变化特性,以测量其本振最近工作电平。混频器的最小变频损耗一般是在 LO 功率电平恰好把混频二极管导通的状态下获得。

按 CHAN SELECT 按键,然后按 Add Channel + Trace + Diag Area 软按键。从而建立 了新的测量通道。

按 SWEEP 按键, 然后按 Sweep Type 和 Power 软按键, 选择功率扫频方式。

按 START CENTER 按键,然后按 CW Frequency 软按键,输入测量频率 1.5GHz。

按 MEAS 按键,然后按 Ratio 和 b2/a1 Src Port1 软按键。

按 MODE 按键,然后按 Scalar Mixer Meas 和 Define Scalar Mixer Meas 软按键进入标 量混频测量配置菜单,然后按 Set Powers 进行功率设置。设定:

RF Power: Fixed

LO Power: Swept

Set Powers				X
RF Power O Swept I Fixed				
Port1		\sim		Port2
-10 dBm				>
Att. Auto		The second secon		
	-25 dBm., 12 c Pt	IBm UC Po IBm ISV O Fb	wer vept ced	
Swept Power: LO			Fixed Power: R	F
Enter & Display:	LC Source	~	-10 dBm	
Start Power:	-25 dBm			
Stop Power:	12 dBm	* # +		
CW Power:	-10 di3m	<u> - </u>		
			Cancel	Help

在 Enter & Display 一栏中设置为 LO Source,在 Start Power 和 Stop Power 一栏中输入所需要设置的 LO 功率扫描范围。

在 Fixed Power: RF 一栏中输入 RF 电平: -10dBm

按 OK 键退出并激活混频器测量功能。

测量中的曲线 5 (Trc5)显示在较低的 LO 功率电平时,变频损耗很大。在本振电平为 0dBm 时曲线变得平坦,说明在该电平下混频二极管正好导通。

按 **AREA SELECT**按键,然后选择 **Split All**软按键对所有测量窗口进行显示。我们就可 以看到对于混频器变频损耗的不同测量设置的测量结果。

2.1.1.4 功率校准

尽管 ZVA 的源和接收机的功率精度已经相当好,但是在混频器标量测试时大部分应用 还需要进行功率校准。特别是当测量频率较高时,电缆和转接头的的损耗会对测量精度产生 影响。通过功率校准还可以修正测量中引入的衰减器和放大器的频率响应。

进行功率校准需要使用功率计,通过把功率计测量的结果与矢网的测量结果进行对比修 正,从而达到把功率计测量信号功率的精度传递到矢量网络分析仪的接收机的目的。在 R&S 矢量网络分析仪 ZVA 中,最为简便的是采用具有 USB 接口的 NRP-Zxx 系列的智能功率探 头,如 NRP-Z21,NRP-Z51 等。把功率探头连接到 ZVA 前面板的 USB 接口,矢网能自动识 别并设置。

如采用其它型号的功率计,也可以按以下步骤进行配置,按 SYSTEM CONFIG 按键,然 后按 System Config 软按键并选择 External Power Meters 菜单设置功率计。

请注意在使用其它型号的功率计时,需要配置有 ZVAB-B44 选件,并在 ZVx 中安装 VISA I/O 驱动。通过网口连接时,也需要安装 VISA I/O 驱动。

Please note that with this hook active, just one NRP is detected and controlled.							
dereered and controlled.	System Configuration)n				8	
	Presste Channel Bits	Resets Option K	ey Entry Re	emote Settings	External Powe	r Meters Ext	e < >
		Found:			2010 - 100 -		
	Refresh Tables	VISA Alas	Driver	Interface /	Address/Ser#	ID String	
	Add v						
	Configured				Auto (Config NRP-Z:	×
	# Na	ame Driver	Interface	Address/S	Ser# ID Stri	na	
	Pmir 1	NRP-Z51	Other	100308	NRP-Z	51::100308	
	Add Other	Modify	7	Delete)	Delate All	
			-				
					Close	He	ilp

点击 Refresh Tables 去搜索通过 USB 或 GPIB 接口连接的功率计或探头。选择在 Found 中发现的功率,并点击 Add v 把它移到 Configured 一栏中。【关于外部功率计配置的 详细过程请参阅 ZVx 的操作手册。】

在开始功率校准前,我们需要考虑由测量端口与混频器端口间的失配产生测量误差。在 无源混频器一般反射损耗介于 10 到 20dB。在 ZVA 测量端口,未修正的反射损耗介于 10 到 16dB 之间。

采用标准失配误差公式:

$$E_M = 20\log_{10}(\frac{1}{1\pm r_s r_l})dB$$

我们可以看到在 ZVA 与混频器之间 12dB 的反射损耗,会造成+/-0.55dB 的失配不确定 度。

在变频损耗的测量中,为了减少失配不确定度,我们可以在 ZVA 与混频器间加上固定 衰减器。这样可以改善 ZVA 的源匹配,因此可以减少测量不确定度。一般来说,在射频 (RF)和本振(LO)端口,我们需要改善匹配问题。

通过一个 30dB 的衰减器, ZVx 可以把失配不确定降至+/-0.07dB

当引入固定衰减器后,混频器推动功率有时不是十分足够。特别是本振信号,一般来说 需要+7dBm 到+15dBm,这取决于混频器的型号。因此有时需要引入额外的推动放大器(如 上图所示)。而 ZVx 可以提供大于 15dBm 的功率,因此大部分应用可不需要额外的放大器。

一般来说,理想的匹配衰减器应该≥10dB,以便提供很好的隔离。由于最大功率的限制,对于衰减器衰减量的选择我们需要折中考虑。

在接下来的功率校准例子中,我们使用了 6dB 衰减器在 RF 端口,3dB 衰减器在 LO 端口。

功率校准

在测量通道 1(Channel 1)中选择曲线 1(Trc 1),在该通道中我们正在进行频率扫描(对于 Channel 1 的具体设置,请参阅 2.1.1.1 节)。

按 MODE 按键,然后按 Scalar Mixer Meas 和 Scalar Mixer Meas Power Cal...软按键,打开标量混频功率校准窗口:

1 BE Source Calibration		Source Cel Settings	
Connact Protr 1 to Port 1		BE Cal Power -1	0 dBm
Competent to Forth	Print dB Map 0.1 dB I	RF Cal Power Offset	-6 dB
Take Cal Sweep		LO Cal Power 1	0 dBm
		LO Cal Power Offset	-3 dB
Pass. Max Dev 0.06 dB		Maximum Number of Readings:	3
	(b.9	Tolerance:	0.2 dB
2. IF Receiver Calibration	6.8	Flatness and Reference Receiver Cal	
Connect Port 1 to Port 2	8.7	Modify Settings.	
Take Cal Sweep	6.5	Preservice	
Finished	6.4 Ch1 Start 1.3 GHz Stop 1.6 GHz	Printr 1 Power Meter Conf	ìg
3 LO Source Calibration		NRP-722	
Connect Pmtr 1 to Port 3	(*****************	Ser# 100266	
Take Cal Sweep	Abort Sweep	Perform Verification Sweep After Cal	
in progress	LO range sweep 1 of max 3 in progress		
In the second	and the second		

在 Source Cal Settings 一栏中,我们可以看到所激活的测量通道的 RF 和 LO 功率电平 。在其下面是 Maximum Number of Reading 和 Tolerance(1dB)值,这是设定目标精度和最 大重复次数以达到规定的精度。实际应用中,可根据需要进行修改。按 Modify Setting...

Tolerance</mark>=0.3dB₀

在使用了匹配衰减器或外部放大器的测量中,按 Modify Cal Power 去设置合适的功率偏移。在该例子中,显示补偿了在射频端口 6dB 的衰减器。请注意到通道的基本功率(Pb)会根据所输入的衰减量自动对其影响进行补偿。

Image: Second	Image: Second	Port 1 Cal Pow	er				1			8
O d Em Attenuator Port Power Offset Cal Power Offset Power Result - 0 d Em - 10 d B - 10 d B - 10 d B	Attenuator Port Power Offset 0 0 dBm • 0 dB Pb (Channel Base Power) -4 dBm	®—	-¢-		-\$-		Amp		DUT	
O 0 dBm	Auto + 0 dB # + - - - - - 10 dBm Pb (Channel Base Power): -4 dBm - - - - - - 10 dBm	(a) Pb	Attenuator		Port Power 0	fset	CalPower	Offset	Power Result	
	Pb (Channel Base Power) -4 dBm	OldBm	Auto	*	0.98	<u>, 11 - 1</u>	-6 dB		-10 dBm	

设置好 Source Cal Settings 后,功率校准通过功率校准窗口左边所列的三步过程完成。 三步过程是用来校准 ZVA 所激活的三个端口。

- 1、 RF 源校准
- 2、 IF 接收机校准
- 3、 LO 源校准

整个校准过程可以通过显示图和进度条进行观测。

calar Mixer Measurement Po	wer Calibration	
1. RF Source Calibration Connect Prntr 1 to Port 1		Source Cal Settings RFCal Power: -10 dBn
Taka Cal Duran	Print dB Mag 01.3B	RF Cal Power Offset6 dB
I ake Cal Sweep	7.2	LO Cal Power 18 dBm
Pass Max Dev 0.06 dB	7.1	LO Cel Power Offset -3 dE
	N ⁷	Maximum Number of Headings:
2 IF Receiver Celibration	8.9	i olerance. 0.2 de
Connect Port 1 to Port 2	8.7	Modify Settings.
Take Cal Sweep	6.5	
Finished	Cn1 Start 1.3 GHz Stop 1.6 GHz	Power Meter Pmtr 1 Power Meter Config.
3 LO Source Calibration		NRP-222
Connect Prntr 1 to Port 3		Ser# 100266
Take Cal Sweep	Abort Sweep	Perform Verification Sweep After Cal
In progress	LO range sweep 1 of max 3 in progress	
		Close Help
		Conser Theb

当三步都完成后,点击 Close 关闭功率校准窗口。在测量通道 1 的功率校准过程就完成 了。由于通道 2 和通道 3 的功率设置与通道 1 不同,因此在这些通道上还需要分别做功率校 准。校准过程与通道 1 一致。

2.1.2 隔离度测量

隔离度是测量混频器某个端口输入到另一端口输出的信号泄漏。好的隔离度意味低的泄漏。内部转换的非平衡特性和引线电感是引起端口到端口之间泄漏的主要因素。本振到射频的泄漏定义为本振一射频隔离度,而本振一中频的隔离度定义为本振信号在中频端口的电平 与其输入电平之比。

隔离度一般以 dB 表示,而高的隔离度往往是人们所期望的指标,因为信号泄漏会在输出频谱中产生杂散信号,从而影响系统性能。

隔离度的测量设置

隔离度的测量连接与变频损耗测量一致,这里还是以4端口矢网 ZVA 为例:

端口配置

隔离度的测量设置不同于变频损耗的测量。对于这些测量,我们不能采用混频器测量向导,我们需要通过 MODE 按键,然后按 Port Config 按键进入 Port Configuration 自定义矢量 网络分析 ZVx 源和接收机的测量模式。

leas	Physic	Sour	ce						Receiver	
	#	Gen	Frequency	,	Frequency Result	Paw	ər	Power Result	Frequency	Frequency Result
7	Port1		fo		10 MHz 24 GHz	Pb		0 dBm	fb	10 MHz 24 GH
7	Port2		fo		10 MHz 24 GHz	Pb		0 dBm		
7	Port 3	Г	fo		10 MHz 24 GHz	Pb		0 dBm		
7	Port 4		fo		10 MHz 24 GHz	Pb		0 dBm		
Ï	Gen1		10		10 MHz 24 GHz	Pb		0 dBm		
ed ce Disp	lls exce ayed C	ed ha	rdware limi	Bali	anced and Measured Po	rts		Measure "a	a' Waves at ver Frequency i Frequency	Freq Conv. Of

在 Port Configuration 菜单中会用到两个术语 fb 和 Pb。

fb 是指在菜单 START CENTER 和 STOP SPAN 中输入的基本频率。

而 Pb 是指在 PWR BW AVG 菜单中输入的基本功率。

2.1.2.1 射频到中频的隔离度测量

射频到中频测量设置,如下:

- 按 PRESET 按键进行仪器复位。
- 按 **START CENTER**, 然后输入开始频率 1.3GHz
- 按 STOP SPAN 然后输入终止频率为 1.6GHz
- 按 PWR BW AVG 然后输入功率为-10dBm

当 fb 和 pb 都设置完毕后就可以开始测量端口的实际设置。

对于这一例子,我们采用 70MHz 中频, IF=LO-RF 的下变频模式

按 MODE 按键, 然后按 Port Config 软按键进入 Port Configuration 菜单。

设置 LO 频率和功率,在端口 3 (Port 3)一栏中按 fb 和 pb 打开 port 3 Source Frequnecy 和 Port 3 Cal Power 设置窗口。然后设置合理的 LO 频率和功率。

	laes Physic	Stense				114		Persive	
	1	Gian Fieldue	NQ/ Fr	aquency Recult	Flower	3	Power Result	Frequency	Frequency Recuit
6	Port 1	F 10	1.00	1.3 GHz 1.6 GH	z Fitz	-	-10 dBm	10	1.1 GHz 1.6 GH
5	PotP.	F fb		13GH/ 18GH	Fb		-10 dBm		
6	Port3	Г fb	-	1.3 GHz1.6 GH	r Pib	-	-10 dBm	1. Da	
5	Port 4	fb fb	14	1.3 GHz 1 6 GH	2H 1	-	-10 dBm		
10	Gent	F 15	10	1.3 GHz 1.6 GH	Fitz	-	-10 dBm		
1		/					1		
-			-			Met	ON "S" WAS	es al	-
	Displayed	alumne.	Entraces	d and Measured P	orts.		Receiver Fre	UPICY	Freq Conv Off
1.9-	1					1000			
						50	Science n (mail)	enzy	
	Strak	A.,	Sare C	amedor Type at A	# Forts	0	Scuce Frequ	ency	
	Strak	18	Same C	Connector Type at A	4 Florts	0	Scurce Frequ	enzy	
	Struck	A.,	Sarre C	tarnector Type at A	4 Forts		Scuce Frequ	Cancel	Help
Theoree Treasury	Skreak	A.,	Sarre C	Connector Type at A	4 Ports		OK	Cancel	
3 Source Frequency	Sh renk	a)	⊘ Sarre C	famedor Type sta	4 Ports			Cancel] [Help
Bound for Long	St mak	s	Sare C	Connector Type at A	4 Fuits			Cancel	
3 Second Programmy	58 mak		Sarre C	Carnector Type at/	4 Ports		OK 0	Carcel	Help
15000005000000y	58 mail		Sarre C	Carnector Type at A	4 Ports		OK OK	Carcel	dieH]
3 Source Propuesty	58rradk		Sarre C	Cornector Type at A	41 Ports		OK OK	Cancel] [Help
3 Source Frequency 2 A A B B B B B B B B B B B B B B B B B	58 roak [1 1 1.6 G+12		Sarre C	Connector Type at A	4 Ports		OK .	Cancel] [Help
3 Secure Exercises	58 mak		• 70 M	Carnettor Type at A	e Ports			Cancel	Help
Channel Banger 1.37 GHz 1.67 GHz	S≋roak [1]].6 G+tz	a	• 70 Mi	Carnetor Type at A				Cancel	
B Review Responses	28 mak	8	✓ Sarre C 70 Mi 200	Carnector Type at A	e Ports			Cancel	
3 Source Frequency 2 Z Outre Date Channel Base Frequency: 1.3 GHz sulling Range: 1.37 GHz 167 GHz	28 mak	а СК	✓ Same C • 70 Mi	tametor Type at A	el Ports			Carcel	Help
3 Source Exercises 3 Source Exercises 3 Source Ease Frequency: 1.3 GHz sulling Range: 1.37 GHz 1.67 GHz	28rmk		 Same C [70 Minimum] [6] (70 Minimum] (70 Minim] (70 Minim] (70 Minim] 	Carnettor Type at A	Por Power Off			Cancel	- DUT Prevet Paceut
S Source Strep easy A A A A A A A A A A A A A	Streak	8 2.#.+ 0.#.+	Sarre C 70 Mi 50 0 Mi 50	Ht Ht Atenuator	All Forts			Cencel	Holp

在该例子中,本振频率应该比 fb(RF)大 70MHz,因此我们设置成 fb+70MHz,而本振 功率设置成 7dBm。

以下是完成 RF-IF 隔离度测量的设置,请注意把端口 1 和端口 3 激活(图中红色标记部分),按 OK 键退出。

Meas	Physic	Sour	ce						Receiver		
	‡	Gen	Frequency		Frequency Result	Power		Power Result	Frequency	Frequency Result	
~	Port 1		fb		1.3 GHz 1.6 GHz	Pb		-10 dBm	fb	1.3 GHz 1.6 GHz	
7	Port 2	Г	fb		1.3 GHz 1.6 GHz	Pb		-10 dBm			
7	Port 3		fb + 70 MHz		1.37 GHz 1.67 GHz	0 dBm + 7 dB		7 dBm			
7	Port 4	Г	fb + 70 MHz		1.37 GHz 1.67 GHz	Pb		-10 dBm			
	Gen 1		fb		1.3 GHz 1.6 GHz	Pb		-10 dBm	ii.		
Disp	layed (Solumi	ns] [Bal	lan	ced and Measured Por	ts)	M	easure "a" Wav Receiver Fred	es at quency ency	Freq Conv Off	

选择把 b2/a1 进行射频到中频的隔离度测量。

如果选择 S21 而不是 b2/a1,将允许对结果进行矢量校正(如 TOSM 校准)。这会进一步提高测量精度,而 b2/a1 的波量测试中并不启用矢量校正。

在曲线 RF2IF 中,我们可以得到 RF 到 IF 的隔离度。

Trc2 和 Trc3 是射频在输入和输出端的特性。

2.1.2.2 LO-IF 隔离度测量

按 CHAN SELECT 按键, 然后按 Add Channel + Trace + Diag Area 软按键, 增加一个 测量通道。

选择 b2/b3 测量本振到中频的隔离度(或 S23,使用矢量校准)

按 MODE 按键, 然后按 Port Config 进入 Port Configuration 菜单

Meas	Physic	Sou	109					Receiver	2012
	#	Gen	Frequency		Frequency Result	Power	Power Result	Frequency	Frequency Result
~	Port1	N	fb	m	1.3 GHz 1.6 GHz	Pb	 -10 dBm	2 + 70 MHz 1.37 GHz 1.67 (1.37 GHz 1.67 GHz
7	Part2		fo		1.3 GHz 1.6 GHz	Pb	 -10 dBm	1	
>	Port3	P	fb + 70 MHz		1.37 GHz 1.67 GHz	0 dBm + 7 dB	 7 dBm		
~	Port 4		fb + 70 MHz		1.37 GHz 1.67 GHz	Pb	 -10 dBm		
	Gen 1		fo	in	1.3 GHz 1.6 GHz	Pb	 -10 dBm		
Disp	layed (Colum	ns E)ale Sar	inced and Measured F	Ports	Measure 'a" \ Pecsiver Source Fr	Waves at Frequency requency	Freq Conv Off

与前面测量不同的是我们需要在中频端口测量本振信号,因此所有的源设置与前面一 样,但接收机需要重新定义。

在接收机频率设置菜单,把测量频率改为如上图所示的 fb+70MHz,

本振到中频的隔离度可以由 LO2IF 曲线中读出。

Trc5 和 Trc6 分别为 LO 的输入和在中频端口的功率。

2.1.2.3 隔离度测量的功率校准

像变频损耗测量一样,我们需要进行功率校准。

在这以 RF 到中频隔离度测量为例子进行功率校准。

在 RF 到 IF 隔离度测量时, RF 频率为 1.3GHz~1.6GHz, 中频频率为 70MHz。因此本 振频率为 1.37GHz~1.67GHz。

我们如下图左方那样进行测量连接,在图的右方我们把每个端口需要进行功率校准的频 率范围画出。

两个源需要在其使用频率进行校准,而接收机需要在 RF 频率上进行校准。从上图可知 我们可以用 Port 1 的源校准 port 2 的接收机。

因此需要进行3步校准

- 1、使用功率探头校准端口1
- 2、使用功率探头校准端口3
- 3、使用端口1的源校准端口2的接收机

在第三步,我们用校准过的端口1的源校准端口2的接收机,这是由于此时端口1的源 已经由功率计校准过了。

功率校准按上面所描述的顺序进行。

按 CAL 键,然后按 Start Power Cal 和 Source Power Cal...</mark>软按键打开 Source Power Cal...

第一步,先选择校准端口,通过下拉菜单,选择 Port 1。连接功率探头到端口 1 的电缆 端口。

如果需要配置功率计,按 Power Meter Config 按键进行功率校准。(如何设置请参考 2.1.1.4 一节相关内容)

按 Modify Settings 按键进入 Modify Source Power Cal Settings 对话框,根据需要调节,然后按 OK 键确认。

- 12	- 24			ol Daupe	10 dDm
Source: P	ort 1			al Power Offset.	0 dE
Pintr1 dB	Mag 0 1 dB /		N	laximum Number of Rea	adings: 3
			τ	olerence:	0.3 dE
-9.6			F	latness and Reference l	Receiver Cal
-9.7 -9.8 -9.9 -9.9 -10 				Saurce Power Correct Modity Setting ower Meter	tion Off
10.2 10.3 10.4				RP-222 er#: 100266	suto Zero
Ch1 Sta	rt 1.3 GHz	s	top 1.6 GHz 📝	Perform Verification Sw	eep Atter Cal

按 Take Cal Sweep 开始功率校准,功率校准过程将在图像中显示。

当完成后,会显示 Pass(或者 Fail)和最大偏离值。提示通过(Pass)后,点击 Close 结束端口 1 的校准。

对端口 3 的功率校准,把功率计连接到端口 3,然后选择校准端口为 Port 3 后重复以上 校准过程。

按 CAL 然后按 Start Power Cal 和 Receiver Power Cal 打开接收机功率对话框。

选择所需要校准的波量,在该例子中选择 b2。

选择所使用的源,在该例子中选择端口1(port1)。

Wave Quantity to Cal	ibrate:
🗙 b 2	~
Receiver Power (Correction Off
Used Source:	
Port	PCal
Sweep:	
	Abort Sweet
Take Cal Sweep	- incorronition

连接端口1和端口2的电缆,然后按Take Cal Sweep开始校准。

结束后关闭对话框,完成功率校准。

2.1.3 射频和本振回波损耗测量(端口驻波测量)

在传统两端口矢网中,在 S11 的测量中,一般需要使用外部信号源作为本振。由于无法 控制外部信号源,因此一般采用固定本振的方式。

在 ZVA 中,就可以测量混频器在工作状态下的匹配参数了。可以在本振激励下测量射频端口的 S11,或在射频激励下测量本振端口的 S33。

同样需要在S参数测量前,在Port Configuraiton菜单中进行合适的混频器设置。 在该例子中,我们测量1.3GHz~1.6GHz,中频70MHz

开始设置

按 PRESET 键复位 ZVA, 然后设置频率和功率。

选择 S11 测量 RF 端口的回波损耗。

按 MODE 键, 然后按 Port Config 软按键, 进入 Port Configuration 菜单开始设置。

viea	s Physic	Sour	rce						Receiver	
	#	Gen	Frequency		Frequency Result	Power		Power Result	Frequency	Frequency Result
7	Port1	P	fb	- 10	1.3 GHz 1.6 GHz	Pb	m	-10 dBm	fb	1.3 GHz 1.6 GH:
1	Port 2		fb		1.3 GHz 1.6 GHz	Pb		-10 dBm		
1	Fort 3	V	fb + 70 MHz		1.37 GHz 1.67 GHz	0 dBm + 7 dB		7 dBm		
1	Port 4	Г	fb + 70 MHz		1.37 GHz 1.67 GHz	Pb		-10 dBm		
2	Gen 1		fb		1.3 GHz 1.6 GHz	Pb	•••	-10 dBm		
Dis	played (Colum	ns B	alor	ced and Measured Por	ts	M	easure 'a" Wav Receiver Fred Source Fredu	es al quency ency	Freq Conv Of

对 S33 测量设置

按 CHAN SELECT, 然后按 Add Channel + Trace 软按键, 在同一个窗口中增加第二个 测量通道。

选择测量 S33, 作为 LO 端口的回波损耗。

按 MODE 键, 然后按 Port Config 键, 进入 Port Configuration 菜单

lea	s Physic	sou	rce					Deseiver	
	#	Gen	Frequency		Frequency Result	Power	Power Resu	t Frequency	Frequency Result
1	Port1	J	fb	m.	1.3 GHz 1.6 GHz	Pb	 -10 dBn	fo + 70 MHz	1.37 GHz 1.67 GH
	Port 2		fb		1.3 GHz 1.6 GHz	Pb	 -10 dBn		
7	Port 3		16 + 70 MHz	-	1.37 GHz 1.67 GHz	0 dBm + 7 dB	 7 dBn		
	Port 4	Г	fb + 70 MHz		1.37 GHz 1.67 GHz	Pb	 -10 dBn		
1	Gen 1		fb	v	1.3 GHz 1.6 GHz	Pb	 -10 dBm		
Dis	olayed (Colum	ns) [E	alo	nced and Measured F	Ports	Meesure "a" Receive Source F	Waves at r Frequency Frequency	Freq Conv.Of

改变接收机频率设置,以便对 LO 频率进行测量。

S11 和 S33 测量结果如下图所示。

S11 10			_		•M 1 M 1	1.450000	GHz -9 GHz -1	0793 d 8.542 d
0		_				di secondo de la constante de	6	
-10		_		-				
-20							-	
30	2	_				9	e	
40	ŝ							
-50						-		
-60		_						
-70							-	

为了保证获得最后的测量精度,在S参数测量前,需要进行以下校准:

S11 一端口校准

S33 一端口校准

Port1 功率校准

Port3 功率校准

下图是隔离度和反射测量的结果汇总。

2.1.4 三阶交调测试

混频器的三阶交调测试需要三个源同时激励,而 ZVx 系列矢量网网络分析仪最适合这种 多端口和多源的测试应用。在四端口 ZVA 中,进行混频器三阶交调测量时,可采用外控信号 源的方式,而在6端口或8端口的ZVT中,则无需任何外部信号源。

在三阶交调测试中,可采用外部合路器或内部耦合器合路的方式,在混频器的射频输入 端口前,可引入一低通滤波器。如下图所示,外部源一般作为本振。

采用外部合路器连接方式

采用内部耦合器作为合路器的连接方式

在该例子中,我们还是采用 1.3GHz~1.6GHz 的射频频率范围,70MHz 的中频。采用高本振的混频方式 IF=LO-RF,因此本振的频率为 1.37GHz~1.67GHz。

ZVA为IP3测量提供双音信号,设置的步径为1MHz。

f1 从 1.3GHz 到 1.6GHz, 而 f2 将从 1.301GHz 到 1.601GHz 进行扫描。

由于是混频器,新的载波如下得到

C1=LO-F1 如: 1370MHz-1300MHz=70MHz

C2=LO-F2 如: 1370MHz-1301MHz=69MHz

因此三阶交调产物为

IP3+=2*C1-C2 如: 2*70MHz-69MHz=71MHz

IP3-=2*C2-C1 如: 2*69MHz-70MHz=68MHz

三阶交调点 TOI 由下式计算得到

在开始正式测量前,请先进行外部信号源的配置(如采用固定本振的工作方式,则可不 需要进行外部信号源控制设置)。【外部信号源的配置方法请参考 ZVx 的操作手册】

在这个例子中,我们用 C1(70MHz)和 IP3+(71MHz),进行 IP3 测量。首先,我们进行经典的频谱仪显示方式,进行点频测量。然后再进行 IP3 扫频测量。

射频(RF)的输入双音信号为: 1.5GHz 和 1.501GHz,本振(LO)频率为 1.57GHz。

按 PRESET 键复位仪器

- 按 SRART CENTER 键,然后输入开始频率 65MHz
- 按 STOP SPAN 键,然后输入终止频率 75MHz
- 按 PWR BW AVG 键,输入功率 0dBm
- 按 PWR BW AVG 键,然后按 Meas Bandwidth 和 Fine Adjust 软按键
- 输入 50kHz 带宽,然后选择 High Selectivity (高选择性中频滤波器)

注意测量带宽的选择必须小于双音信号的间隔,以便 ZVA 能够区分这两信号。

现在 fb, Pb 和带宽都已经设置好,我们可以开始三阶交调的真正设置。

按 MODE 键, 然后按 Port Config 键进入 Port Configuration 菜单

vieas	Physic	sout	ce						Receiver	
	#	Gen	Frequency		Frequency Result	Power		Power Result	Frequency	Frequency Result
7	Port1	D.	1.5 GHz		1.5 GHz	Pb		0 dBm	fb	65 MHz 75 MH
7	Port 2	Г	1.5 GHz		1.5 GHz	Pb		0 dBm		
7	Port 3	V	1.501 GHz		1.501 GHz	Pb		0 dBm		
7	Port 4	Г	1.501 GHz		1.501 GHz	Pb	-	0 dBm		
	Gen 1	V	1.57 GHz	1400	1 57 GHz	0 dBm + 8 dB		8 dBm		
Disp	layed (Colum	• ns) [E	lalar	iced and Measured F	Ports	H	Measure 'a" Wa	ves al equency uency	Freq Conv Off

设置端口 1 和端口 3 产生频率差为 1MHz 的 CW 信号(频率分别为 1.5GHz 和 1.501GHz),设置外部信号源参数 1.57GHz 的 CW 信号最为本振功率,设置本振功率为 +8dBm。

选择 b2 作为测量参数

点频 **IP3** 测量结果图如下所示。主要的频率产物以红圈标出,其它信号为混频本振产生的杂散信号。

在 IP3 扫描测量,我们关注 C1 和 IP3+的产物。

按 CHAN SELECT 然后按 Add Channel+ Trace + Dig Area 按键,增加一新测量通道和 窗口。

选择 b2 作为测量参数。

按 MODE 键, 然后按 Port Config 软按键, 进入 Port Configuration 菜单

菜单的设置如下图所示,请注意 ZVA 的源和外部信号源处于扫描状态,而 ZVA 的接收 机固定在 C1 (70MHz)

Meas	Physi	Sou	ce						Receiver	
	#	Gen	Frequency		Frequency Result	Power		Power Result	Frequency	Frequency Result
~	Port1		fb		1.3 GHz 1.8 GHz	Pb	194	0 dBm	70 MHz	70 MH:
~	Part2		fb		1.3 GHz 1.6 GHz	Pb		0.dBm		
7	Port3	P	fb + 1 MHz		1.301 GHz 1.601 GHz	Pb		0 dBm		
7	Port 4	Г	fb + 1 MHz		1.301 GHz 1.601 GHz	Pb		0 dBm		
	Gen 1	V	1b + 70 MHz		1.37 GHz 1.67 GHz	0 dBm + 8 dB		8 dBm		
Disp	layed (Colum	ns B	əlar	nced and Measured Ports		Mei O	asure "a" Wave Receiver Freq Source Freque	uency ncy	Freq Conv Of

按 CHAN SELECT 按键,然后按 Add Channel + Trace 软按键,增加一测量通道。

选择 b2 作为测量参数。

按 MODE, 然后按 Port Config 进入 Port Configuration 菜单

如下图进行设置,请注意,ZVA的接收机测量频率为IP3+(71MHz)

Meas	Physic	Sour	C 3						Receiver	
	#	Gen	Frequency		Frequency Result	Power	11	Power Result	Frequency	Frequency Result
~	Port1	V	ď		1.3 GHz 1.6 GHz	Pb	566	0 dBm	71 MHz	71 MH
~	Part2		1b		1.3 GHz 1.6 GHz	Pb		0 dBm		
>	Port3	P	fb + 1 MHz		1.301 GHz 1.601 GHz	Pb		0 dBm		
~	Port 4	Г	fb + 1 MHz		1.301 GHz 1.601 GHz	Fb		0 dBm		
	Gen 1	V	fo + 70 MHz		1.37 GHz 1 67 GHz	0 dBm + 8 dB		8 dBm		
Disp	layed C	olum	ns B	aler	nced and Measured Ports		Me	asure "a" Wave Receiver Freq	uency	Freq Conv Off

现在我们有两条测量曲线 C1 和 IP3+,由于需要计算三阶交调点,因此我们需要建立一条从 C1 和 IP3+计算出来的曲线。ZVA 提供灵活简易的公式编辑器。

按 CHAN SLECT 键,然后按 Add Channel + Trace 按键,这建立了第四个测量通道

按 **TRACE FUNCT**键,然后按 **User Def Math**按键,通过 **User Def Math**菜单,然后利用 **Operand**和 **Operator**菜单定义公式。

Del All	Del	Recall	Save.
Operand		Operator	
StimVal Data SA_view Trc2 Trc3	~	+ - - - -	
IOIP3 Trace Operan used without m	ds are nath	() linMag dBMag	

通过选择 <mark>Results is Wave Quantity</mark>然后按 <mark>OK</mark>

IP3 扫描测试的计算结果为图中的红色曲线。

曲线2为C1特性,而曲线3为IP3+特性。

2.2 矢量混频器测试

2.2.1 混频器的相位特性

当考虑相位效应时,射频信号可表达为:

$$RF = \left| A_{RF} \right| \cos(w_{RF} * t)$$

而本振信号为:

$$LO = |A_{LO}|\cos(w_{LO} * t + \Phi_{LO})$$

混频后的表达式为:

$$IF = |A_{RF} * A_{LO}| \cos(w_{RF} * t) \cos(w_{LO} * t + \Phi_{LO}) * M$$

其中 $M = |M| * e^{-j\Phi_{mix}}$ 为变频损耗。

由三角函数转换公式展开得:

$$\frac{|A_{RF} * A_{LO}|}{2} \cos[(w_{RF} - w_{LO}) * t - \Phi_{LO}] * M + \frac{|A_{RF} * A_{LO}|}{2} \cos[(w_{RF} + w_{LO}) * t + \Phi_{LO}] * M$$

其中下边带为:

$$\begin{split} IF_{-} &= \frac{|A_{RF} * A_{LO}|}{2} \cos[(w_{RF} - w_{LO}) * t - \Phi_{LO}] * M \\ &$$
可进一步写为:
$$IF_{-} &= \frac{|A_{RF} * A_{LO}|}{2} * |M| \cos[(w_{RF} - w_{LO}) * t - \Phi_{LO} + \Phi_{mix}] \\ \\ \\ \\ 其中: \end{split}$$

ΦLO 为本振引起得相位偏移。

 Φ_{mix} 为混频器自身引起得相位偏移。

因此在混频器测量相位偏移 Φ_{mix} 过程中,需要把 Φ_{LO} 的影响消除。

而在测量**Φ**_{mix}的最大问题是,混频器的输入和输出频率不一致,因此无法通过常规的 **S**参数测量法进行测量。

2.2.2 参考混频器测量法

为了测量混频器的相移特性,一般可采用参考混频器法。

也就是通过在矢量网络分析仪的参考测量通道引入一参考混频器,把耦合到参考通道的 RF 信号变换到与被测混频器输出一致的频率。被测混频器变频后输出的 IF 信号会在矢量网 络的测量接收机中测量得到*b*_{IF},而其输入分量则在矢量网络分析仪的输出端口的参考通道 测量得到*a*_{IF},由于*a*_{IF}和*b*_{IF}处于同一频率,因此可以求出其相位偏移特性。由于该结果 引入了参考混频器的插入损耗和相位特性,因此需要对结果进行修正。如果使用的是已知特 性的参考混频器,则可以采用修正的方法;如果使用的是未知参数的参考混频器,则需要采 用特殊的校准方式,把所引入的参考混频器对测量结果的影响进行消除。

如上面推导可知,本振信号的相位会对混频后的中频信号的相位产生影响,因此在实际 测量中,需要被测混频器和参考混频器共用同一本振源,从而消除其对测量结果的影响。

2.2.3 双向矢量混频器测量法

为了测量混频器的双向特性,我们可以采用两个参考混频器的方式,如下图所示:

在测量端口 1, 矢量网络分析仪输出信号为 f1 的射频信号,在端口 1 的参考接收机中测 量其输入分量 a1 (f1),输入信号经被测混频器后输出为 f2 的中频信号,经滤波后(根据测 量需要可选择低通,高通或带通),在端口 2 的测量通道经参考混频器变换后频率恢复为 f1, 因此在 2 端口的测量接收机其测量分量 b2(f1)与 a1(f1)一致;当测量被测件的反向特性时, 测量端口 2 输出频率为 f2 的信号分量,该信号在参考接收通道经参考混频器变换后,频率为 f1,因此在 2 端口测量得到的 a2 (f1)分量,信号经被测混频器频率变换后,频率转换为 f1,因此在端口 1 的测量通道中测量得到 b1 (f1)分量,通过这 a1(f1), b2(f1), a2(f1), b1(f1)四个分量的运算,我们分别得到了该被测混频器的 S11, S21, S12, S22。

在实际测量应用中,为了消除镜像频率对测量结果的影响,通常在被测件输出端加入滤 波器(根据实际需要,可选择低通滤波,高通滤波或带通滤波)。而为了改善参考混频器与 被测混频器之间的匹配状态,可以在两参考混频器的输入端分别接入 3~6dB 的匹配衰减 器。

矢量混频器测量选件 ZVA-K5。

按<mark>MODE</mark>按键,然后按<mark>Vector Mixer Meas</mark>和Define Vector Mixer Meas...</mark>软按键进入矢 量混频器测试定义菜单。

在 Aux Mixer 一栏中选择 Port 2,意味着参考混频器连接在端口 2 中(也可以把 Aux Mixer 一栏中选择 port1,则意味参考混频器连接在端口 1 中。),选择 Port 3 作为被测混频器的本振端口,而端口 4 作为参考混频器的本振端口,如下图所示。

【在矢量网络分析仪 ZVA 中,测量端口 3 和 4 内部共用同一信号源,因此为了提高测 量精度,降低由于被测混频器隔离度不理想所带来的测量影响,一般推荐使用 3 和 4 端口分 别给测量混频器和参考混频提供本振信号。当然也可以使用端口 3 或端口 4 单独提供本振, 然后经一分三的功分器连接到测量和参考混频器的连接方式。】

如上图所示,连接参考混频器,衰减器和滤波器。把一分二功分器连接于端口4中。

【参考混频器的选择要求:工作频率等于或覆盖被测混频器的测量频率范围,损耗尽量 低,驻波尽量好,无需互易特性。】

然后按Set Frequencies...,进入频率关系设置菜单。

t Frequencies RF Frequency © Swept © Fixed © Auto	,		IF Frequency C Swept C Fixed (Auto
Port 1 	GHz		Port 2
Swent Frequency	DE	4 GHz Port 3	Frequency Swept Fixed Auto
Enter & Display:	RF Source		4 GHz
Start Frequency:	4.45 GHz	 ۲ ۲	Conversion
Stop Frequency:	4.55 GHz		(● IF = LO - RF (LSB)
CW Frequency:	1 GHz	<u>×</u> n-	C IF = RF + LO (Up, USB)
		ОК	Cancel Help

设置混频器工作方式为扫描射频和中频频率,固定本振的下变频方式。

RF Frequency: Swept

LO Frequency: Fixed

IF Frequency: Auto

Start Frequency: 4.45GHz

Stop Frequency: 4.55GHz

Fixed Frequency LO: 4GHz

Conversion: IF=RF-LO(Down USB)

完成后按<mark>OK</mark>键退出

按Set Powers...进入功率设置菜单,如下图。

Set Powers					×
RF, IF Power CW C Fixed					
Port 1			\sum		Port 2
-10 dBm			.0		~ >
Att: Auto		7	T I		
		7 dBm Port 3 Att: Auto		ower XW Fixed	
CW Power: RF-				Fixed Power: I	L0
Enter & Display:	RF Source		•	7 dBm	÷
Start Power:	-25 dBm		- <u>10</u> -	Fixed Power: /	Aux LO
Stop Power:	0 dBm		÷ <u></u>	10 dBm	÷+ +
CW Power:	-10 dBm		<u>↓</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		OK		Cancel	Help

设置射频功率和本振功率。

CW Power -10dBm

Fixed Power: LO: 7dBm

Fixed Power: Aux LO: 10dBm (由于参考混频器的本振是由4端口经功分器后提供,因此需要在设置Aux LO (参考混频器本振)时,应考虑功分器衰减对本振信号的影响)

完成后按<mark>OK</mark>键退出

按**Config Ext Generators**...,进入外部信号源设菜单(如使用的是两端口ZVA时,需要外部信号源进行本振频率扫描测量时需要进行该项设置。如采用的是四端口矢网,或仅仅进行固定本振扫中频测量时,则无需使用该菜单进行外部源设置)

按OK键激活矢量混频器测量功能。

为了更准确测量混频器的变频特性,在开始矢量校准前,可进行功率校准。 按**Mixer Power Cal**进入功率校准菜单,详细过程请参考功率校准一章(2.1.1.4)。 功率校准后,开始矢量混频校准。

按Mixer Vector Cal软按键,进入矢量校准菜单。

🔽 San	ne Connector Typ	e st.All	Ports			
1	Connector		Charlmp	Calibration Ki		
Port1	2.92 mm (m)	-	50 Q	ZV-Z34		
Ponz	a.sa mini (m)		0011	64-534	-	
l Im	port Kal					

选择好测量端口特性和校准件后,

按<mark>Next</mark>按键进入下一步。

alibration				×
Measure Standards				25
Measured Standards (0 of 7): Port 1: 2.92 mm (m) Short (f) Match (f) Port 2: 2.92 mm (m) Open (f) Short (f) Match (f) Port 1: 2.92 mm (m) - Port Unknown Reciproc	0 Hz 40 GHz 0 Hz 40 GHz 2: 2.92 mm (m) al Mixer	10 0 -10 -20 -30 -40 -50 -60 -70		
Show Measurement Diagram Keep Measurement Data for	n >Repeat Previous Cal<	Ch1 Start 4.45	5 GHz Abort Sweep	Stop 4.55 GHz
	< Back	Next	Cancel	Help

在测量端口1和2分别连接标准件Open, Short, Match校准后, 把校准混频器如图所示 连接于端口1和2之间, 作为Unknown Reciprocal Mixer, 完成后点击Next, 然后选择Apply按 键完成校准。

【校准混频器的要求:工作频率等于或覆盖被测混频器的测量频率范围,损耗尽量低, 驻波尽量好,并且为互易混频器(S21=S12);一般来说无源混频器理论上都是互易的。】

根据测量需要,按**TRACE SELECT**按键,然后按**Add Trace**,增加测量曲线和参数,如 混频器相位(S21 Phase),混频器群延时(S21 Delay),端口驻波(S11,S22),反向特性 S12等。

2.3 内置本振变频模块群延时测量

2.3.1 群延时测量基础

群延时测量是基于相位的测量。群延时的测量过程与其定义相一致;群延时*t_g*是相位 对频率的微分特性。

$$t_g = -\frac{1}{360^o} \bullet \frac{dj}{df}$$

对于实际应用中,矢量网络分析仪测量传输参数 S21 的差商而不是其微商(导数),而 当相位j对于频率差 Δf (所谓的孔径)来说非线性特性不大的情况下,该方法能够很好的近 似于所定义的群延时 t_g 。

在变频被测件中,如混频器,其输出与输出端口的相位关系不能直接测量,因为这两频 率并不相等。同时,其相位特性不仅仅与其自身双关,同时还受本振源的相位影响

因此混频器的相位和群延时测试是使用所谓的参考混频器技术(如上一章矢量混频器测 试中所介绍)。

但是,当被测件的 LO 不能接入或接出时(内置本振),群延时测量就不能使用参考混频器技术。在以往一般是采用"本振重建"技术。该方法是使用外部信号源或矢网内部的第 二个源作为参考混频器的本振,然后通过控制信号源的频率,直到中频的相位相对于时间的 漂移很小。 这一技术具有很多的缺点,如动态范围和精度恶化,被测件本振不稳定时测量结果也不 稳定,测量速度低,当测量多级变频的模块时更会出现各种不可预测的测量问题。

R&S公司针对内置本振的变频模块群延时测量提供一专利测量技术,很好的克服了以往 技术所存在的问题。

2.3.2 R&S 双音测试技术

在新的测试方法中,选件 ZVA-K9 采用双音信号激励被测件。

在 ZVA 中,对被测件的输入和输出端测量各自两载波间的相位差。

 $t = \frac{-1}{360^{\mathbf{0}}} \bullet \frac{\Delta j}{\Delta f}$

 $\Delta j = j_2 - j_1$

频率差Δf 为两载波间的频率差,称为孔径。

为了测量两载波的相位差, ZVA 每个测量通道都具有两数字接收机在经模拟接收机处理 后同时对两信号测量。

这一技术应用于内置本振的变频器件时,因为被测变频模块本振的频率和相位的影响在 运算Δ*j*时正好被抵消。

 $\Delta j = (j_{2out} + j_{LO} - j_{1out} - j_{LO}) - (j_{2in} - j_{1in})$

除了群延时, ZVA 同样可以通过对群延时的积分计算其相对相位特性。

通过已知参量的混频器用作校准,则可测量绝对群延时。如果需要测量相对群延时,则 可以采用一个"理想混频器"(具有线性相位和平坦的群延时的混频器)用作校准。

2.3.3 内置本振变频模块群延时测试

按以下设置来举例说明一内置本振的群延时测 量。

扫描 RF 和 IF,固定本振, IF=RF-LO RF 频率: 5.37GHz...5.47GHz

LO 频率: 4.5GHz

IF 频率: 870MHz...970MHz

为了精确的测量,需要产生精确而稳定的频率偏移。通过 ZVA 四端口矢网则可以实现。

而这双音信号可通过外部合路器或使用 ZVA 内部的耦合器作为合路器产生。

为了产生双音信号,进行如下连接(如下图所示):

把 Scr out (port 1) 通过射频电缆连接到 Meas out(port 2)

把 Port 2 通过射频电缆连接到 Src in(port 1)

R&S为不同型号的 ZVA 提供 ZVA-B9 测试电缆选件。

因此双音信号通过端口 1 输入到 DUT 的 输入端口。ZVA24,ZVA40,ZVA50.ZVA67 等微 波频段的矢网中,这一设置推荐在被测件的中 频和射频频率大于 700MHz 以上的频率使用。

因为在低频段, 矢网内部的耦合器衰减较 大, 从而造成大的轨迹噪声。因此, 频率较低 时应采用外部合路器的方式。

为了提高精度,在测量端口的两段可以加入 6~10dB 的衰减器以改善匹配状态。

混频器测量设置

按 MODE 键,然后按 MIXER DELAY MEAS >> DEFINE MIXER DELAY MEAS 软按键 进入测量设置

按 Define Mixer Measurement 定义变频关系。

选择本振:

由于 LO 由被测件内部提供,所以选择"NONE"

	4
Port1	Portz
5.37 GHz. 5.47 GHz 0 dBm	870 MHz. 970 MHz
	-4.5 GHz -25 dBm
None	*
Define Mixer Measurements	
Config Ext Generators Set Pr	owers Set Frequencies

设置频率和变频模式

在混频器测量对话框中按 Set Frequencies

Fixed Frequency LO: 4.5GHz

Swept frequency: Start 5.37GHz Stop: 5.47GHz

Conversion: IF=RF-LO

然后按 <mark>OK</mark>键

Swept Swept Auto				equency Iwapt Iwad Wo
Port1		\square		Port2
537 GHz. 5.47	GHz		870) wept	MH2 . 970 MH2
	45	GH2 OA	uto	
Swept Frequency	15 } PF	GHz	Pixed Frequency	10
Swept Frequency Enter & Display:	45 NF RF Source	GHz OA	Fixed Frequency 4.5 GHz	uo ⊈#[•]
Swept Frequency Enter & Displey Start Frequency:	AS PF PF Source 5.37 GHz	GH2 OA	Pixed Frequency 4.5 GHz Conversion	uo ⊈#[•]
Swept Frequency: Enter & Displey: Start Frequency: Stop Frequency:	45 PF PF Source 5.37 GHz 5.47 GHz		45 GHz Conversion () IF + RF - J0 (C) IF + L0 - RF (L) IF + RF + L0 (LO Sown, USB) SB) Un USB)

设置功率电平:

在混频器对话框中按 Set Power 键

CW Power: 0dBm

按 OK 键关闭 Define Mixer Measurement....对话框

OFixed				
Port 1				Port
ù dBm	~ ~			
Att Auto		1		
		LOPO	wor	
	-25 (N	Ione OC	N	
CW Power: RF		1.0	- Fixed Power, U	0
Extra 2 Displays	RF Seace	14	-25 dBm	d # +
Enter & Crishiay.	100	1-18-1		
Start Power:	-25 dem			
Start Power: Stop Power:	E dBw	-14		

群延时测试设置:

Upper Tone: Port 3

Aperture: 3MHz

Meas Bandwith: 1kHz

Selectivity<mark>:</mark> Normal

Source	Receiver
Lower Tone Port 1	Measured Wave Quantities
Upper Tane: Port 3	At DUT Input Port 2
	At DUT Output Port 1
Cantig Ext Generators.	Meas Bandwidth 1 MHz
Aperture: 3 MHz	Measurement Bandwidth must be larger L0 deviation from nominel value
Use Internal Combiner	Selectivity: Normal High (Recommended)
	MixerDelay Meas Calibration
Define Mixer Measurement	Consider On
Sat Engineering and Dounce	-

也可以使用外部信号源,但是不推荐使用,因为对双音信号频率和相位稳定要求很严格。

选择孔径(aperture)为 3MHz,意味着两载波的频率差为 3MHz。对于内置本振混频 器群延时测试只能在这菜单中修改孔径大小,而不是在 Format 菜单中。

测量带宽应该大于内置本振的频率不稳定量。只要孔径大于 50 倍的测量带宽, Normal Selectivity 就足够了。如果孔径很小,则需要选择高选择性的滤波器(High Selectivity)

在 Mixer Delay Measurement 对话框中按 Set frequency and Powers 通常所有的设置已经在前面的对话框中设置完毕,这里可以再次检查 如果设置超差了 ZVA 的频率范围,按"Fit Frequency Range"键可以自动调节。 然后按 OK 退出。

现在回到 Mixer Delay Measurement 对话框

按 OK 键开始混频器群延时测量,

而测量参数会自动切换到群延时。

推荐首先测量变频损耗,以确定内置本振的频率是否正确。

群延时和变频损耗可以在同一个 Channel 中测量,通过增加一曲线就可以完成。

按

TRACE SELECT->>ADD TRACE

MEAS->><mark>RATIOS</mark>->><mark>b2/a1 Src Port 1</mark>

如果变频损耗的曲线很平滑,则不需要调整

减少测量带宽,直到变频损耗的轨迹噪声增大,意味内置本振的频率偏移量。如果本振 偏移频率过大,则在混频器设置对话框中重新设置其准确本振频率。

2.3.4 如何降低群延时轨迹噪声

以上的设置(被测件损耗为 6dB 时)会产生约为 100ps pk-pk 的波动。如果被测件损耗 增加,则可以通过以下步骤来减少噪声。

提高源1的功率

使用 ZVA -B9,端口 1 的源通过 Meas Out 输入到 2 端口的耦合器中。由于耦合器或驻 波比桥的损耗,会减少端口 1 源的功率。其衰减量大约为 10dB(微波频段的 ZVA,在频率 大于 700MHz 时,耦合器的衰减量大约为 10dB,低频段其衰减更大)。这就意味着,端口 1 源的功率会比端口 2 源的功率低 10dB。通过提高源 1 可以减少轨迹噪声。按以下端口配置进 行设置。

1408	D Flyci	300	8C						Receiver	
	1	3:1	FICID-0	104	Fiction of Piccan	204	101	Power Repuik	Frequency	Frequency Focal
12	Pat'		lu .	14	115 MHr. 119365 GHz	P-	14	0.65m	b	11.5 MBH: _ 23.2985 GHs
51	Pat2	-	lu .	14	112 MHr. 119365 GHz	P.,	-	0 d5m		
51	Pat 3	-	lu .		115 MHr. 13 935 GHz	Ρ.	-	0.65m	1.15	
51	Ptt4	1	lu .	14	115 MHr. 13 9365 GHz	P.,		0.65m	-	
E.	pleyed i Shirud	54 a m		2	eners Corrector Type et Al R	a ta		S Acto C Sour	Mor Frequency	er (
								10 00		and I lead

按 MODE->><mark>Port Configu…</mark>

Pb...(from Port 1)

在 Port Power Offset 增加 10dB

现在源1比源2的功率高10dB

按 <mark>OK</mark>确认

Peri I Cel Peren								8
®	- <i>7</i>	-17	_			TLC_		
®≈⊎ _	Atoriutis:	Pat Pover	Chose 2 (c)-1	CelPower 0 dB	Ditet	Power Resist 10 dBm		
Pr (Dwoel '	Neve Provecji Fidi	'n				Cwrist	1004	_

应用平均

减少 IF 带宽可以减少噪声,但当内置本振源不是很稳定时结果可能会变差。应用平均功 能则可以在不较少测量带宽情况下改善轨迹噪声.

增加孔径

增加孔径可以改善轨迹噪声。增加孔径,也会增加两信号间的相位差,而这一相位差不应超出 **180°** 否则结果就不正确。

群延时越达,可以设置的最大孔径则越小。

当被测件为 100ns 时,最大孔径不能超 5MHz。

【*在应用文档 App.-Note. 1EZ 35 "Group and Phase Delay Measurements with Vector Network Analyzer ZVR".中有关于如何选择合适的孔径的详细介绍。】*

增加测量点数和应用平滑功能

增加孔径不仅受限于被测件的群延时特性,同时会掩盖群延时的局部信息,特别如果被 测件的群延时相对于频率变化很大时。增加测量点数同时采用平滑功能,则可以在不丢失信 息的前提下改善轨迹噪声。平滑有时对改善曲线噪声的能力比平均强。

如:

按 SWEEP 按键

Number of Points... 20001

按 TRACE FUNCT 按键

Smoothing Aperture… 设为 0.5%

Soothing aperture 0.5%意味着 ZVA 在邻近的 10 个点做平均(=0.5%*2000)

2.3.5 校准

可通过一理想或已知参数的校准混频器进行校准。可通过 ZVA-K5 对未知参数的混频器 进行测量以获取其参数,以用作校准混频器使用。

有很多应用场合不需要进行绝对群延时测量,而仅仅测量其相对群延时或群延时波动。 在这些应用中,可通过以"理想混频器"(具有线性相位和平坦的群延时的混频器)进行校 准。

在开始校准前,选择合适的测量孔径。在校准后改变孔径会影响测量精度,因此测量时 的孔径应该与校准时的孔径设置一致。

连接"理想混频器"或校准混频,

使用外部信号源作为本振,设置频率和功率。把本振信号源的参考与 ZVA 相连,使它 们共参考频率。

按 MODE->>>MIXER DELAY MEAS->>CAL MIXER DELAY MEAS...

对绝对群延时测量,校准混频器的数据需要通过"Load"按键加载

对于相对群延时测试,直接按"Zero Delay"

按 Take Cal Sweep

等待出现"finished"则可关闭对话框

lixer De	lay Meas Ca	libratio	n 8	
1. Ca Idea	libration Mix Load I Mixer Data	ker Dati Zi a	a ero Delay	
-2. Ca Coni	libration nect Calibra Take C	ation Mi al Swe	xer	
3. Ca	Data Mana Save	ager	Load	
	Close		Help	

如果需要,校准数据可以通过保存(Save)或调出使用(Load)。

如果进行了校准,在测量曲线或会出现 Mcal 的提示。

Trc1 Mix	Dly Real	100 ps/ I	Ref 0 s	MCal	
MixDly					
- 400					

3总结

在目前高级矢量网络分析仪中,对于混频器和变频模块的测试可以包含以下测量参数: 变频损耗,端口驻波,1dB 压缩点,三阶交调点,端口隔离度,相移特性,群延时特性等参数。

在 R&S 的高级矢量网络分析仪 ZVA 和 ZVT 为混频器和变频模块的测试提供了以下三种 选件:

标量混频器测量选件 ZVA-K4

矢量混频器测量选件 ZVA-K5

内置本振变频模块群延时测量选件 ZVA-K9

对于标量混频器测量选件 ZVA-K4 能够提供以下这些测量: 混频器和变频模块的变频损耗,端口驻波, 1dB 压缩点, 三阶交调点,端口隔离度等测量。

而对于矢量混频器测量选件 ZVA-K5 能够提供以下这些测量:变频损耗,端口驻波, 1dB 压缩点,三阶交调点,端口隔离度,相移特性,群延时特性等参数(选配 ZVA-K5 选件 前需安装 ZVA-K4)

而对于内置本振变频模块群延时测量选件 ZVA-K9 可以提供以下这些测量:变频损耗,端口驻波,1dB 压缩点,三阶交调点,端口隔离度,群延时特性等参数(选配 ZVA-K9 选件前需安装 ZVA-K4)
4订货信息

Designation	Туре	Order No.
Vector corrected mixer measurements ¹⁾	ZVA-K5	1311.3134.02
Embedded LO mixer delay measurements ¹⁾	ZVA-K9	1311.3128.02
Frequency conversion	ZVA-K4	1164.1863.02
Cable Set for ZVA-K9 for ZVA8	ZVA-B9	1305.6541.02
Cable Set for ZVA-K9 for ZVA24 / ZVA40 2.9mm	ZVA-B9	1305.6541.03
Cable Set for ZVA-K9 for ZVA 50	ZVA-B9	1305.6541.04
¹⁾ requires ZVA-K4 and ZVA-B16		

About Rohde & Schwarz

Rohde & Schwarz is an independent group of companies specializing in electronics. It is a leading supplier of solutions in the fields of test and measurement, broadcasting, radiomonitoring and radiolocation, as well as secure communications. Established 75 years ago, Rohde & Schwarz has a global presence and a dedicated service network in over 70 countries. Company headquarters are in Munich, Germany.

Regional contact

Europe, Africa, Middle East +49 1805 12 42 42* or +49 89 4129 137 74 customersupport@rohde-schwarz.com

North America 1-888-TEST-RSA (1-888-837-8772) customer.support@rsa.rohde-schwarz.com

Latin America +1-410-910-7988 customersupport.la@rohde-schwarz.com

Asia/Pacific +65 65 13 04 88 <u>customersupport.asia@rohde-schwarz.com</u>

Certified Environmental System ISO 14001 DQS REG. NO 1954 UM

This application note and the supplied programs may only be used subject to the conditions of use set forth in the download area of the Rohde & Schwarz website.

Rohde & Schwarz GmbH & Co. KG Mühldorfstraße 15 | D - 81671 München Phone + 49 89 4129 - 0 | Fax + 49 89 4129 – 13777

www.rohde-schwarz.com