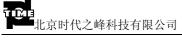

TUD320 超声探伤仪 使用说明书


北京时代之峰科技有限公司

目 录

第一章 概述	5
1.1 本说明书的使用	5
1.1.1 版面安排与表达方式约定	5
第二章 仪器技术参数及性能特点	7
2.1 测量范围及测量误差	7
2.2 使用环境	7
2.3 电源	7
2.4 外型尺寸和重量	7
2.5 性能特点	7
第三章 仪器的使用	9
3.1 仪器概述	9
3.1.1 仪器各部分名称	9
3.1.2 功能键盘	9
3.1.3 电源使用	10
3.1.4 探头连接	·· 11
3.1.5 仪器启动及关机	·· 11
3.1.6 屏幕显示说明	12
3.2 仪器操作概述	14
3.2.1 按键功能	14
3.2.2 各项功能概述	15
3.2.3 基本操作方法	16
3.2.4 重要基本设置	18
3.2.5 探伤工作前基本设置	19
3.3 功能组概述	19
3.4 基本组功能调节	20
3.4.1 探测范围(RANGE)	20
3.4.2 材料声速(MTLVEL)	21
3.4.3 脉冲移位(D-DELAY)	21
3.4.4 探头零点(P-DELAY)	22
3.5 收发组功能调节	
3.5.1 输出阻尼/探头方式	
3.5.2 滤波频带/检波方式	
3.5.3 回波抑制/检波基准	23
3.5.4 探头校准	
3.6 闸门组功能调节	25
3.6.1 闸门逻辑/闸门报警	25
3.6.2 A 闸门起始/B 闸门起始	·· 26
3.6.3 A 闸门宽度/B 闸门宽度	26

3.6.4 A 闸门高度/B 闸门高度	27
3.7 存储组功能调节	27
3.7.1 数据组号	27
3.7.2 调出参考/调出数据	28
3.7.3 保存	28
3.7.4 删除数据/删除参考	29
3.8 设置组功能调节	29
3.8.1 探测方式/颜色模式	29
3.8.2 标尺/亮度	30
3.8.3 填充/蜂鸣	30
3.8.4 语言/单位	31
3.9 斜探头组功能调节	31
3.9.1 折射角度/探头 K 值	32
3.9.2 工件厚度	32
3.9.3 探头前沿/标度方式	33
3.9.4 材料声速	33
3.10 DAC1 功能组调节	33
3.10.1 DAC 曲线/标定修正	33
3.10.2 DAC 标定点/修正点	34
3.10.3 A 闸门起始/A 闸门宽度	35
3.10.4 自动增益/当量标准	35
3.11 DAC2 功能组调节	35
3.11.1 DAC 评定线	36
3.11.2 DAC 定量线 ······	36
3.11.3 DAC 判废线	
3.11.4 增益校正	36
3.12 高级功能组调节	
3.12.1 探伤通道/曲线包络	37
3.12.2 设置调出/设置保存	37
3.12.3 测值显示/串口设置	
3.12.4 日期/时间	
3.13 B 扫描功能组调节	40
3.13.1 B 扫模式/A 扫模式	
3.13.2 扫描方向	41
3.14 DGS 功能组调节	
3.14.1 DGS 模式/结果类型	42
3.14.2 探头频率/探头直径	
3.14.3 曲线当量/参考大小	
3.14.4 参考标定/A 闸门起始	
3.15 曲面	44

3.15.1 曲面校正	44
3.15.2 工件厚度	44
3.15.3 探头前沿	45
3.15.4 工件外径	45
3.14 特殊功能调节	45
3.14.1 增益步长	45
3.14.2 增益值	45
3.14.3 打印	46
3.14.4 全屏	46
3.14.5 冻结	46
3.14.6 展宽	47
3.14.7 菜单锁定	47
3.14.8 数据组锁定	47
3.14.9 通道锁定	47
3.14.10 恢复出厂设置	48
3.14.11 仪器程序升级	48
第四章 仪器校准与测量	49
4.1 直探头校准(单探头)	49
4.1.1 已知材料声速的校准	49
4.1.2 未知材料声速的校准	49
4.2 直探头校准(双晶探头)	50
4.3 斜探头校准	51
4.4 DAC 曲线应用方法	52
4.5 测量内容	53
4.6 曲面应用方法	54
4.7 DGS 曲线应用方法	54
五章 仪器的通讯	55
5.1 数据通讯	55
5.1.1 连接 PC 机或打印机	55
第六章 检测精度的影响因素及缺陷评估	57
6.1 使用超声探伤仪的必要条件	57
6.1.1 操作人员的培训	57
6.1.2 探伤技术要求	
6.1.3 测试范围	57
6.1.4 超声壁厚测量	58
6.1.5 剩余壁厚的测量	58
6.2 影响检测精度的因素	
6.2.1 材料的影响	58
6.2.2 温度的影响	
6.2.3 表面粗糙度的影响	59

6.2.4 附着物	月 质的影响	59
6.3 缺陷评估	5方法	59
6.3.1 缺陷边	1界法	59
6.3.2 回波显	· 示比较法	59
第七章 保养	与维修	61
7.1 环境要求	₺	61
7.2 电池充电	也	61
7.3 更换电池	也	61
7.4 故障排隊	余 ·······	62
7.5 安全提示		62
附录		63
附录一	用户须知	63
附录二	性能指标	64
附录三	操作一览表	66
附录四	接口	67
附录五	名词术语	68
附录六	有关超声波探伤的国家标准和行业标准	70

第一章 概述

本仪器是一种便携式工业无损探伤仪器,它能够快速便捷、无损伤、精确地进行工件内部多种缺陷(裂纹、夹杂、气孔等)的检测、定位、评估和诊断。本仪器能够广泛地应用在制造业、钢铁冶金业、金属加工业、化工业等需要缺陷检测和质量控制的领域,也广泛应用于航空航天、铁路交通、锅炉压力容器等领域的在役安全检查与寿命评估。

超声波在被测材料中传播时,可根据材料的缺陷所显示的声学性质对超声波传播的影响来探测其缺陷。 根据此原理,利用超声波可以测量各种金属、非金属、复合材料等超声波良导体介质内的裂缝、气孔、夹杂 等缺陷信息。

图 1.1 超声探伤基本工作原理

1.1 本说明书的使用

在第一次操作 TUD320 之前,请仔细阅读本说明书。

1.1.1 版面安排与表达方式约定

为了方便使用本说明书,所有的操作步骤、注意事项等都是以相同的方式安排版面。这有助于迅速找到 每条独立的信息。说明书目录结构到目录第四层,第四层往下的项目以黑体标题示出。

注意和说明标志

注意: 注意标志指出操作中可能影响结果准确性的特性和特殊方面。

说明: 注释可以包括参阅其它章节或某个功能的特别介绍。

项目列表

项目列表表现为下列形式

项目A

项目B

...

操作步骤

操作步骤表示方法如下面例子

- 利用翻页键切换功能页。
- 通过功能键〈F1〉选择基本功能组,再用功能菜单对应的菜单键选择探测范围功能菜单,然后用拨轮调节相关参数。
- 利用同一个菜单键来切换粗细调节方式。

第二章 仪器技术参数及性能特点

2.1 测量范围及测量误差

探测范围: 2.5 mm ~5000 mm

扫描分辨率: 0.1mm (2.5mm~100mm)

1mm (100 mm ~5000mm)

增益范围: 0dB ~110 dB脉冲移位: -20μs~+3400μs探头零点: 0μs~99.99μs

材料声速: 1000 m/s~9999m/s

2.2 使用环境

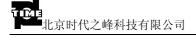
温度: -15℃~50℃

湿度: 20%~90%RH

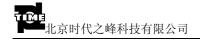
无强磁场、腐蚀环境

2.3 电源

锂(Li) 电池 4×3.6V 4400mAh


2.4 外型尺寸和重量

外型尺寸: 约 243mm×173 mm×70 mm


重量: 约 1.47kg

2.5 性能特点

- 彩色高速宽温工业级 TFT_LCD 液晶显示;
- 10 位高速实时采样,较 8 位采样测值更加精确;
- 锂电池供电,无记忆效应、具有过充过放保护,具有安全保障;
- 电池能量实时动态检测,以百分比表示,电源不足提前提示,关机时自动保存当前设置和数据;
- 测量显示方式: A型扫描显示方式、B型扫描显示方式;

- 探头阻尼通过菜单选择在50、150、400之间切换;
- 检波方式有正半波、负半波、全波和射频四种方式可供选择:
- 具有线性抑制功能,最大抑制为屏高的80%;
- 可以在单探头、双探头及透射三种探伤工作方式之间任意切换;
- 具有闸门设置和报警功能。能够在屏幕上任意设置闸门的位置和宽度,并可以分别设置进波报警与 失波报警:
- 具有声程测量、回波次数分析功能;
- 具有曲面校正功能,便于对非规则材料和小管径管件进行检测;
- 具有 10 个独立探伤通道,每个通道单独设置一组探伤参数、DAC 曲线。
- 具有存储功能,每个通道可以存储 30 幅共 300 幅 A 扫图形、参数及 DAC 曲线;每个通道可以存储 30 组共 300 组厚度值,每组可存储最多 100 个共 30000 个厚度值;
- 具有波形参考功能,可以已存储 A 扫图形调出作为当前波形的参考对比波形使用,便于缺陷分析和判别;
- 具有曲线包络功能;
- 支持英语和中文两种语言;
- 两种测量单位: mm / inch;
- 具有角度和 K 值两种输入方式;
- 可以利用标准试块自动生成 DAC 曲线, 最多可记录 30 个点, 三条附加可调偏置曲线及增益校正功能;
- 可利用单点标定生成 DGS 曲线:
- 实用化的 DGS 曲线参数设置:参考类型、参考大小、当量大小、探头频率及尺寸
- 可针对规则小管径规则曲面工件自动进行曲面校正功能
- 具有实时时钟功能,可手动调整;
- 具有探头自动校准功能;
- 具有自动增益功能:
- 具有手动 B 扫描功能;
- 具有波形和探伤参数的冻结和解冻功能;
- 具有系统参数的加锁/解锁功能:
- 具有打印功能,通过串行打印机打印厚度报告与波幅曲线;(目前都没有)
- 支持 RS232 通讯接口:
- 能够跟 PC 机通讯,可以将测量数据和系统设置参数上传给 PC 机,以便进行进一步处理(如生成探 伤报告、打印等);
- 可利用 PC 端通讯软件升级仪器的功能;
- 操作过程可设置蜂鸣器提示音:
- 轻小便捷,易于操作。

第三章 仪器的使用

3.1 仪器概述

3.1.1 仪器各部分名称

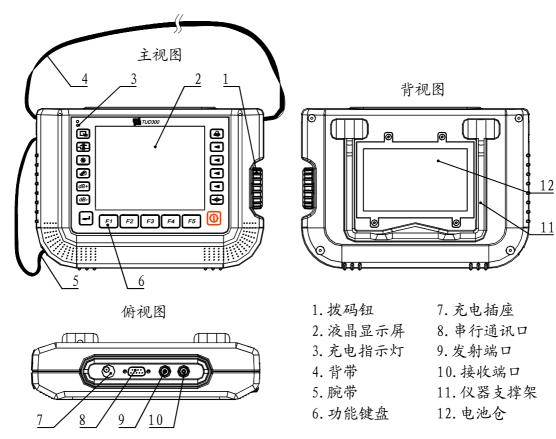


图 3.1 仪器外观图

3.1.2 功能键盘

TUD320 的面板按键以组分类,分别为: 功能组选择、菜单选择、特殊功能三大按键组。功能组选择包括六个按键,其中的五个按键: F1、F2、F3、F4、F5 对应显示窗口的五个功能组,通过这五个键可选择相应的功能组,另外的
用于功能组翻页;菜单选择的四个按键,即下图所示的 S1、S2、S3、S4,可以完成每个功能组中相对应的四个菜单及其复用菜单、复用功能的选择、粗细调切换、功能确认等;特殊功能组的八个按键: 开关机、全屏切换键、展宽键、冻结键、打印键可以快速的启动仪器相应的特殊功能,增益步长键可以选择调节增益的步长,dB+、dB-用于调节增益值,确认键用于复用子菜单切换、参数粗细调切换等等。整个面板布局和具体按键如下图所示。操作说明见附录三"操

作一览表"。

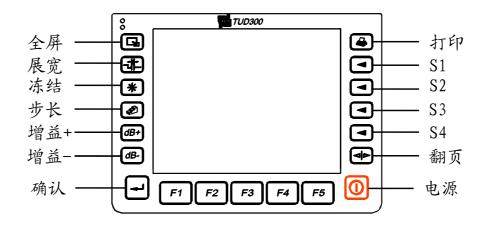


图 3.2 面板

3.1.3 电源使用

TUD320 可以使用插入式电源设备(AC.DC 适配器)或电池进行操作。

用电源适配器作为 TUD320 的工作电源时,插上电源适配器后仪器自动检测并切换到适配器电源。 用电池作为 TUD320 的工作电源时,拔下电源适配器后仪器自动检测并切换到电池电源。

在 TUD320 装有电池的情况下,把 TUD320 连接到电源适配器电源供应系统时,可对电池充电。

3.1.3.1 使用交流供电设备供电

连接仪器

通过专用的交流适配器,把 TUD320 连接到交流电源。

注意: 如果强行切断仪器电源(切断电池连线或拔出电源插头),仪器将不能正常关机,正确关断仪器, 应按主机开关键。

3.1.3.2 使用电池工作

使用电池供电时,请使用我们建议的电池产品。

放入电池

电池盒在仪器的背部,用螺丝刀打开电池仓盒盖,把电池放入电池仓内,将电池的插头插入电池的插座, 盖好电池仓盒盖。

充电指示器

TUD320 水平刻度线的右下角,有电池电量符号并在中间显示电池电量:

10

如果出现电池电量不足的符号,机器会自动关机并保存数据。此时就应该马上停止探伤工作,更换电池或充电。

说明: 如果需要进行现场测量,请随身带上备用电池。

Li 电池充电

可以使用外部电池充电器给锂电池充电。建议使用 TUD320 仪器标准套中的电源适配器充电。使用该充电器前,请仔细阅读其使用说明。锂(4.4Ah)电池连续充电时间约需 4~5 小时。充电时充电指示绿灯亮,充电完成后充电指示灯绿熄灭红灯亮。

3.1.4 探头连接

使用 TUD320 检测时,需要连接上合适的探头。只要有适当的电缆线,并且工作频率在适当范围之内,任何我公司生产的探头都适用于 TUD320。TUD320 探头连接器为 BNC。

探头要连接到仪器外壳上方的插口。单探头方式时,两个连接器插口同样适用(内部并联连接)。连接双晶(TR)探头(一个晶片发射,一个晶片接收)或两个探头(一个发射,一个接收)时,要注意把发射探头连接到上侧带有红色橡胶圈的插口上,把接收探头连接到上侧带有蓝色橡胶圈的插口上。如果没有考虑这些因素,可能造成损耗或回波波形紊乱等不利的后果。

3.1.5 仪器启动及关机

- a) 准备好待测工件;
- b) 将探头电缆线插头插入主机的上方的插座中,旋紧插头;
- c) 按 3.1.3 选择好工作电源,按一下 Θ 键,开机;
- d) 程序加载及开机自检;

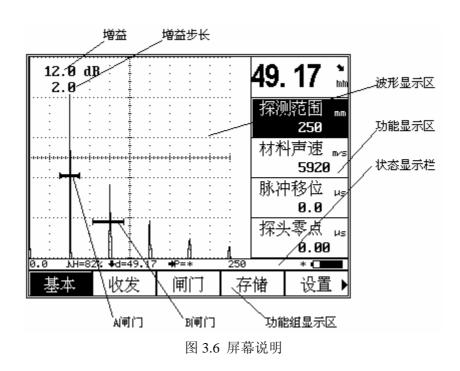
开机时正常情况下,自动进入上次关机时的状态。仪器参数与上次关机时一致,但上次关机时的波形不显示。

e) 检查电池电压;

说明: 请随时查看显示屏右下角的电源监测图标。有三种状态:

- 3.3图,表示电压正常;
- 3.4图,表示电压已低落;
- 3.5图,表示电压不足,需充电或更换电池,

若电源监测显示电压不足,则在报警铃声响过1分钟后自动关机。


是否需要校准仪器,如果需要,专业技术人员进行仪器校准(参阅第四章);

- f) 测量;
- g) 关机;

当开机自检不正常时,可以先行关机再重启动,如果仍然自检不通过,可以强制复位至仪器出厂时状态

(见 3.14.10)。

3.1.6 屏幕显示说明

3.1.6.1 TUD320 屏幕显示的三种模式,

• 正常模式的 A 型扫描

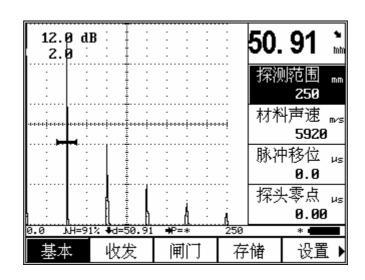


图 3.7 A型扫描正常模式

• 放大模式的 A 型扫描

可以通过使用 望激活放大模式。增益和选定的 dB 步长值总显示在屏幕上。这时,所有其它功能都被锁定。

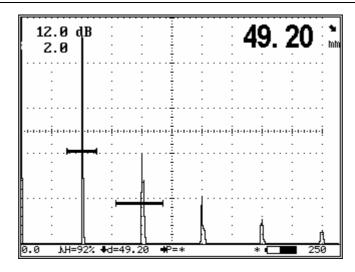
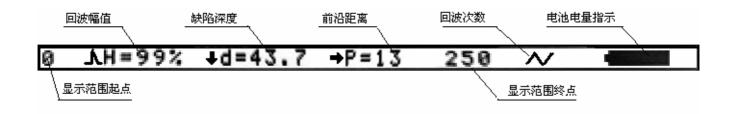
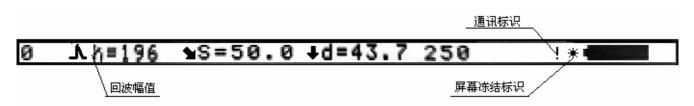


图 3.8 A 型扫描放大模式

• 手动 B 型扫描


3.1.6.2 功能显示项

十个功能组的名称分两页显示在屏幕下方。当前选择的功能组被加亮显示,同时当前功能组中当前选择的功能菜单也被加亮显示。在 A 扫放大模式下,功能组显示消失。


3.1.6.3 其它显示

水平刻度线下方的测量数据行的数据和符号显示了部分设置、读数和状态标志。

3.1.6.4 屏幕显示符号的说明

上图中回波幅值 H=99%,缺陷深度=43.7mm,前沿距离=13mm,回波次数为 3 次,电池电量充足,显示范围起点=0.00mm,显示范围终点=250.0mm。

缺陷深度

图 3.9 屏幕状态栏说明

3.2 仪器操作概述

3.2.1 按键功能

TUD320 的功能选择、功能调节按键组的各键组合可以完成仪器功能的选择和功能值的调节,特殊功能 键组的各键可以直接启动仪器的特殊功能。以下是对各按键所能完成的功能的详细说明。

F1 键

按 F1 键,可以选择屏幕底部列出的基本(斜探头)功能组,选择相应的功能组同时,该功能组内的所有功能项将在屏幕右边显示出来。

F2 键

按 F2 键,可以选择屏幕底部列出的收发(DAC1)功能组,选择相应的功能组同时,该功能组内的所有功能项将在屏幕右边显示出来。

F3 键

按 F3 键,可以选择屏幕底部列出的闸门(DAC2)功能组,选择相应的功能组同时,该功能组内的所有功能项将在屏幕右边显示出来。

F4 键

按 F4 键,可以选择屏幕底部列出的存储(高级)功能组,选择相应的功能组同时,该功能组内的所有功能项将在屏幕右边显示出来。

F5 键

按 F5 键,可以选择屏幕底部列出的设置(B 扫描)功能组,选择相应的功能组同时,该功能组内的所有功能项将在屏幕右边显示出来。

菜单键

共四个菜单键,每个键对应一个菜单项,其功能是对相应菜单进行选择,重复按此键可实现复 用子菜单选择、粗细调切换、厚度波形存储切换、存储删除确认、探头校准确认等功能。

开关键

电源软开关。

增益步长

按增益步长键,增益步长会在 12.0dB、6.0dB、2.0dB、1.0dB、0.5dB、0.2dB、0dB 七挡内循环

变化,选择合适的增益步长,可以快速地将增益调整到需要的数值。

增益+

按增益+键,增益就会以设定的增益步长增加,增益调整范围是 0dB~110dB。

增益-

按增益-键,增益就会以设定的增益步长减小,增益调整范围是 0dB~110dB。

确认键

在有复用功能的功能选项上按确认键可以切换复用功能,在具备粗细两种调节方式的功能项上 按确认键可以切换功能项的粗调或细调方式。

翻页键

10个功能组分布在两个功能页面中,翻页键可以使这两页功能组进行切换。

全屏键

在A扫模式下,按全屏键可以切换屏幕的显示方式,可以在正常模式与放大模式间进行切换。

打印键

按打印键,可以快速启动打印功能,在有打印机连接的情况下可以打印屏幕显示内容。

冻结键

在工作过程中,按冻结键可以将当时屏幕上显示的波形以及数据冻结,再次按下可以解冻。

展宽键

按下展宽键,可以将闸门套住的波形展宽到整个显示区,这样可以观察到波形的细节。

拨轮 旋转拨轮可以对菜单参数(屏幕右边被选中的菜单<加亮显示>的数值)进行调节。

3.2.2 各项功能概述

TUD320 的功能实现分为十个菜单式功能组、若干个特殊功能。

菜单式功能组包括基础(BASE)、收发(P/R)、闸门(GATE)、存储(MEM)、设置(CFG)、斜探头(AGLEY)、DAC1、DAC2、高级(ADV)、B扫描(BSCAN)十个组,各功能组的功能介绍见下表。

功能组	功能	描述
基本	探测范围、材料声速、脉冲移位、探头零点	显示范围所需的最基本
		的调节项
收发	输出阻尼/探头方式、滤波频带/检波方式、	发射和接受所需调节项
	回波抑制/检波基准、探头校准	
闸门	闸门逻辑/闸门报警、A/B闸门起始、A/B闸门宽度、	闸门设置相关项
	A/B 闸门高度	
存储	组号、调出参考/调出数据、保存、删除参考/删除数据	数据存储设置
设置	探测方式/颜色模式、标尺/亮度、填充/蜂鸣、语言/单位	相关状态的设置

斜探头	折射角度/探头 K 值、工件厚度、探头前沿/标度方式、 材料声速	斜探头相关设置
DAC1	DAC 曲线/标定修正、DAC 标定点/修正点、 A 闸门起始/A 闸门宽度、 <mark>自动增益/当量标准</mark>	DAC 曲线标定
DAC2	DAC 评定线、DAC 定量线、DAC 判废线、增益校正	DAC 曲线偏置设置
高级	探伤通道/曲线包络、设置调出/设置保存、 测值显示/串口设置、日期/时间	高级选项设置
B扫描	B 扫模式/A 扫模式、扫描方向	B扫描相关设置
DGS	DGS 模式/结果类型、探头直径/探头频率、参考大小/曲线当量、参考标定/A 闸门起始	DGS 曲线标定
曲面	曲面校正、工件厚度、探头前沿、工件外径	曲面校正

其它特殊功能可通过特殊功能键来实现。各特殊功能键功能介绍见下表。

特殊功能	功能描述
增益步距	增益步距调节
dB+, dB-	增益值调节
全屏	全屏切换
展宽	闸门内展宽
冻结	波形冻结
打印	打印报告
确认	复用功能菜单切换、参数粗细调切换、功能确认等
翻页	切换功能页

3.2.3 基本操作方法

可以通过<功能键>完成功能组的选择;通过<菜单键>完成具体某一功能菜单的选择;此时通过拨轮即可改变此功能菜单的参数。另外有些功能菜单是两个功能复用的,当已选择了某个功能时,再按其对应的<菜单键>或者按确认键即可转换为另一功能。

3.2.3.1 功能选择

A型扫描下方显示的是 5个功能组,可以使用<功能键>直接选择,选定的功能组名被加亮显示。相应的 4个功能菜单项显示于紧靠 A型扫描的右方。可以使用<菜单键>来选择。

3.2.3.2 复用功能项

在一些情况下,一个功能项有双层功能。此时,在切换到相应复用功能项时,再次按下<菜单键>或者按下确认键即可在两种功能之间切换。在功能名称后面的标志">"表示它为复用功能项。

具有复用功能的菜单列表如下:

功能一	功能二	所属功能组
输出阻尼	探头方式	收发
滤波频带	检波方式	收发
回波抑制	检波基准	收发
闸门逻辑	闸门报警	闸门

北京的 [[之"丰作][文] [] [] [] [] []		
A 闸门起始	B 闸门起始	闸门
A 闸门宽度	B闸门宽度	闸门
A 闸门高度	B 闸门高度	闸门
波形存储组号	厚度存储组号	存储
调出数据	调出参考	存储
删除数据	删除参考	存储
探测方式	颜色模式	设置
标尺	亮度	设置
填充	蜂鸣	设置
语言	单位	设置
折射角度	探头 K 值	斜探头
探头前沿	标度方式	斜探头
DAC 曲线显示	标定修正	DAC1
DAC 标定点	修正点	DAC1
A 闸门起始	A 闸门宽度	DAC1
当量标准	自动增益	DAC1
探伤通道	曲线包络	高级
设置调出	设置保存	高级
测值显示	串口设置	高级
日期	时间	高级
B扫模式	A 扫模式	B扫描
DGS 模式	结果类型	DGS
探头频率	探头直径	DGS
曲线当量	参考大小	DGS
参考标定	A 闸门起始	DGS

3.2.3.3 功能的粗调和细调

有些功能可在粗调和细调之间选择。在切换到相应功能项时,再次按下<菜单键>或者按下确认键就可以 在这两种调节模式之间切换。细调以功能项前面的"*"作为标识。

下列为可选择粗调和细调的功能项

功能	功能组
探测范围	基本
材料声速	基本/斜探头
脉冲移位	基本
工件厚度	斜探头
工件外径	曲面

3.2.3.4 功能操作举例:

假设当前选择的是基本(BASE)功能组中探测范围功能(RANGE)调节,如果想选择收发功能组的检波方式,如何操作呢?

先通过功能键〈F2〉选择收发功能组;然后按第二个菜单键选择滤波频带/检波方式(FREQU/RECTIFY)功能菜单。由于该功能项菜单是滤波频带、检波方式复用的,所以若此时显示检波方式,就完成了操作;若显示滤波频带,则再按一次第二个菜单键或者按下确认键改变为检波方式。

3.2.4 重要基本设置

3.2.4.1 语言选择

设定仪器显示所用语言类型。

选项:中文、英语

操作:

- 利用翻页键切换功能页。
- 通过功能键〈F5〉选择设置功能组,再用功能菜单对应的菜单键选择语言/单位功能菜单,然后用拨轮设定语言类型。
- 利用同一个菜单键来切换语言、单位功能。

3.2.4.2 单位选择

设定仪器探伤参数单位, 若选择 mm, 则采用公制; 若选择 inch, 则采用英制。

选项: mm、inch

操作:

- 利用翻页键切换功能页。
- 通过功能键〈F5〉选择设置功能组,再用功能菜单对应的菜单键选择语言/单位功能菜单,然后用拨轮设定参数单位。
- 利用同一个菜单键来切换语言、单位功能。

3.2.4.3 设置背景光(背景照明)

可以通过功能项亮度(功能组设置)选择显示屏背景光的强度,分为六档。

说明: 背光越亮,电池的工作时间会相应的缩短。因此,根据探伤现场的实际情况尽可能的将背光亮 度的等级调节到最低。

- 利用翻页键切换功能页。
- 通过功能键〈F5〉选择设置功能组,再用功能菜单对应的菜单键选择亮度/标尺功能菜单,然后用拨轮设定背景光亮度的强度等级。
- 利用同一个菜单键来切换亮度、标尺功能。

3.2.4.4 设置标尺显示方式

可以通过功能项标尺(功能组设置)选择坐标网格的显示方式, 共有四种。

说明: 根据用户喜好选择合适的坐标网格显示方式。

操作:

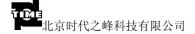
- 利用翻页键切换功能页。
- 通过功能键〈F5〉选择设置功能组,再用功能菜单对应的菜单键选择亮度/标尺功能菜单,然后用拨轮设定坐标网格的显示方式。
- 利用同一个菜单键来切换亮度、标尺功能。

3.2.4.5 设置 A 扫模式

A 扫可以设置成正常和放大模式,正常模式下可以显示出功能组和功能项、状态栏,而放大模式下,只显示测量区域回波以及状态栏,这有利于观察波形和测量值。在探伤工作中,一般是设置成正常模式,当探明缺陷时,改为放大模式观察。可以利用全屏按键□实现放大模式和正常模式的切换。

3.2.5 探伤工作前基本设置

3.2.5.1 基本组基本设置


在探伤工作开始之前,必须设置好基本组中的探测范围、材料声速、脉冲移位、探头零点,以适应相应 探伤工作的需要,具体的设置方法见 3.4 节基本组功能调节。

3.2.5.2 收发组基本设置

在探伤工作开始之前,有必要设置收发组中的输出阻尼、滤波频带/检波方式、回波抑制/检波基准、探头方式选择,以适应不同的探伤工作需要,具体的设置方法见 3.5 节收发组功能调节。

3.3 功能组概述

基本 该功能组的功能为屏幕显示所必须的基本调节项目。

收发 这一组功能用于调节脉冲发生器以及自动校准探头。

闸门 设置(双)闸门的所有功能都列在这一组中。

存储 这些功能用于保存、检索和删除数据组。

设置这一组的功能用于与测量相关的功能设置。

斜探头 这一组功能用于斜探头测量时的相应设置和操作。

DAC1 这一组功能用于标定 DAC 曲线。

DAC2 这一组功能用于设置 DAC 曲线。

高级 这一组功能用于设置仪器的特殊功能。

B 扫描 这一组功能用于设置 B 扫描相关的参数。

DGS 这一组功能用于标定 DGS 曲线。 曲面 这一组功能用于测量小管径工件。

3.4 基本组功能调节

在基本功能组可以调节设定显示范围相关的功能项,包括探测范围、材料声速、脉冲移位、探头零点。 探伤过程中,屏幕显示的范围是与工件材料和探头性质相关的。工件材料影响超声波的传播速率,探头 固有性质决定着探头零点。

说明: 为了准确设定超声波在工件中的声速和探头零点,请务必参阅第四章 仪器的校准。

3.4.1 探测范围 (RANGE)

设定探伤中屏幕显示的测量范围,即观察窗口的大小。

范围: 2.5mm~5000mm/0.1 " ~200 "

若当前选择的是探测范围功能菜单,则通过按相应菜单键或确认键可以在粗调、细调方式间切换。

粗调: 2.5mm、5mm、10mm、20mm、30mm、40mm、50mm、60mm、70mm、80mm、90mm、100mm、150mm、200mm、250mm、300mm、350mm、400mm、450mm、500mm、600mm、700mm、800mm、900mm、1000mm、2000mm、3000mm、4000mm、5000mm

细调: 范围 步长

≤100.0mm 0.1mm >100mm 1mm

- 利用翻页键切换功能页。
- 通过功能键<F1>选择基本功能组,再用功能菜单对应的菜单键选择探测范围功能菜单,然后用拨轮来调节探测范围参数即声程值。
- 利用同一个菜单键来切换粗、细调节方式。

3.4.2 材料声速 (MTLVEL)

可以设定超声波在被测工件中传播的速率。

范围: 1000m/s~9999m/s 或 0.0394in/μs~0.3937in/μs

若当前选择的是材料声速功能菜单,则通过按相应菜单键或确认键可以在粗调、细调方式间切换。 粗调:

2260m/s	0.089 in /µs	铜中横波声速
2730m/s	0.107 in $/\mu s$	有机玻璃中纵波声速
3080m/s	0.121 in $/\mu s$	铝中横波声速
3230m/s	0.127 in $/\mu s$	钢中横波声速
4700m/s	0.185 in $/\mu s$	铜中纵波声速
5920m/s	0.233 in / μs	钢中纵波声速
6300m/s	0.248 in $/\mu s$	铝中纵波声速

细调: 步长为 1m/s 或 0.0001in/us

操作:

- 利用翻页键切换功能页。
- 通过功能键<F1>选择基本功能组,再用功能菜单对应的菜单键选择材料声速功能菜单,然后用拨轮来调节声速参数。
- 利用同一个菜单键来切换粗、细调节方式。

说明:请务必保证声速值的正确性,因为仪器状态行所显示的部分测量结果都是基于此声速值计算得到。

3.4.3 脉冲移位(D-DELAY)

可以设定探伤过程中脉冲移位,亦即 D 延时。改变 D 延时可以调整波形起始位置。这样可以调整显示脉冲的起点,使其位于被测工件的表面或者是工件内部的某一起始面。如果脉冲必须从被测工件的表面开始,那么 D 延时必须设置为 0。

粗调: -20μs、-10μs、0μs 、10μs、 20μs 、50μs、100μs、150μs、200μs、250μs、300μs、350μs、400μs、450μs、500μs、600μs、700μs、800μs、900μs、1000μs、1500μs、2000μs、2500μs、3000μs、3400μs

细调: 范围 步长

 $\leq 1000 \mu s$ 0.1 μs > 1000 μs 1 μs

- 利用翻页键切换功能页。
- 通过功能键<F1>选择基本功能组,再用功能菜单对应的菜单键选择脉冲移位功能菜单,然后用拨轮来调节脉冲移位参数即 D 延时值。
- 利用同一个菜单键来切换粗、细调节方式。

3.4.4 探头零点 (P-DELAY)

可以设定探伤过程中的探头零点,亦即 P 延时。必须用 P 延时来补偿探头由于声束从换能器到被测工件这段声程所产生的延时。

范围: 0μs~99.99μs

步长: 0.01µs

操作:

- 利用翻页键切换功能页。
- 通过功能键<F1>选择基本功能组,再用功能菜单对应的菜单键选择探头零点功能菜单,然后用拨轮来调节探头零点参数即 P 延时值。

说明: 如果P延时未知,请务必参阅第四章仪器的校准。

3.5 收发组功能调节

该功能组可以调节设定与超声发射、接收相关的功能项,包括输出阻尼/探头方式、滤波频带/检波方式、 回波抑制/检波基准、探头校准。

3.5.1 输出阻尼/探头方式

该功能菜单输出阻尼、探头方式复用,当选中该功能菜单时,可以通过按对应的菜单键来切换功能。

输出阻尼:

输出阻尼用来匹配超声探头,通过调节阻尼来适应被测材料的声阻抗,从而改善回波显示的幅度、宽度和分辨力。所选择阻尼越大,回波波形越窄、越低,回波分辨力越高。

选项: 50Ω 、 150Ω 、 400Ω

操作:

- 利用翻页键切换功能页。
- 通过功能键<F2>选择收发功能组,再用功能菜单对应的菜单键选择输出阻尼功能菜单,然后用拨轮来调节阻尼参数。
- 利用同一个菜单键来切换输出阻尼、探头方式功能。

探头方式:

超声探头设定。若所用探头是单探头则设为单;若是双晶探头则设为双,若是穿透探头则设为透射。 选项:单、双、透射

- 利用翻页键切换功能页。
- 通过功能键<F2>选择收发功能组,再用功能菜单对应的菜单键选择探头方式功能菜单,然后用拨轮来设定探头方式。
- 利用同一个菜单键来切换输出阻尼、探头方式功能。

3.5.2 滤波频带/检波方式

该功能菜单滤波频带、检波方式复用,当选中该功能菜单时,可以通过按对应的菜单键来切换功能。

滤波频带:

若选中的是滤波频带功能,则可调节滤波频带选项。滤波频带要与所用探头的频率相一致。有三个滤波频带可供选择。(对应-3dB)

选项: 低 (0.2 MHz~1 MHz)

 \oplus (0.5 MHz \sim 4 MHz)

高 (3.0 MHz~15 MHz)

操作:

- 利用翻页键切换功能页。
- 通过功能键<F2>选择收发功能组,再用功能菜单对应的菜单键选择滤波频带功能菜单,然后用拨轮来调节滤波选项。
- 利用同一个菜单键来切换滤波频带、检波方式功能。

检波方式:

若选中的是检波方式功能,则可调节检波方式,有四种检波方式可供选择,当 DAC 曲线为开或 B 扫描为开时射频方式无效。

选项: 正半波、负半波、全波、射频方式

操作:

- 利用翻页键切换功能页。
- 通过功能键<F2>选择收发功能组,再用功能菜单对应的菜单键选择检波方式功能菜单,然后用拨轮来调节检波方式选项。
- 利用同一个菜单键来切换滤波频带、检波方式功能。

3.5.3 回波抑制/检波基准

该功能菜单回波抑制、检波基准复用,当选中该功能菜单时,可以通过按对应的菜单键来切换功能。

回波抑制:

此功能菜单用来抑制回波显示幅度,比如要去除被测工件的结构噪声。它是通过设定抑制百分比(即满幅值的百分比)来抑制幅度低于设定值的回波的显示。

抑制百分比(即满幅值的百分比)表示最小显示的回波高度。低于此高度的回波幅值将被忽略而记为零幅值。

参数范围: 0%~80%

步距: 1%

- 利用翻页键切换功能页。
- 通过功能键<F2>选择收发功能组,再用功能菜单对应的菜单键选择回波抑制功能菜单,然后用拨轮来设定抑制百分比。
- 利用同一个菜单键来切换回波抑制、检波基准功能。

注意: 1. 请谨慎使用此功能,以免在抑制噪声的同时使伤波也受到抑制。另外,在一些探伤规范中, 此功能是禁用的。

2. 抑制功能不影响射频状态下的波形显示,且在射频状态下不可调节。

检波基准:

此功能菜单用来设置检波基准,以调整显示在屏幕上的回波在垂直刻度方向上的位置。通过调节检波基准,可将回波的中线在屏幕中上下移动。其参数表示屏幕上的象素点。

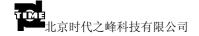
参数范围: -128~128

步距: 1

操作:

- 利用翻页键切换功能页。
- 通过功能键<F2>选择收发功能组,再用功能菜单对应的菜单键选择检波基准功能菜单,然后用拨轮来设定检波基准位置。
- 利用同一个菜单键来切换回波抑制、检波基准功能。

3.5.4 探头校准


为了方便操作者校准探头零点及材料声速,仪器提供了探头校准功能,利用此功能可方便的完成探头的校准工作。此外操作者也可以按照本说明书第四章的方法对探头进行校准。

直探头可直接按下面的步骤进行校准,斜探头需先校准探头的前沿和角度后再用此功能校准材料声速和探头零点。

以 TUD320 标配的直探头为例,它是一个频率 2.5MHz, 直径 20mm 的单晶探头。校准需要两个和测量物体同材质且厚度已知的试块。最理想的状况是这两个试块的厚度一个低于被测物的最小厚度,另一个高于其最大厚度。

假设以两个厚度分别为 50mm 和 100mm 的试块对该探头进行校准, 其步骤如下:

- (1) 先初步设定一大概的声速值如 5920m/s,将探头零点值设置为 0.00us;
- (2) 调节闸门逻辑为单闸门方式,即闸门逻辑为正或负;
- (3) 调节探测范围使得屏幕显示区域能显示 100mm 以上的回波,如 150mm;
- (4) 将探头耦合到较薄的试块上(50mm), 移动闸门 A 的起点到回波并与之相交;
- (5) 选择收发功能组中的探头校准功能菜单,按确认键确认声程值,此时仪器自动调整增益值,使闸门内最大回波的幅度为屏幕高度的 80%,同时探头校准菜单内出现一个数字,调整该数字使之与试块上的反射体实际声程相同,即 50mm; (如果不是 50mm 可以旋转拨轮调整)
- (6) 将探头耦合到较厚的试块上(100mm),移动闸门A的起点到回波并与之相交;
- (7) 选择收发功能组中的探头校准功能菜单,按确认键确认声程值,此时仪器自动调整增益值,使闸门内最大回波的幅度为屏幕高度的 80%,同时探头校准菜单内出现一个数字,调整该数字使之与试块上的反射体实际声程相同,即 100mm; (如果不是 100mm 可以旋转拨轮调整)
- (8) 再按确认键完成自动校准,此时仪器的材料声速和探头零点将被自动调整为准确数值;
- (9) 在按(8)所述进行校准确认之前,按<冻结>键可以取消校准过程。

注意: 1. 在单个已知厚度的试块上也可以使用自动校准功能。操作者可以利用多次回波而无须将探头 分别放在厚试块和薄试块上,分别移动闸门 A 到各个回波并输入正确的厚度值即可。

2. 斜探头校准时输入的数值不是试块的厚度或孔的深度,而是声程,即 S 值。因此为方便输入 S 值,在利用此功能对斜探头进行校准时请使用 CSK-IA 试块的 R100 及 R50 弧面的反射回波。 如果没有上述试块或上述试块不适合时,请根据探头角度和深度值计算 S 值。

3.6 闸门组功能调节

关于闸门设置相关项的调节。包括闸门逻辑、闸门报警、闸门起始、闸门宽度、闸门高度。闸门在探伤中的作用:

- 监测被测工件在设定逻辑和范围内是否有缺陷,若有,则报警。
- 测量缺陷回波的位置和大小。

TUD320 具有双闸门功能:闸门 a 和闸门 b。通常只需闸门 a 即可监测工件缺陷;双闸门主要是用于多个回波的测量和校准,比如测厚时测量工件表面回波和一次回波的距离。

3.6.1 闸门逻辑/闸门报警

该功能菜单闸门逻辑、闸门报警复用,当选中该功能菜单时,可以通过按对应的菜单键来切换功能。

闸门逻辑:

闸门逻辑设定,有四个选项:关、正、负、双。

选项: 关: 闸门监测功能关闭

- 正:回波幅值大于闸门预设阈值,则报警,即进波报警
- 负:回波幅值小于闸门预设阈值,则报警,即失波报警
- 双: 双闸门状态

操作:

- 利用翻页键切换功能页。
- 通过功能键<F3>选择闸门功能组,再用功能菜单对应的菜单键选择闸门逻辑功能菜单,然后用拨轮来调节闸门逻辑。
- 利用同一个菜单键来切换闸门逻辑、闸门报警功能。

闸门报警:

闸门报警设定。

根据闸门逻辑的设定,可用于进波报警和失波报警。即若闸门为正逻辑,则当回波幅值高于闸门阈值时 蜂鸣器报警,若闸门为负逻辑,则当回波幅值低于闸门阈值时蜂鸣器报警。

选项: 开:报警功能打开 关:报警功能关闭

- 利用翻页键切换功能页。
- 通过功能键<F3>选择闸门功能组,再用功能菜单对应的菜单键选择闸门报警功能菜单,然后用拨轮

来开关报警功能。

● 利用同一个菜单键来切换闸门逻辑、闸门报警功能。

3.6.2 A 闸门起始/B 闸门起始

该功能菜单A闸门起始、B闸门起始复用,当选中该功能菜单时,可以通过按对应的菜单键来切换功能。

操作:

A 闸门起始:

- 利用翻页键切换功能页。
- 通过功能键<F3>选择闸门功能组,再用功能菜单对应的菜单键选择 A 闸门起始功能菜单,然后用拨轮来调节闸门 A 起始位置。
- 利用同一个菜单键来切换 A、B 闸门起始功能。

B 闸门起始:

操作:

- 利用翻页键切换功能页。
- 通过功能键<F3>选择闸门功能组,再用功能菜单对应的菜单键选择 B 闸门起始功能菜单,然后用拨轮来调节闸门 B 起始位置。
- 利用同一个菜单键来切换 A、B 闸门起始功能。

说明: 闸门 B 与闸门 A 相互独立。三个闸门参数:闸门起始、闸门宽度、闸门高度可以分别调节互不 干扰。

3.6.3 A 闸门宽度/B 闸门宽度

该功能菜单 A 闸门宽度、B 闸门宽度复用,当选中该功能菜单时,可以通过按对应的菜单键来切换功能。 A 闸门宽度:

操作:

- 利用翻页键切换功能页。
- 通过功能键<F3>选择闸门功能组,再用功能菜单对应的菜单键选择 A 闸门宽度功能菜单,然后用拨轮来调节闸门 A 的宽度。
- 利用同一个菜单键来切换 A、B 闸门宽度功能。

B 闸门宽度:

- 利用翻页键切换功能页。
- 通过功能键<F3>选择闸门功能组,再用功能菜单对应的菜单键选择 B 闸门宽度功能菜单,然后用拨轮来调节闸门 B 的宽度。
- 利用同一个菜单键来切换 A、B 闸门宽度功能。

3.6.4 A 闸门高度/B 闸门高度

该功能菜单A闸门阈值、B闸门阈值复用,当选中该功能菜单时,可以通过按对应的菜单键来切换功能。

A 闸门高度:

设定闸门 A 的高度值。参数用百分数表示,即相对满幅值的百分比。

参数范围: 2%~90%

操作:

- 利用翻页键切换功能页。
- 通过功能键<F3>选择闸门功能组,再用功能菜单对应的菜单键选择 A 闸门高度功能菜单,然后用拨轮来调节闸门 A 高度值。
- 利用同一个菜单键来切换 A、B 高度功能。

B 闸门高度:

设定闸门B的高度值。参数用百分数表示,即相对满幅值的百分比。

参数范围: 2%~90%

操作:

- 利用翻页键切换功能页。
- 通过功能键<F3>选择闸门功能组,再用功能菜单对应的菜单键选择 B 闸门高度功能菜单,然后用拨轮来调节闸门 B 高度值。
- 利用同一个菜单键来切换 A、B 高度功能。

3.7 存储组功能调节

用来调节设定数据及探伤参数的存储模式、调出、删除、保存等相关功能。包括数据组号、调出数据、调出参考、保存、删除数据、删除参考功能菜单。

本仪器共有 10 个参数设置通道,每个通道可存储 30 组共计 300 组 A 扫数据和探伤参数及 DAC 曲线, 30 组共计 300 组厚度值(每组可存储 100 个厚度值,300 组可存储 30000 个厚度值)。

注意: 当存储模式是波形存储时,所存储的数据包括此时的 A 扫波形数据和仪器当前的探伤参数及 DAC 曲线。这意味着当提取一组已存储好的数据时,不仅当前显示波形会变化为所存波形,而 且当前仪器探伤参数也会随之变为所存储的参数。

3.7.1 数据组号

设定存储组号。选中组号功能菜单后,按确认键 可以切换存储模式。若组号后显示波形符号时表示当前是波形存储模式;若显示厚度符号则表示当前是厚度存储模式。图

参数范围: 波形存储, 组号 1~30 厚度存储, 组号 1~30

存储模式:波形、厚度

墁作.

- 利用翻页键切换功能页。
- 通过功能键<F4>选择存储功能组,再用功能菜单对应的菜单键选择组号功能菜单,然后用拨轮来设定组号。
- 利用同一个菜单键来切换存储模式。

说明: 波形存储模式下,若组号前显示*时,表示该组已有数据;若组号前显示Y时表示该组已有数据 据且被锁定:厚度存储模式下,若组号前显示#时,表示该组厚度值已满。

3.7.2 调出参考/调出数据

该功能菜单调出参考、调出数据复用,当选中该功能菜单时,可以通过按对应的菜单键来切换功能。

A 调出数据:

实现波形存储模式下的数据调出功能,在厚度存储状态下,数据不能提取。提取当前组号所对应的数据。 调出成功后当前波形和探伤参数都会被所存储的波形和探伤参数代替,且波形处于冻结状态。

操作:

- 利用翻页键切换功能页。
- 通过功能键<F4>选择存储功能组,再用功能菜单对应的菜单键选择调出数据功能菜单,然后用拨轮来进行调出操作。
- 若当前组号无数据,用拨轮调节时该功能菜单总是显示关;若当前组有数据,用拨轮调节时就会显示"是/否"的提示,此时若按对应的菜单键或确认键则提取执行,若按其它任意键则调出取消。

B 调出参考:

操作:

- 利用翻页键切换功能页。
- 通过功能键<F4>选择存储功能组,再用功能菜单对应的菜单键选择调出参考功能菜单,然后用拨轮来进行调出操作。
- 若当前组号无数据,用拨轮调节时该功能菜单总是显示关;若当前组有数据,用拨轮调节时就会显示"是/否"的提示,此时若按对应的菜单键或确认键则提取执行,若按其它任意键则调出取消。

3.7.3 保存

该功能菜单实现数据存储。按照所显示的存储模式将当前波形数据或厚度值存储到当前组号中。 操作:

- 利用翻页键切换功能页。
- 通过功能键<F4>选择存储功能组,再用功能菜单对应的菜单键选择保存功能菜单,然后用拨轮来进行存储操作。

注意: 1. 存储数据前,必须保证当前组号所对应的数据组中没有数据,否则无效。

- 2. 正确设置当前存储模式。
- 3. 若需上传带 DAC 曲线的波形画面到 PC 机,应在调整好设置及 DAC 参数后再在该组号下存储数据。
- 4. 若当前组号已有波形数据或厚度值已满,则存储动作无效并伴有蜂鸣声提示。

3.7.4 删除数据/删除参考

A 删除数据:

数据删除。删除当前组号所对应的数据。删除成功后该组号前"*"消失。

操作:

- 利用翻页键切换功能页。
- 通过功能键<F4>选择存储功能组,再用功能菜单对应的菜单键选择删除数据功能菜单,然后用拨轮来进行调出操作。
- 若当前组号无数据,用拨轮调节时该功能菜单总是显示关;若当前组有数据,用拨轮调节时就会显示"是/否"的提示,此时若按对应的菜单键或确认键则提取执行,若按其它任意键则调出取消。

B 删除参考:

操作:

- 利用翻页键切换功能页。
- 通过功能键<F4>选择存储功能组,再用功能菜单对应的菜单键选择删除参考功能菜单,然后用拨轮来进行调出操作。
- 若当前组号无数据,用拨轮调节时该功能菜单总是显示关;若当前组有数据,用拨轮调节时就会显示"是/否"的提示,此时若按对应的菜单键或确认键则提取执行,若按其它任意键则调出取消。

说明:厚度值模式下,此功能是删除当前组号所对应的一组厚度值。若当前状态下调出某组参考数据则无法进行删除操作。

3.8 设置组功能调节

仪器的探测方式/颜色模式、亮度/标尺、填充/蜂鸣器、语言/单位的设定都在此组中实现。

3.8.1 探测方式/颜色模式

该功能菜单探测方式选择和曲线包络开关复用,当选中该功能菜单时,可以通过按对应的菜单键来切换功能。

探测方式:

选择测量方式,当测量方式为峰值方式时,测量值为闸门内波幅最高的回波数据。在边沿测量方式下,测量数据为闸门内回波的前沿(回波波形曲线的上升线)与闸门相交处数据。因此,选择边沿方式时,对闸门内回波波幅的测量值受到闸门阈值(高度)的影响。

选项:峰值、边沿

操作:

- 利用翻页键切换功能页。
- 通过功能键<F5>选择设置功能组,再用功能菜单对应的菜单键选择探测方式功能菜单,然后用拨轮来设置测量方式。
- 利用同一个菜单键来切换探测方式、曲线包络功能。

颜色模式:

颜色模式是进行 TFT_LCD 彩色显示模式选择,提供两种颜色显示方案。

选项: 0、1

操作:

- 利用翻页键切换功能页。
- 通过功能键<F5>选择<mark>设置</mark>功能组,再用功能菜单对应的菜单键选择颜色模式功能菜单,然后用拨轮来设置颜色模式。
- 利用同一个菜单键来切换探测方式、颜色模式功能。

3.8.2 标尺/亮度

该功能菜单标尺选择和亮度复用,当选中该功能菜单时,可以通过按对应的菜单键来切换功能。

标尺:

设定坐标网格显示方式。

选项: 0~3

操作:

- 利用翻页键切换功能页。
- 通过功能键<F5>选择设置功能组,再用功能菜单对应的菜单键选择标尺功能菜单,然后用拨轮来设定坐标网格显示的方式。
- 利用同一个菜单键来切换标尺、亮度功能。

亮度:

设定显示屏亮度。

选项: 0~3

操作:

- 利用翻页键切换功能页。
- 通过功能键<F5>选择设置功能组,再用功能菜单对应的菜单键选择亮度功能菜单,然后用拨轮来调节亮度值。
- 利用同一个菜单键来切换标尺、亮度功能。

3.8.3 填充/蜂鸣

该功能菜单填充和蜂鸣复用,当选中该功能菜单时,可以通过按对应的菜单键来切换功能。

填充:

实现波形填充状态下的显示。

选项: 开、关

操作:

- 利用翻页键切换功能页。
- 通过功能键<F5>选择设置功能组,再用功能菜单对应的菜单键选择填充功能菜单,然后用拨轮来设定填充状态。
- 利用同一个菜单键来切换填充、蜂鸣功能。

蜂鸣:

设置仪器蜂鸣器的开关。

选项: 开、关

操作:

- 利用翻页键切换功能页。
- 通过功能键<F5>选择设置功能组,再用功能菜单对应的菜单键选择蜂鸣功能菜单,然后用拨轮来设定蜂鸣器开关。
- 利用同一个菜单键来切换填充、蜂鸣功能。

3.8.4 语言/单位

该功能菜单语言设置和单位设置复用,当选中该功能菜单时,可以通过按对应的菜单键来切换功能。

语言:

设定仪器显示所用语言类型。

选项:中文、英语

操作:

- 利用翻页键切换功能页。
- 通过功能键<F5>选择设置功能组,再用功能菜单对应的菜单键选择语言功能菜单,然后用拨轮来设定语言类型。
- 利用同一个菜单键来切换语言、单位功能。

单位:

设定仪器探伤参数单位, 若选择 mm, 则采用公制; 若选择 inch, 则采用英制。

选项: mm、inch

操作:

- 利用翻页键切换功能页。
- 通过功能键<F5>选择设置功能组,再用功能菜单对应的菜单键选择单位功能菜单,然后用拨轮来设定参数单位。
- 利用同一个菜单键来切换语言、单位功能。

3.9 斜探头组功能调节

斜探头功能组用来调节设定斜探头探伤时所需的相关参数。包括折射角度/探头 K 值、工件厚度、探头前

沿/标度方式及材料声速。

3.9.1 折射角度/探头 K 值

用斜探头进行测量时,为了计算出反射体的位置,需要预先正确输入探头折射角度,由于有的探头标称值不是角度值,而是 K 值,为输入方便,增加了探头 K 值输入项。折射角度和探头 K 值是同一参数,改变其中一个数值,另一个也随之改变,二者的关系是:探头 K 值=折射角度的正切值。

折射角度:

范围: 0.0°~89.0°

步长: 0.1°

操作:

- 利用翻页键切换功能页。
- 通过功能键<F1>选择斜探头功能组,再用功能菜单对应的菜单键选择折射角度功能菜单,然后用拨轮来调节折射角度。
- 利用同一个菜单键来切换折射角度、探头 K 值功能。

探头 K 值:

范围: 0.00~57.29

步长: 0.01

操作: 0

- 利用翻页键切换功能页。
- 通过功能键<F1>选择斜探头功能组,再用功能菜单对应的菜单键选择探头 K 值功能菜单,然后用拨轮来调节探头 K 值。
- 利用同一个菜单键来切换折射角度、探头 K 值功能。

3.9.2 工件厚度

设定探伤中被测工件的厚度。

工件厚度: 5mm~1000mm

若当前选择的是厚度功能菜单,则通过按对应的菜单键或确认键可以在粗调、细调方式间切换。

粗调: 5 mm 、10 mm、 20 mm、50mm、100mm、200mm、300mm、400mm、500mm、600mm、700mm、800mm、900mm、1000mm

细调: 0.1mm <100 mm 1mm >100 mm

- 利用翻页键切换功能页。
- 通过功能键<F1>选择斜探头功能组,再用功能菜单对应的菜单键选择工件厚度功能菜单,然后用拨轮来调节工件厚度。
- 利用同一个菜单键来切换粗、细调节方式。

3.9.3 探头前沿/标度方式

该功能菜单探头前沿和标度方式复用,当选中该功能菜单时,可以通过按对应的菜单键来切换功能。

探头前沿:

设定探头前沿即声束入射点。

范围: 0.00mm~50.0mm

步长: 0.01mm

操作:

- 利用翻页键切换功能页。
- 通过功能键<F1>选择斜探头功能组,再用功能菜单对应的菜单键选择探头前沿功能菜单,然后用拨轮来调节探头前沿。
- 利用同一个菜单键来切换探头前沿、标度方式功能。

标度方式:

标度方式是指屏幕曲线显示区水平坐标定义方式,包括"声程"、"投影"、"深度"三种方式可供选择。 当折射角度输入值不为零时此功能有效,当折射角度为零时坐标定义为声程方式。

选项:声程、投影、深度

操作:

- 利用翻页键切换功能页。
- 通过功能键<F1>选择斜探头功能组,再用功能菜单对应的菜单键选择标度方式功能菜单,然后用拨轮来选择标度方式。
- 利用同一个菜单键来切换探头前沿、标度方式功能。

3.9.4 材料声速

为了方便斜探头探伤时声速的设定,在斜探头功能组中也有速度设定功能菜单,可以设定斜探头探伤时超声波在被测工件中传播的速率,其设置方法请参考 3.4.2 所述内容。

3.10 DAC1 功能组调节

DAC1 功能组用来标定 DAC 曲线。包括 DAC 曲线开关/标定修正开关、DAC 标定点/修正点、A 闸门起始/A 闸门宽度、自动增益/当量标准。

DAC 曲线的作法请参见 4.4。

3.10.1 DAC 曲线/标定修正

该功能菜单 DAC 曲线显示开关和标定修正开关复用,当选中该功能菜单时,可以通过按对应的菜单键来切换功能。

DAC 曲线:

实现 DAC 显示开关功能, 若打开 DAC, 则显示 DAC 曲线。当 B 扫描模式打开时, DAC 曲线开关无效。 选项: 开、关

操作:

- 利用翻页键切换功能页。
- 通过功能键<F2>选择 DAC1 功能组,再用功能菜单对应的菜单键选择 DAC 曲线功能菜单,然后用 拨轮来设置 DAC 曲线开关。
- 利用同一个菜单键来切换 DAC 曲线、标定修正功能。

注意: 当完成2个以上标定点后选择DAC曲线开,则自动绘制DAC曲线。最多可设置30个标定点。

标定修正:

对 3.10.2 中选择的修正点进行重新标定。如果在制作 DAC 曲线时发现前面标定过的某个标定点由于标定 误差较大或标定错误导致曲线绘制不理想,可以选择相应的标定点,并把闸门调节至相应的位置,通过标定 修正功能重新标定该点数据。

选项: 开、关

操作:

- 利用翻页键切换功能页。
- 通过功能键<F2>选择 DAC1 功能组,再用功能菜单对应的菜单键选择标定修正功能菜单,然后用拨轮来修正标定点。
- 利用同一个菜单键来切换 DAC 曲线、标定修正功能。

3.10.2 DAC 标定点/修正点

该功能菜单 DAC 标定点和修正点选择功能复用,当选中该功能菜单时,可以通过按对应的菜单键来切换功能。

DAC 标定点功能菜单用来记录做 DAC 曲线所需要的回波信息,修正点选择功能用于选择需要进行修正的标定点。

DAC 标定点:

范围: 1~30

操作:

- 确认闸门工作在单闸门状态。
- 利用翻页键切换功能页。
- 通过功能键<F2>选择 DAC1 功能组,再用功能菜单对应的菜单键选择 DAC 标定点功能菜单。
- 在每次标定前,先将 A 闸门移至所需参考回波处,并使参考回波落在闸门内,然后用拨轮<+>来添加标定点,重复相同的操作可以继续添加标定点。通过拨轮<->可以删除上一个标定点。
- 利用同一个菜单键来切换 DAC 标定点、修正点选择功能。

修正点:

范围: 1~30, 但不大于 DAC 标定点的值

- 利用翻页键切换功能页。
- 通过功能键<F2>选择 DAC1 功能组,再用功能菜单对应的菜单键选择修正点功能菜单,然后用拨轮来选择修正点。
- 利用同一个菜单键来切换 DAC 标定点、修正点选择功能。

3.10.3 A 闸门起始/A 闸门宽度

该功能菜单A闸门起始和A闸门宽度复用,在这里重新设置A闸门起始和A闸门宽度是为了方便做DAC标定点时调节闸门参数,当选中该功能菜单时,其调节方法请参考3.6.2及3.6.3所述内容。

3.10.4 自动增益/当量标准

该功能菜单自动增益和当量标准功能复用,当选中该功能菜单时,可以通过按对应的菜单键来切换功能。自动增益:

自动增益功能是一个快速调节仪器增益(dB)的工具,它可以自动调整仪器的增益值,使得 A 闸门内捕捉到的回波峰值达到屏幕高度的 80%。

操作:

- 利用翻页键切换功能页。
- 通过功能键<F2>选择 DAC1 功能组,再用功能菜单对应的菜单键选择自动增益功能菜单,拨动一次 拨轮来打开自动增益功能,仪器自动完成增益设置并关闭自动增益功能。
- 利用同一个菜单键来切换自动增益、当量标准功能。

当量标准:

当量标准是指闸门内的缺陷回波的当量值是以哪条曲线为标准,常用"母线"或"定量"。其中母线是指制作 DAC 的原始标定曲线,另外三条可选的标准为 DAC 偏置曲线。该标准仅在制作成功 DAC 曲线后方才生效。

选项: 母线、判废、定量、评定

操作:

- 利用翻页键切换功能页。
- 通过功能键<F2>选择 DAC1 功能组,再用功能菜单对应的菜单键选择定量标准功能菜单,用拨轮来 选择计算定量的参考曲线。
- 利用同一个菜单键来切换自动增益、当量标准功能。

3.11 DAC2 功能组调节

DAC2 功能组用来调节设定绘制 DAC 曲线时所需的相关参数。包括 DAC 评定线、DAC 定量线、DAC 判废线、及增益校正。

为了适应不同行业中 DAC 曲线的绘制标准,仪器提供了三条可调偏置的 DAC 曲线,分别是 DAC 评定线、DAC 定量线、DAC 判废线。另外为使 DAC 曲线能适应不同的环境条件,还提供了增益补偿功能。三条偏置曲线的偏置值均为相对于母线的,母线是利用标定点的数据信息及超声波在传播过程中的衰减规律绘制

而成,根据三条偏置曲线的作用不同它们按照判废、定量、评定的顺序由上到下分布在屏幕上。增益校正主要用于补偿试块与工件表面的差异对超声波传播质量的影响,当增加增益校正值时,三条 DAC 偏置曲线会相应的变低,反之将会变高。

3.11.1 DAC 评定线

该功能菜单用于调整 DAC 偏置曲线中的评定线。

参数范围: -50dB~50dB, 步长为 0.1 dB

操作:

- 利用翻页键切换功能页。
- 通过功能键<F3>选择 DAC2 功能组,再用功能菜单对应的菜单键选择 DAC 评定线功能菜单,然后用拨轮来设置 DAC 评定曲线的偏置值。

3.11.2 DAC 定量线

设置 DAC 定量线的偏置值。

参数范围: -50dB~50dB, 步长为 0.1 dB

操作:

- 利用翻页键切换功能页。
- 通过功能键<F3>选择 DAC2 功能组,再用功能菜单对应的菜单键选择 DAC 定量线功能菜单,然后用拨轮来设置 DAC 定量曲线的偏置值。

3.11.3 DAC 判废线

设置DAC判废线的偏置值。

参数范围: -50dB~50dB, 步长为 0.1 dB

操作:

- 利用翻页键切换功能页。
- 通过功能键<F3>选择 DAC2 功能组,再用功能菜单对应的菜单键选择 DAC 判废线功能菜单,然后用拨轮来设置 DAC 判废曲线的偏置值。

3.11.4 增益校正

设定 DAC 曲线增益校正值。

参数范围: -50dB~50dB, 步长为 0.1 dB

操作:

- 利用翻页键切换功能页。
- 通过功能键<F3>选择 DAC2 功能组,再用功能菜单对应的菜单键选择增益校正功能菜单,然后用拨

轮来设置对 DAC 曲线的校正值。

3.12 高级功能组调节

高级功能组对仪器的一些特殊功能进行调节和设置,包括<mark>探伤通道/曲线包络、设置调出/设置保存、测值</mark>显示/串口设置及日期/时间。

3.12.1 探伤通道/曲线包络

该功能菜单探伤通道和设置保存复用,当选中该功能菜单时,可以通过按对应的菜单键来切换功能。

探伤通道:

由于在现场探伤时需要对多种工件进行探伤,或者在探伤过程中要更换探头,在这些情况下就需要重新对仪器进行校准,因此为了仪器调校方便,仪器提供了10个探伤通道,用户可事先将多种现场需要用到的设置调节好并分别存储到不同的通道中,在现场时就可以直接切换到相应的通道中调用这些设置了。

另外在每个探伤通道中可以存储 30 幅 A 扫数据和 30 组共 3000 个厚度值数据,具体操作见 3.7。

范围: No.1~No.10

操作:

- 利用翻页键切换功能页。
- 通过功能键<F4>选择高级功能组,再用功能菜单对应的菜单键选择探伤通道功能菜单,然后用拨轮来调节探伤通道序号。
- 利用同一个菜单键来切换探伤通道、串口设置功能。

曲线包络:

曲线包络功能的作用是当探头在试块上移动时,在横坐标的每个像素线上对回波的峰值点进行捕捉记忆并连成一条包络线,根据包络线的形状用户可方便的找到缺陷的最高波,并可为判断缺陷的性质提供依据。

选项: 开、关

操作:

- 利用翻页键切换功能页。
- 通过功能键<F5>选择设置功能组,再用功能菜单对应的菜单键选择曲线包络功能菜单,然后用拨轮来设置曲线包络开关。
- 利用同一个菜单键来切换探测方式、曲线包络功能。

注意: 1. 若探伤通道号前显示*时,表示该通道已存有设置值。

- 2. 如果该通道中已经存有设置参数,那么设置保存操作将更新原来的设置值。
- 3. 若当前通道被锁定,则设置保存功能无效。

3.12.2 设置调出/设置保存

实现探伤通道设置参数的调出功能,调出成功后当前波形和探伤参数都会被所存储的波形和探伤参数代

替。

操作:

- 利用翻页键切换功能页。
- 通过功能键<F4>选择高级功能组,再用功能菜单对应的菜单键选择设置调出功能菜单,然后用拨轮来进行调出操作。
- 若当前通道无设置参数,用拨轮调节时该功能菜单总是显示关;若当前通道有设置参数,用拨轮调节时就会显示"是/否"的提示,此时若按对应的菜单键或确认键则提取执行,若按其它任意键则调出取消。

设置保存:

该功能菜单实现探伤通道设置保存。

操作:

- 利用翻页键切换功能页。
- 通过功能键<F4>选择高级功能组,再用功能菜单对应的菜单键选择设置保存功能菜单,然后用拨轮来进行存储操作。
- 利用同一个菜单键来切换探伤通道、串口设置功能。

注意:

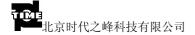
- 1. 设置调出操作只调出除 DAC 标定信息的其它参数,当前通道下的 DAC 参数随通道号的调节自动进行切换,无需调出,如果调节通道后未出现 DAC 曲线请查看 DAC1 菜单中相关的参数设置是否正确。
- 2. 设置保存操作并不保存 DAC 设置参数, DAC 设置参数在 DAC 制作过程中自动保存在当前的通道中。

3.12.3 测值显示/串口设置

该功能菜单测值显示和串口设置复用,当选中该功能菜单时,可以通过按对应的菜单键来切换功能。

测值显示:

当存储功能组中的组号菜单切换到厚度值时,在图形显示区的右上角会显示一个测量数据,此功能是选择在此显示什么数据。显示数据中声程、投影、深度中的某一个数据在上面显示时其他两种数据将在状态栏中显示,当选择显示当量 dB 时,屏幕上面将显示由 DAC 曲线测得的当量值及声程数据,如果 DAC 曲线关闭或者闸门内波形超出屏幕高度范围时当量 dB 将显示为*。


选项:声程、投影、深度、当量 dB

操作:

- 利用翻页键切换功能页。
- 通过功能键<F4>选择高级功能组,再用功能菜单对应的菜单键选择测值显示功能菜单,然后用拨轮来选择需要显示的测量值。
- 利用同一个菜单键来切换测值显示、串口设置功能。

串口设置:

为了适应不同的串行设备, 仪器可为不同的串口通讯设置相应的波特率。选项格式中第一部分为波特率,

第二部分为校验方式,第三部分为数据位,其中只有波特率可调。如:串行打印机需要设置波特率为9600,而与PC 机数据处理软件进行通讯时可自由选择波特率,只需和软件的波特率相互匹配即可,波特率选择越高,数据通讯的速度越快,但同时会降低通讯的可靠性。

选项: 2400,n,8、4800,n,8、9600,n,8、19200,n,8、38400,n,8 操作:

- 利用翻页键切换功能页。
- 通过功能键<F4>选择高级功能组,再用功能菜单对应的菜单键选择串口设置功能菜单,然后用拨轮来调节串口设置选项。
- 利用同一个菜单键来切换测值显示、串口设置功能。

3.12.4 日期/时间

该功能菜单设置仪器的实时时钟(月、日、年、时、分、秒),该菜单中这六个参数调节复用,当选中该功能菜单时,可以通过确认键来切换参数选择。

此菜单的日期功能中,日期格式为 M/D/Y,即月/日/年。时间功能中,时间的格式为 H:M:S,即时/分/秒。

月设置:

设置时钟的月份。

范围: 1~12

步长: 1

操作:

- 利用翻页键切换功能页。
- 通过功能键<F4>选择高级功能组,再用功能菜单对应的菜单键选择日期-M/D/Y 功能菜单,使得参数的下划线调节到月份参数下,然后用拨轮来调节月份。
- 利用同一个菜单键来选择需要调节的参数。

日设置:

设置时钟的目。

范围: 1~31

步长: 1

操作:

- 利用翻页键切换功能页。
- 通过功能键<F4>选择高级功能组,再用功能菜单对应的菜单键选择日期-M/D/Y 功能菜单,使得参数的下划线调节到日期参数下,然后用拨轮来调节日期。
- 利用同一个菜单键来选择需要调节的参数。

年设置:

设置时钟的年份。

范围: 2000~2099

步长: 1

操作:

● 利用翻页键切换功能页。

- 通过功能键<F4>选择高级功能组,再用功能菜单对应的菜单键选择日期-M/D/Y 功能菜单,使得参数的下划线调节到年份参数下,然后用拨轮来调节年份。
- 利用同一个菜单键来选择需要调节的参数。

时设置:

设置时钟的小时。

范围: 0~23

步长: 1

操作:

- 利用翻页键切换功能页。
- 通过功能键<F4>选择高级功能组,再用功能菜单对应的菜单键选择时间-H:M:S 功能菜单,使得参数的下划线调节到小时参数下,然后用拨轮来调节小时数。
- 利用同一个菜单键来选择需要调节的参数。

分设置:

设置时钟的分钟。

范围: 0~59

步长: 1

操作:

- 利用翻页键切换功能页。
- 通过功能键<F4>选择高级功能组,再用功能菜单对应的菜单键选择时间-H:M:S 功能菜单,使得参数的下划线调节到分钟参数下,然后用拨轮来调节分钟数。
- 利用同一个菜单键来选择需要调节的参数。

秒设置:

设置时钟的秒。

范围: 0~59

步长: 1

操作:

- 利用翻页键切换功能页。
- 通过功能键<F4>选择高级功能组,再用功能菜单对应的菜单键选择时间-H:M:S 功能菜单,使得参数的下划线调节到秒参数下,然后用拨轮来调节秒数。
- 利用同一个菜单键来选择需要调节的参数。

3.13 B 扫描功能组调节

B 扫描功能主要用于测试较难测量的区域并显示该区域的剖面图形数据。该图形显示了工件内部缺陷在扫描方向上的分布状态。B 扫描功能组可对 B 扫描功能进行设置,包括 B 扫描模式开关/A 扫描模式开关、扫描方向。

3.13.1 B 扫模式/A 扫模式

该功能菜单 B 扫模式和 A 扫模式复用, 当选中该功能菜单时, 可以通过按对应的菜单键来切换功能。

B 扫模式:

设置 B 扫描模式的开关。打开 B 扫模式时,屏幕图形显示区将切换到 B 扫描模式。当 DAC 曲线打开时 B 扫描模式开关无效。

选项: 开、关

操作:

- 利用翻页键切换功能页。
- 通过功能键<F5>选择 B 扫描功能组,再用功能菜单对应的菜单键选择 B 扫模式功能菜单,然后用拨轮来设置 B 扫描开关。
- 利用同一个菜单键来切换 B 扫模式、A 扫模式功能。

A 扫模式:

设置 A 扫描模式的开关。打开 A 扫模式时,如果 B 扫模式已经开启,则屏幕图形显示区在 B 扫描模式的同时将在上半屏显示 A 扫的数据图形,这有利于用户对 A 扫的情况进行观察。

选项: 开、关

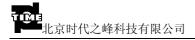
操作:

- 利用翻页键切换功能页。
- 通过功能键<F5>选择 B 扫描功能组,再用功能菜单对应的菜单键选择 A 扫模式功能菜单,然后用拨轮来设置 A 扫描开关。
- 利用同一个菜单键来切换 B 扫模式、A 扫模式功能。

3.13.2 扫描方向

扫描方向决定了屏幕上数据更新的方向。选择"左->右"数据图形会从左边开始向右绘制,选择"右->左"数据图形会从右边开始向左绘制。用户可以根据探头的移动方向选择屏幕上图形的绘制方向,以便于对扫描结果进行观察。

选项: 左->右、右->左


操作:

- 利用翻页键切换功能页。
- 通过功能键<F5>选择 B 扫描功能组,再用功能菜单对应的菜单键选择扫描方向功能菜单,然后用拨轮来设置 B 扫描数据更新方向。

3.14 DGS 功能组调节

DGS 曲线是距离、回波高度、当量尺寸三者之间关系的曲线(德文中称 AVG 曲线)利用 DGS 曲线,可以进行缺陷当量的评定。在 x < 3N 的远场区适用 DGS 功能。

DGS 功能组用来标定 DGS 曲线。包括 DGS 模式/结果类型、探头直径/探头频率、参考大小/曲线当量、

A 闸门起始/参考标定。

DGS 曲线的作法请参见 4.7。

注意: DGS 曲线功能和 DAC 曲线功能不可以同时使用.

3.14.1 DGS 模式/结果类型

该功能菜单 DGS 曲线显示开关和结果类型复用,当选中该功能菜单时,可以通过按对应的菜单键来切换功能。

DGS 模式:

实现 DGS 显示开关功能, 若打开 DGS, 则显示 DGS 曲线。

选项: 开、关

操作:

- 利用翻页键切换功能页。
- 通过功能键<F1>选择 DGS 功能组,再用功能菜单对应的菜单键选择 DGS 模式功能菜单,然后用拨轮来设置 DGS 曲线开关。
- 利用同一个菜单键来切换 DGS 模式、结果类型功能。

注意: 当完成1个标定点后自动绘制DGS 曲线。

结果类型:

该功能是结果显示方式,可以选择百分数或当量 dB。该功能用于选择 DGS 缺陷评估结果的类型 选项:百分数、当量 dB

操作:

- 利用翻页键切换功能页。
- 通过功能键<F1>选择 DGS 功能组,再用功能菜单对应的菜单键选择结果类型功能菜单,然后用拨轮来设置结果类型。
- 利用同一个菜单键来切换 DGS 模式、结果类型功能。

3.14.2 探头频率/探头直径

该功能菜单探头频率和探头直径功能复用,当选中该功能菜单时,可以通过按对应的菜单键来切换功能。

探头频率:

该功能用于所用探头的标称频率。

范围: 0~10MHz

步长: 0.1

操作:

- 利用翻页键切换功能页。
- 通过功能键<F1>选择 DGS 功能组,再用功能菜单对应的菜单键选择探头频率功能菜单,然后用拨轮

来设置探头频率。

● 利用同一个菜单键来切换探头频率、探头直径功能。

探头直径:

该功能用于输入探头的直径,作圆形探头应输入等效直径。

范围: 0~100mm

步长: 0.1

操作:

- 利用翻页键切换功能页。
- 通过功能键<F1>选择 DGS 功能组,再用功能菜单对应的菜单键选择探头直径功能菜单,然后用拨轮来设置探头直径。
- 利用同一个菜单键来切换探头频率、探头直径功能。

3.14.3 曲线当量/参考大小

该功能菜单曲线当量和参考大小复用,当选中该功能菜单时,可以通过按对应的菜单键来切换功能。

曲线当量:

该功能用于设置用户所需要的缺陷当量大小,从而得到此当量的 DGS 曲线

范围: 0~10mm

步长: 0.01

操作:

- 利用翻页键切换功能页。
- 通过功能键<F1>选择 DGS 功能组,再用功能菜单对应的菜单键选择曲线当量功能菜单,然后用拨轮来设置曲线当量。
- 利用同一个菜单键来切换曲线当量、参考大小功能。

参考大小:

该功能用于设置参考标定时所用的参考试块缺陷当量大小

范围: FBH0~10mm

步长: 0.01

操作:

- 利用翻页键切换功能页。
- 通过功能键<F1>选择 DGS 功能组,再用功能菜单对应的菜单键选择参考大小功能菜单,然后用拨轮来设置曲线当量。
- 利用同一个菜单键来切换曲线当量、参考大小功能。

3.14.4 参考标定/A 闸门起始

该功能菜单参考标定和 A 闸门起始功能复用,当选中该功能菜单时,可以通过按对应的菜单键来切换功能。

参考标定:

该功能用于执行参考点的标定

选项:标定、删除

操作:

- 利用翻页键切换功能页。
- 通过功能键<F1>选择 DGS 功能组,再用功能菜单对应的菜单键选择参考标定功能菜单,然后用拨轮来选择标定和删除。
- 利用同一个菜单键来切换参考标定、A 闸门起始功能。

A 闸门起始:

该功能菜单A闸门起始和A闸门宽度复用,在这里重新设置A闸门起始和A闸门宽度是为了方便做DAC标定点时调节闸门参数,当选中该功能菜单时,其调节方法请参考3.6.2及3.6.3所述内容。

3.15 曲面

曲面功能主要用于测试较难测量的圆形区域并显示该区域的剖面图形数据。该图形显示了工件内部缺陷 在扫描方向上的分布状态。曲面功能组可对曲面功能进行设置,包括:曲面校正、工件厚度、探头前沿、工件 外径。其调节方法请参考 4.6 所述内容。

3.15.1 曲面校正

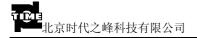
该功能是测量圆型管件内部缺陷的一种方法.

选项: 开、关

操作:

- 利用翻页键切换功能页。
- 通过功能键<F2>选择曲面功能组,再用功能菜单对应的菜单键选择曲面校正功能菜单,然后用拨轮来设置开、关。

3.15.2 工件厚度


该功能是设置管件的厚度

范围: 0~100mm

步长: 1

操作:

- 利用翻页键切换功能页。
- 通过功能键<F2>选择曲面功能组,再用功能菜单对应的菜单键选择工件厚度功能菜单,然后用拨轮来选择相应的数值。

3.15.3 探头前沿

该功能为设定探头前沿即声束入射点。

范围: 0~5mm

步长: 0.01

操作:

- 利用翻页键切换功能页。
- 通过功能键<F2>选择曲面功能组,再用功能菜单对应的菜单键选择探头前沿功能菜单,然后用拨轮来设置相应的数值。

3.15.4 工件外径

该功能是设置管件的外圆直径

范围: 0~1000mm

步长: 1

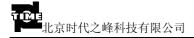
操作:

- 利用翻页键切换功能页。
- 通过功能键<F2>选择曲面功能组,再用功能菜单对应的菜单键选择工件外径功能菜单,然后用拨轮来设置相应的数值。

3.14 特殊功能调节

为了方便用户使用,仪器面板上除了菜单式的功能组选择还有七个使用频率较高的特殊功能键,包括增益步长调节、增益+/-、打印报告、全屏显示、波形冻结、展宽。

3.14.1 增益步长


调节增益步长。

选项: 0dB、0.2dB、0.5dB、1.0dB、2.0dB、6.0dB、12.0dB 操作:

● 按增益步长键型,增益步长会在选项中循环变化。

3.14.2 增益值

增益步长调节到合适选项时,然后通过增益+/-键 就可以设定增益大小。参数范围: 0dB~110dB 操作:

● 按增益+-键⁺⁺ ,增益就会以当前所设增益步长变化。

3.14.3 打印

按照当前存储模式打印当前组号所对应的数据。

在波形存储模式下可打印屏幕及设置的参数,在厚度值存储模式下可打印当前组中的存储值。 操作:

- 选择需要打印的组号,如果需要打印波形数据则需要进行数据调出操作,参见3.7节。
- 按打印键 ,即可实现打印功能。

注意: 1. 存储模式设定不同,打印的结果不同,当前存储模式为波形存储时将打印探伤曲线报告,当前存储模式为厚度值时打印厚度值报告。

2. 如果打印某一组号的波形报告,请先做数据调出操作,如果未做调出操作那么将打印当前的 波形及参数设置,如果打印某一组号的厚度值报告则无需做调出操作,直接打印即可。

3.14.4 全屏

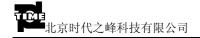
实现波形的全屏显示和正常显示的切换。

操作:

● 按全屏键 , 即可在全屏和正常显示模式间切换。

注意: 1. 全屏状态下,仪器只有特殊功能可用,其他功能组都失去作用。

2. 在测值显示为当量 dB 或在 B 扫模式下全屏模式无效。


3.14.5 冻结

实现波形冻结功能。

操作:

- 按冻结键 ,即可使波形在冻结和非冻结间切换。
- 在冻结状态下,状态栏出现提示图标*。

注意: 在冻结状态下,仪器的闸门组功能、存储组功能都可用,DAC 开关状态可切换。其他功能组功能都不可用。

3.14.6 展宽

有时候需要了解波形的细节,所以利用展宽键 来实现波形的展宽显示。 操作

● 用闸门套住要观察的波形,按展宽键 ,即可以实现波形的展宽显示。

3.14.7 菜单锁定

为了避免当前探伤参数的错误改动,各功能菜单均可以锁定。 操作

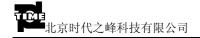
- 选择要锁定的功能菜单
- 同时按下 ♥ ② ,即可锁定该功能菜单,此时该功能菜单参数不可以改变
- 若要解除锁定,同时按下像如即可。

3.14.8 数据组锁定

为了避免错误删除波形数据组和错误删除 DAC 记录,可以将数据锁定。 操作

- 请先将存储模式设为波形存储,然后设定并选择存储功能组中的组号。
- 同时按下 和第一个菜单键 S1,即可锁定该组数据,此时该数据组不可以删除或着修改。
- 若要解除锁定,再同时按下
 和第一个菜单键
 S1即可。

注意: 只有数据组存储有值时才可以将此组数据锁定。


3.14.9 通道锁定

为了避免错误覆盖当前通道的设置,可以将通道锁定。

操作

- 利用翻页键切换功能页。
- 通过功能键<F4>选择高级功能组,再用功能菜单对应的菜单键选择探伤通道功能菜单,然后用拨轮来调节探伤通道序号,选择需要锁定的通道号。
- 同时按下 和第一个菜单键 S1,即可锁定该通道设置,此时该通道不可以再做设置存储操作。
- 若要解除锁定,再同时按下
 和第一个菜单键
 S1即可。

注意: 只有通道已经被存储过设置参数时才能被锁定。

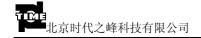
3.14.10 恢复出厂设置

如果需要,用户可以在开机时恢复出厂的参数设置.

操作

● 在显示开机画面进度条时,同时按下全屏键□和展宽键□即可实现恢复出厂设置。

注意:


- 1. 恢复出厂设置和恢复上次关机时设置同时只有一个有效。
- 2. 恢复出厂设置后所有通道中的设置参数将被清除。

3.14.11 仪器程序升级

TUD320 具有软件程序在线升级功能,用户获得软件升级程序后,可通过 TUD320 配套的 PC 机软件完成程序升级功能。

操作:

- 按仪器操作说明连接仪器和 PC 机之间的通讯电缆(参考本说明书第五章)。
- 在仪器操作界面按下冻结键 (**)冻结屏幕(如果由于升级过程没有完成或其它原因而导致仪器不能正常启动时,可在显示开机画面进度条时,同时按一次 (***),进度条结束后仪器不再切换到操作界面,而是保持在开机画面中,此时串口设置参数默认为38400,8,n,2)。
- 按《TUD320 超声探伤仪数据处理软件使用说明书》中的方法完成软件程序升级操作。

第四章 仪器校准与测量

工作开始前,需要根据探头和被测工件的情况来校准仪器的声速、声程以及探头零点,以适应探伤条件。 其中,声速和探头零点校准是因为状态行所显示参数的计算都是与声速和探头零点相关,所以在探伤前请务 必校准;声程校准是为了使屏幕上显示适当声程范围内的波形,以便更好地判断、评价缺陷。

为安全正确的操作仪器,需要超声探伤专业技术人员来校准仪器。

为了更好的说明校准方法和步骤,后面会举例说明。

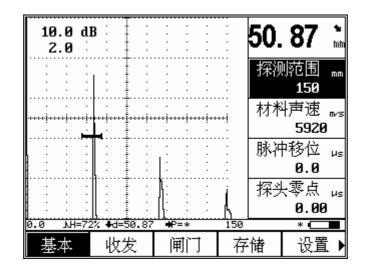
4.1 直探头校准(单探头)

根据声速和探头零点的已知情况,确定校准步骤。若声速未知,则采用两点法先进行声速校准;若声速已知,则跳过声速校准,调节声速为已知声速后用一点法进行探头零点校准。

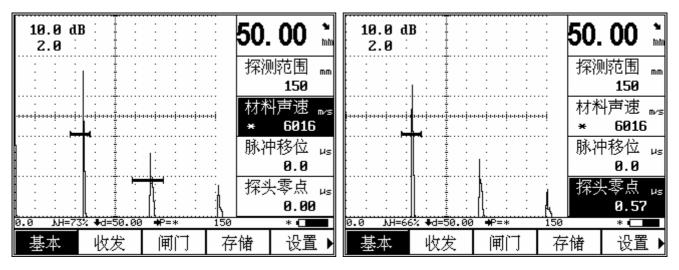
4.1.1 已知材料声速的校准

步骤:

- 材料声速设置为已知材料声速,
- 把探头耦合到校准试块上,
- 设定闸门逻辑为单闸门方式,即设为正或负逻辑,把闸门套住一次回波,此时声程测量的就是一次 回波处的声程,
- 调节探头零点,使得状态行的声程测量值(S)与试块的已知厚度相同,此时所得到的探头零点就是该探头的准确探头零点。


4.1.2 未知材料声速的校准

步骤:


- 先初步设定一大概的声速值;
- 调节闸门逻辑为双闸门方式:
- 将探头耦合到一与被测材料相同且厚度已知的试块上;
- 移动闸门 A 的起点到一次回波并与之相交,调节闸门 A 的高度低于一次回波最高幅值至适当位置,闸门 A 不能与二次回波相交;
- 移动闸门 B 的起点到二次回波并与之相交,调节闸门 B 的高度低于二次回波最高幅值至适当位置,闸门 B 不能与一次回波相交;
- 调节声速,使得状态行显示的声程测量值(S)与试块实际厚度相同,此时,所得到的声速就是这种 探伤条件下的准确声速值。
- 设定闸门逻辑为单闸门方式,即设为正或负逻辑,此时声程测量的就是一次回波处的声程;
- 调节探头零点,使得状态行的声程测量值(S)与试块的已知厚度相同,此时所得到的探头零点就是

该探头的准确探头零点。

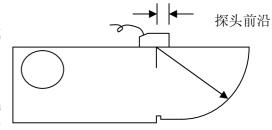
下面以具体例子说明:

材料声速未知,设置接近的材料声速为 5920m/s,设置闸门逻辑为双闸门方式,同时探头零点设置为 0;将探头耦合到 50mm 的标定试块上,并将闸门调到与一次回波相交的位置,将 B 闸门调到与二次回波相交的位置;

增加声速值,直到一、二次回波间声程显示的值为 50mm,现在便测得了材料的准确声速是 6016m/s; 再将闸门设置为单闸门方式,测量一次回波处的声程,连续调节探头零点直到一次回波处测得的声程值为 50mm,现在便测得了探头零点为 0.57us。

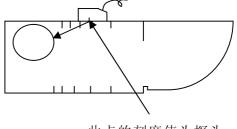
4.2 直探头校准(双晶探头)

校准步骤:


- 在收发组内设置双探头状态:
- 依照当前测试任务和选用探头设置好声程、收发组各功能项目;
- 将探头耦合到标定试块上,调节基本组中的探头零点直到标定回波接近要求的位置,同时二次回波 也在显示范围之内:
- 调节增益值直到幅值最大的回波接近全屏高度;

- 在闸门组内打开双闸门:
- 在设置功能组选择前沿测量方式;
- 移动闸门 A 的起点到一次回波并与之相交,闸门 A 不能与二次回波相交;
- 移动闸门 B 的起点到二次回波并与之相交,闸门 B 不能与一次回波相交;
- 调整闸门高度,使其位于两个校准回波前沿的相同位置;
- 然后改变声速, 直至显示出标定试块的厚度值;
- 设定闸门逻辑为单闸门方式,即设为正或负逻辑,此时声程测量的就是一次回波处的声程;
- 调节探头零点,使得状态行的声程测量值与试块的已知厚度相同。

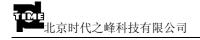
4.3 斜探头校准


斜探头校准通常需要以下步骤: 1、校准入射点(探头前沿); 2、校准探头角度(K值); 3、校准材料声速; 4校准探头零点。

1、校准入射点(探头前沿):用 IIW 试块(又称荷兰试块)或 CSK-IA 试块测斜探头零点,首选将仪器声速调节为 3230m/s,探测范围为 150mm,然后开始测试,用户如图将探头放在试块上并移动,使得R100mm的圆弧面的反射体回波达到最高,用直尺量出探头前

端面和试块 R100mm 弧圆心距离,此值即为该探头的前沿值,R100mm 弧圆心对应探头上的位置即为探头入射点。

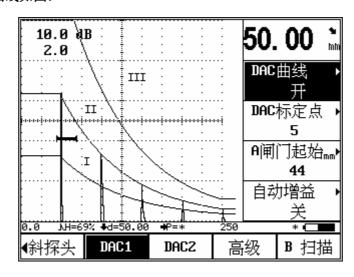
2、校准探头角度(K值): 用角度值标定的探头可用 IIW 试块校准, 如果是用 K值标定的探头, 可用 CSK-IA 试块校准。这两种试块上有角度或 K值的标尺, 按探头标称值选择合适的标尺(右图所示, 在 IIW 试块上侧可校准 60-76 度的探头, 下侧可校准 74-80 度的探头, CSK-IA 试块上侧可校准 K2.0、K2.5、K3.0 的探头, 下侧可校准 K1.0、K1.5 的探头。请按试块上



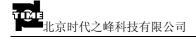
此点的刻度值为探头

的标定值选择用合适的校准试块及校准方法)。如图放置探头,左右移动使得反射体回波达到最高,此时入射点对应的刻度就是探头的角度或 K 值。

- 3、校准材料声速 按照 1 中所述找到 R100mm 的最高反射波,调节探测范围使得屏幕上能显示该弧面的二次回波,选择闸门方式为双闸门,调节 A 闸门与一次回波相交,调节 B 闸门与二次回波相交,调节声速值使得状态行中声程测量值(S)为 100,此时得到的声速值即为该材料的实际声速值。
- 4、校准探头零点 保持上面的测量状态,将闸门方式改为正或负,调节探头零点使得状态行中声程测量 值(S)再次为100,此时得到的探头零点值即为该探头的零点值。


斜探头的校准方法有很多,并不完全拘泥于用标准试块进行校准,也可以用已知深度的小孔进行校准, 理论上参考反射体越小,校准的精度越高,但校准的难度也相应的加大。用小孔校准时可通过测量小孔的深 度和水平位置,计算斜率来校准角度,并利用测得的深度或水平位置值校准声速和探头零点。

4.4 DAC 曲线应用方法


DAC 曲线是用于区分大小相同,但距离不同的反射体幅度的变化。正常情况下,试件内同样大小,距离不同的反射体,由于材料的衰减,波束的扩散而造成波幅的变化。DAC 曲线是用图示方式补偿材料衰减,近场影响,波束扩散和表面光洁度。正常情况下,在绘制好 DAC 曲线后,不管试件中反射体的位置如何,同样大小的反射体产生的回波峰值均在同一条曲线上。同样道理,比试件中反射体较小的反射体产生的回波会落在该曲线下面,而较大一些的会落在该曲线上面。

- 1、选择探伤通道 通过翻页键及功能键<F4>选择高级功能组,调节探伤通道号,选择一个通道作为当前 探伤条件下仪器设置通道,例如: No.1。(注:每个的通道下可保存一组 DAC 曲线标定点,这些标定 点不需要进行保存操作,当标定点被标定后将直接保存在当前通道下,如果希望在该通道下同时保存 仪器当前参数设置,则需要通过"高级"—>"设置保存"操作来完成。)
- **2、打开 DAC 曲线功能** 通过翻页键及功能键<F2>选择 DAC1 功能组,再用上下键 S1 键选择 DAC 曲线 功能菜单(如当前子菜单中没有 DAC 曲线功能,请利用确认键 或 S1 键来切换 DAC 曲线、标定 修正功能),然后按拨轮来设置 DAC 曲线开关。
- 3、制作 DAC 曲线 通过翻页键及功能键<F2>择 DAC1 功能组,按说明书 3.10.2 所述添加标定点,当添加两个标定点后,将会在仪器上自动绘制 DAC 曲线。(注意:请沿探测范围由小到大标定数据,即后标定的点要在前一个标定点后面,且其回波高度不应高于前一个标定点,如果后点回波高度高于前点DAC 曲线会被绘制为直线。)
- **4、调节三条偏置曲线的偏置值** 通过翻页键及功能键<F3>选择 DAC2 功能组,按检测标准规定调整三条 偏置曲线,即 DAC 评定线、DAC 定量线、DAC 判废线的偏置值到需要的设置。
- 5、表面粗糙度补偿 通过翻页键及功能键<F3>选择 DAC2 功能组,调节增益校正功能菜单,对工件表面粗糙度进行补偿,如标准中需要补偿 5dB,则将增益校正调节为-5dB,此时三条 DAC 偏置曲线将下降 5dB,用户可相应的调节仪器增益,使得仪器探伤灵敏度相应的增加 5dB。
- 6、 绘制好的 DAC 曲线如图:

三条 DAC 曲线将屏幕划分为 I、II、III 三个区域,现场探伤时这三条 DAC 曲线将绘制在屏幕上,操作者可根据反射体回波高度所在的区域来直接确定缺陷性质。

7、 当量计算 如果希望测量闸门内缺陷回波的当量值,可通过翻页键及功能键<F4>选择高级功能组,选

择测值显示功能,将其调节为当量 SZ, 然后通过翻页键及功能键<F2>选择 DAC1 功能组,用 S4 键选择当量标准功能,调节当量标准将相应的 DAC 偏置曲线作为测量的标准。

8、现场应用 实际应用时请先选择上述制作的 DAC 曲线所在的组号,此时该组下的 DAC 曲线将被绘制 到屏幕上(如果 DAC 曲线没有被绘制,请检查 DAC 曲线 功能菜单是否设置为开),如果还希望使用 该通道下的参数设置(包括三条 DAC 曲线的偏置设置以及增益校正值)时,请做"高级"—>"设置 调出"操作,否则可不用做此操作。

4.5 测量内容

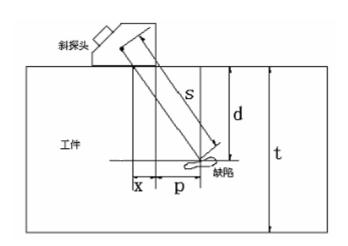
使用本探伤仪进行测量需要进行如下工作:

设置好闸门的起点、闸门宽度、闸门阈值以及闸门报警方式。

测量内容为:

S 声程

H(%) 闸门范围内回波高度的相对值(相对于屏高)


h 闸门范围内回波高度的绝对值(单位是像素)

d 缺陷深度

D(%) 缺陷深度相对值(相对于工件厚度)

P 缺陷距探头前沿的水平距离

上面的参数含义具体参见下面的图

其中:

s: 表示声程;

d: 表示缺陷的深度:

t: 表示工件的厚度;

x: 表示超声源到探头前沿的距离;

p: 表示缺陷距离探头前沿的水平距离;

D: 是缺陷深度相对值,它是按照下面的的发法得到的:

$$D = \frac{d}{t}$$

当使用直探头时,由于 d 值与 S 值重合,因此 x、p、d、D 值失去意义,x 值不需要设定,p、d、D 值也将不会显示。

在进行测量前要注意:

包括声速、探头零点在内的仪器标定工作应完成,测量方式可选择前沿方式与峰值方式。测量的波幅为闸门内波幅最高的回波波幅。在前沿测量方式下,测量的声程为闸门内回波的前沿(回波波形曲线的上升线)处声程值。因此,选择前沿方式时,对闸门内回波波幅的测量值受到闸门阈值(高度)的影响。

声程测量只有闸门开启时才能测量,在测量前首先选择测量方式:边沿方式、峰值方式。然后选择单双闸门方式。单闸门方式下,测量值为闸门内回波前言或峰值处的声程值。双闸门方式下:测量值为起始于 A 闸门内回波终止于 B 闸门内回波之间的声程值。

4.6 曲面应用方法

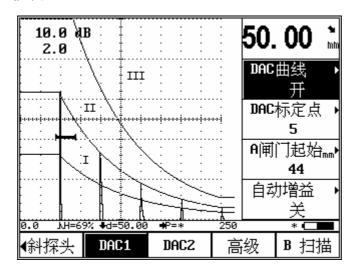
曲面功能主要用于测试较难测量的圆形区域并显示该区域的剖面图形数据。该功能可准确的定位小管径 规则曲面工件内部缺陷在扫描方向上的位置。

- 1、打开曲面校正 通过翻页键及功能键<F2>选择曲面功能组,再用上下键 S1 键选择曲面校正功能菜单,然后旋转拨轮来设置曲面校正开关。
- **2、设置待测工件厚度** 通过翻页键及功能键<F2>选择曲面功能组,再用上下键 S2 键选择工件厚度功能 菜单,然后旋转拨轮来设置相应的工件厚度值。
- 3、设置当前探头的前沿 通过翻页键及功能键<F2>选择曲面功能组,再用上下键 S3 键选择探头前沿功能菜单,然后旋转拨轮来设置相应的探头前沿值。
- **4、设置待测工件外径** 通过翻页键及功能键<F2>选择曲面功能组,再用上下键 S4 键选择工件外径功能 菜单,然后旋转拨轮来设置相应的工件外径值。
- **5、现场应用** 曲面功能组是针对小管径规则曲面工件进行缺陷定位测量的一种方法,实际应用时主要功能是超声回波计算内部缺陷的水平(PA)和垂直(DA)方向的距离,从而定位该缺陷在工件内部的位置。

注意: 本功能只有在测量小管径、规则曲面工件时适用.

4.7 DGS 曲线应用方法

曲面测量是 DGS 曲线是距离、回波高度、当量尺寸三者之间关系的曲线(德文中称 AVG 曲线)利用 DGS 曲线,可以进行缺陷当量的评定。在 x < 3N 的远场区适用 DGS 功能。


- 1、参数设定 探头直径,频率
- 2、参考类型 及大小
- 3、参考标定 通过翻页键及功能键<F1>选择 DGS 功能组,再用上下键 S4 键选择参考标定功能菜单(如当前子菜单中没有参考标定功能,请利用确认键 或 S4 键来切换参考标定、A 闸门起始功能)。然

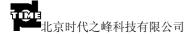
后按拨轮来设置参考标定在删除状态,同时将 A 闸门移动至标尺区域最左侧。

- 4、当量评估 通过设置曲线当量来调整曲线从而评估缺当量变尺寸。
- 5、开 DGS 曲线功能 通过翻页键及功能键<F1>选择 DGS 功能组,再用上下键 S1 键选择 DGS 模式功能 菜单(如当前子菜单中没有 DGS 模式功能,请利用确认键 → 或 S1 键来切换 DGS 模式、结果类型功能),然后按拨轮来设置 DGS 模式开,此时仪器将自动绘制 DGS 曲线。

注意: 1. 结果类型,曲线当量,参考大小需要根据实际的工况决定。

- 2. 探头频率和探头直径需根据当前使用的探头决定。
- 6、绘制好的 DGS 曲线如图:

五章 仪器的通讯


本仪器具有双向全双工 RS232 接口,实现同上位 PC 机通讯以及控制串行打印机打印探伤报告的功能。 将仪器与 PC 机的串行接口连接好,并在 PC 机上进入本仪器的专用操作软件 Data View。

5.1 数据通讯

在本机中, RS232 串行口的波特率(Baute Rate)可选值为 2400、4800、9600、19200、38400, 1 位起始位, 2 位停止位, 8 位数据位, 无校验位。

5.1.1 连接 PC 机或打印机

标准 RS232 串行电缆的一端连接仪器的 RS232 接口,另一端连接 PC 机的 COM1(或 COM2)口。仪器 通过 RS232 串行口将其存储的图形和数据上传给 PC 机。安装于 PC 上的客户端软件可以将图形和数据进行编辑、存储或打印。

- 1. 将 RS232 插头与仪器或 PC 机上的插座连接或断开以前,请首先关掉仪器电源。
 - 2. 通讯之前,请先冻结屏幕。通讯期间,切勿自行拔除通讯电缆,以及关闭 PC 机软件或者打 印机,否则将导致通讯失败以致仪器不能继续工作。
 - 3. 如果发生异常导致通讯失败,请重新启动仪器。

第六章 检测精度的影响因素及缺陷评估

请在使用 TUD320 之前阅读下列资料,了解和遵守有关要求。这对于避免导致错误探伤结果的可能的过 失操作非常重要。非法操作还可能导致人身安全意外或财产损失。

6.1 使用超声探伤仪的必要条件

- 操作人员的培训
- 特殊技术测试要求与限制的知识
- 选择适当的测试设备

6.1.1 操作人员的培训

对超声检测设备的操作,要求操作人员接受过正规的探伤方法培训。正规的培训包括对下列内容的了解。 例如:

- 声传播原理
- 测试材料声速的影响
- 不同材料界面声波特性
- 被检测材料中声衰减和表面状况对检测的影响

缺乏这些知识可能导致难以预见的错误探伤结果。可与有关的无损检测协会组织或我公司联系,获取关于培训超声探伤人员以及考取等级资格证的相关信息。

6.1.2 探伤技术要求

每次超声检测都要遵循具体的检测技术要求。最重要的要求有:

- 定义探测范围
- 选择适当的探伤方法
- 考虑材料性质
- 决定记录和评估的范围

6.1.3 测试范围

超声探伤获取的信号仅涉及探头声束所覆盖到被测物的部分。把从被检测部分得到的结论应用到被测物的未被检测部分时,应非常小心。这些结论一般只在具备丰富经验和由统计资料数据证明是正确的情况下才可能适用。

声束可以从被测物内的界面全部反射,因而较深处的缺陷和反射点可能仍然没有探测到。因此,确保被

测物被探测的部分都处在声束覆盖范围之内非常重要。

6.1.4 超声壁厚测量

所有的超声壁厚测量都是基于对传播时间的测量。准确的测量结果要求被测物体内的声速恒定。在由钢 (甚至各种合金成分)制成的被测物体中,声速的变化非常小,这一条件通常也能实现,而只对高精度测量 才有影响。在其它材料中(例如非金属或塑料),声速变化可能很大,因此影响测量精度。

6.1.5 剩余壁厚的测量

对工厂设备(例如内部受到腐蚀或侵蚀的管道、容器和各种类型的反应容器)剩余壁厚的测量,要求有一个合适的测厚仪,特别注意探头的选用和操作。检测人员应知道相应的额定剩余壁厚和可能的壁厚损耗。

6.2 影响检测精度的因素

- a) 检测对象的材料
- b) 温度
- c) 表面粗糙度
- d) 磁场
- e) 附着物质
- f) 缺陷的形状特征
- g) 缺陷的声阻抗
- h) 缺陷的表面特征(如是否光滑)
- i) 探伤方法的选择

所有的超声检测缺陷定位都是基于对超声回波信号的测量。检测对象中声速是否恒定是影响检测结果精度的一个重要因素,所以要实现较高的检测精度,需要检测对象中有相对恒定的超声传播速度。

6.2.1 材料的影响

在钢这样的检测对象中,即使其中含有多种不同的合金成分,其声速也认为是基本恒定的。而在其它的许多材料中,如许多非铁金属或塑料中,超声传播速度的变化是非常显著的,因而会影响测量的精度。

如果待检测对象的材料不是各向同性的,那么在不同的方向上声速就会不同。在这种情况下必须用检测范围内的声速的平均值进行计算。平均值是通过测量声速与待测试块的平均声速相当的参考试块而获得的。

6.2.2 温度的影响

材料的声速会随着材料温度的变化而发生变化。如果仪器的校准是在温度相对较低的环境中进行的,而仪器的使用却在温度相对较高的环境中,这种情况下就会使检测结果偏离真实值。要避免温度的这种影响,

方法是校准仪器前将参考试块预热,以达到跟使用环境相同的温度;或者将测量结果乘以一个温度影响因子。

6.2.3 表面粗糙度的影响

被探伤件的表面粗糙程度对探伤有影响。粗糙程度增大,影响增大。粗糙表面会引起系统误差和偶然误差,每次测量时,在不同位置上应增加测量的次数,以克服这种偶然误差。

6.2.4 附着物质的影响

探伤前必须清除附着物质,以保证仪器探头和被测试件表面直接接触。

6.2.5 磁场

周围各种电气设备所产生的强磁场, 会严重地干扰探伤工作。

6.3 缺陷评估方法

目前的探伤实践中,基本上有两种不同的缺陷评价方法:

- a. 如果声束的直径小于缺陷范围,那么声束可以用于探测缺陷边界,并确定它的范围。
- b. 如果声束直径大于缺陷范围,缺陷最大回波响应必须与用于比较的人工缺陷最大回波响应相比较。

6.3.1 缺陷边界法

探头的声束直径越小,通过缺陷边界法确定的边界以至缺陷范围,就越准确。但是如果声束相对较宽,确定的缺陷范围可能与实际的缺陷范围明显不同。所以,应慎重选择能在缺陷位置得到足够狭窄集中声束的探头。

6.3.2 回波显示比较法

一个较小的自然缺陷反射的回波,通常小于一个人工对比缺陷(例如同样大小的圆盘缺陷)反射的回波。 这是由于(例如)自然缺陷的表面较粗糙或者由于声束打到缺陷时的角度不佳造成的。如果评价自然缺陷时 没有考虑到这一事实情况,就会有低估它们当量值的危险。

对于参差不齐或裂开的缺陷,例如铸件中的收缩孔,可能会出现缺陷边界表面的声散射较强,根本没有产生回波。在这种情况下,应该选择另外不同的分析方法,例如在分析中使用底面回波衰减法。

缺陷回波的距离灵敏度在对大工件的探伤中扮演了一个重要角色。在选择人工对比缺陷时要注意,这些 缺陷同被评价的自然缺陷一样,可能是由同样的"距离变化规律"支配的。

超声波在任何材料中传播都会衰减,这种声衰减的速度通常非常小,例如,由细密纹理的钢制成的部件,

同样也包括许多其它材料制成的小部件。但是,如果声波在材料中要传播较长的距离,高度累积的声衰减就可能产生(即使材料的衰减系数很小)。这就会造成自然缺陷回波显得太小的危险。为此,必须在评价结果中对衰减的影响作出估计,在需要的时候给予考虑。

如果被测物体表面粗糙,入射声能的一部分将在物体表面被散射,影响探测。散射越厉害,反射回波越小,评定结果时出现的误差就越大。因此,被测物体的表面状况,对回波高度的影响是重要的。

第七章 保养与维修

7.1 环境要求

严格避免碰撞、重尘、潮湿、强磁场、油污等。 严禁用具有溶解性的物质擦拭外壳。

7.2 电池充电

显示屏幕上的电池状态标志实时反映了电池电压情况。当电池电压过低时,即屏幕上的电池状态标志为欠压标志 时,应尽快给仪器充电。

充电方法如下 (开机或关机状态均可充电):

- a. 将电源适配器的电源插头插入充电插座中;
- b. 将电源适配器接到 220V/50Hz 市电上, 充电指示绿灯亮;
- c. 当充电指示红灯亮时,表明电池已经被充满。正常情况大约充电 4.5 h 即可充满。
- d. 拔下充电插头, 充电过程结束。
- 提示: 1. 电源适配器的输入电压为 220V 交流,输出为 9V 直流,最大充电流约 1700mA,最长充电时间约6h。
 - 2. 本仪器使用锂离子蓄电池,因此,当出现欠压标志时, 应及时充电,过放电对电池会有所损伤。
 - 3. 仪器如果长期不用,请每隔一个月对仪器进行一次充电,以免过放电造成电池无法正常使用。
 - 4. 如果电池过放电导致无法正常充电时(电池没电且充电指示绿灯不亮),可以将电源适配器拔 下后过两分钟后再插上继续充电,多次重复此操作可使电池充电恢复正常。
 - 5. 本仪器可以一边充电一边工作。

7.3 更换电池

本仪器使用的电池,一般工作寿命3年。电池失效后,用户可自行更换相同规格的电池,方法如下:

- a. 旋下主机背后的电池仓上的螺钉;
- b. 拆下电池仓盖, 摘下电源插头, 取出失效电池;
- c. 将新电池按原样连线并装上电源插头(注意正、负极不要接反);
- d. 新电池就位,装上电池,将电源插头插入电源插座,打开电源开关检查仪器工作是否正常;
- e. 合好电池仓盖后旋紧螺钉。

注意: 在更换蓄电池包时,请使用本公司提供的同规格的产品,以免在充电和使用过程中出现起火和爆炸等事故。

7.4 故障排除

如果仪器出现下列不正常状况:

- a. 仪器不能自动关机;
- b. 不能测量;
- c. 按键不工作;
- d. 测量值反复无常。

请用户勿拆机自修。填妥保修卡后,请将仪器寄至我公司维修部门,执行保修条例。 如果能将出现错误的情况简单描述一下,一同寄出,我们将会非常感谢您。

7.5 安全提示

本仪器的设计符合相关的安全标准。在使用时,要满足所规定的外部环境条件,对于操作人员则要求具备相应的技术背景,以保证安全操作。在将本仪器投入使用之前,请认真阅读下面的安全提示:

注意: 1. 本仪器是用于材料检测的无损检测仪器,不允许用作医疗仪器。

2. 本仪器仅限于在实验室和工业环境中使用。

系统电源

本仪器既可以通过外部电源适配器供电,也可以由本公司提供的锂离子蓄电池供电。在选择电源适配器 和蓄电池时,请使用本公司相同规格的产品,以免在充电和使用过程中出现起火和爆炸等事故。

电池充电和更换电池请参照我们的操作步骤进行操作。

系统软件

任何软件都避免不了出现错误,但我们力争将这种错误出现的几率降到最低。本仪器的软件经过全面和 严格的测试。

意外故障

当出现下面非正常情况时,表明仪器已经出现故障,请关掉仪器电源,必要时将电池取出。并将仪器送交指定的维修处进行维修。

- a. 仪器遭受明显的机械性损伤(如运输过程中受到严重挤压或碰撞);
- b. 仪器键盘或屏幕显示不正常;
- c. 在高温、高湿度或腐蚀性的环境中长时间存放;

附录

附录一 用户须知

- 一、 用户购买本公司产品后,请认真填写《保修登记卡》并请加盖用户单位公章。请将(一)联和购机发票复印件寄回本公司用户服务部,也可购机时委托售机单位代寄。(二)联寄(留)当地分公司维修站办理登记手续。无维修站地区请用户将(一)、(二)联寄回本公司用户服务部。手续不全时,只能维修不予保修。
- 二、本公司产品从用户购置之日起,一年内出现质量故障(非保修件除外),请凭"保修卡"(用户留存联) 或购机发票复印件与本公司各地的分公司维修站联系,维修产品、更换或退货。保修期内,不能出示保修卡 或购机发票复印件,本公司按出厂日期计算保修期,期限为一年。
- 三、超过保修期的本公司产品出现故障,各地维修站负责售后服务、维修产品,按本公司规定核收维修费。 四、公司定型产品外的"特殊配置"(异型探头,专用软件等),按有关标准收取费用。
- 五、凡因用户自行拆装本公司产品、因运输、保管不当或未按"产品使用说明书"正确操作造成产品损坏, 以及私自涂改保修卡,无购货凭证,本公司均不能予以保修。

附录二 性能指标

名称	技术数据		
扫描范围(mm)	扫描范围 (mm): 2.5~5000 档级: 2.5,5,10,20, 30,40,50,60,70,80,90, 100,150,200, 250, 300, 350, 400, 450,500,600,700,800,900,1000,2000,3000,4000,5000。 调节步距: 0.1mm (2.5 mm~99.9mm), 1mm (100mm~5000mm)		
脉冲移位(μs)	脉冲移位 (μs): -20~+3400 档级: -20,-10,0.0, 10, 20, 50,100,150,200,250,300,350,400,450,500, 600, 700,800,900,1000,1500,2000,2500,3000,3400。 调节步距: 0.1 (-20μs~999.9μs), 1 (1000μs~3400μs)		
探头零点(μs)	探头零点: 0.0~99.99 调节步距: 0.01		
材料声速 (m/s)	材料声速: 1000~9999 7 个固定声速: 2260,2730,3080,3230,4700,5920,6300 调节步距: 1		
重复发射频率 (Hz)	50~1000		
输出阻尼 (Ω)	50, 150, 400		
工作方式	单探头(收、发),双探头(一收一发),透射(透射探头)		
频率范围 (MHz)	低频 0.2-1、中频 0.5-4 、高频 3-15 三档可选		
增益调节 (dB)	0~110 调节步距: 0.0, 0.2, 0.5, 1, 2, 6, 12		
线性抑制	屏高的 0%~80%, 步距: 1%		
检波基准	像素点数-128~128, 步距: 1		
垂直线性误差	垂直线性误差不大于 3%		
水平线性误差	在扫描范围内,不大于 0.2%		
探伤灵敏度余量	≥50dB		
动态范围	≥32dB		
报警	进波报警、失波报警		
监视门	2个,用粗横条表现,起点、宽度和高度可调. 起点调节范围(mm):水平像素 0~208,其显示值与扫描范围有关。 步距:一个像素对应的 mm 数(与扫描范围有关) 宽度调节范围(mm):水平像素 4~212,其显示值与扫描范围有关。 步距:一个像素对应的 mm 数(与扫描范围有关) 高度调节范围:垂直刻度 2%~90% 步距: 1%		
显示屏	显示屏: TFT_LCD 高亮度彩色工业级图形点阵 320×240 有 5 级亮度调节		
A-Scan 显示区域	全屏或局部 A-Scan 显示冻结和解冻 A-Scan 填充		

名称	技术数据		
波形显示方式	正半波、负半波、全波、射频		
探伤通道	10 个		
波形参考	调出存储A扫图形作为当前波形的参考		
距离-波幅-缺陷当量曲线	>40dB 动态范围,每个通道下可保存 1 条曲线,共可保存 10 条曲线		
DGS 曲线	在 x < 3N 的远场区进行缺陷当量的评定。		
曲面校正	定位小管径或规则曲面工件内部缺陷的水平(PA)和垂直(DA)方向的距离		
数据存储	300 幅 A-Scan 图形(包括仪器的设置) 30000 个厚度值(300 组)		
与 PC 机通讯接口标准	RS232		
测量单位	mm/inch		
电池	锂(Li)电池 4×3.6V 4400mAh		
电源适配器	输入 100V~240V/50Hz~60Hz 输出 9V~12VDC/3A~4A		
工作温度	0°C∼40°C		
外型尺寸(mm)	243×173×70		
重量 (kg)	1.47		

附录三 操作一览表

TUD320 的操作都是由面板按键直接触发或者几个按键组合出发实现的,下表给出了 TUD320 面板按键的具体图示和按键名称、功能。

按键图示	按键名称	功能说明	章节
	增益步长	快速设置增益步长	3.14.1
(db+)	增益+	以设定的增益步长增加增益值	3.14.2
(db-)	增益-	以设定的增益步长减少增益值	3.14.2
	翻页键	切换功能页	3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13
F1	F1 键	功能组菜单选择	3.4, 3.9
F2	F2 键	功能组菜单选择	3.5, 3.10
F3	F3 键	功能组菜单选择	3.6, 3.11
F4	F4 键	功能组菜单选择	3.7, 3.12
F5	F5 键	功能组菜单选择	3.8, 3.13
	菜单键	子菜单选择等	3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13
(1)	电源软开关	开关仪器	
7	确认键	选择确认、复用功能切换、粗细调节 切换	3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13
	打印键	快速启动打印功能	3.14.3
	全屏键	显示全屏与正常模式切换	3.14.4
	冻结键	快速启动波形冻结功能	3.14.5
	展宽键	展宽显示波形细节	3.14.6

附录四 接口

本仪器具有双向全双工 RS232 接口,可以与上位 PC 机通讯以及控制串行打印机 打印探伤报告的功能。其接口定义如下:

接口定义

引脚号	说明	输入/输出	类型
1	空	空	
2	数据接收	输入	RS232
3	数据发送	输出	RS232
4	空	空	
5	地	GND	RS232
6	空	空	
7	空	空	
8	空	空	
9	空	空	

注意: 将 RS232 插头与仪器或 PC 机上的 RS232 插座连接或断开以前,请首先关掉仪器电源。

RS232 接口引脚排序图如下:

附录五 名词术语

本附录列出了本说明书中所涉及到的超声无损检测的名词术语,了解这些术语所代表的确切含义,有助于更好的使用本说明书。

- 1. 脉冲幅度:脉冲信号的电压幅值。当采用 A 型显示时,通常为时基线到脉冲峰顶的高度。
- 2. 脉冲长度: 以时间或周期数值表示的脉冲持续时间。
- 3. 分贝:两个振幅或者强度比的对数表示。
- 4. 声阻抗: 声波的声压与质点振动速度之比,通常用介质的密度 p 和速度 c 的乘积表示。
- 5. 声阻抗匹配: 声阻抗相当的两介质间的耦合。
- 6. 衰减: 超声波在介质中传播时,随着传播距离的增大,声压逐渐减弱的现象。
- 7. 总衰减:任何形状的超声束,其特定波形的声压随传播距离的增大,由于散射、吸收和声束扩散等共同引起的减弱。
- 8. 衰减系数: 超声波在介质中传播时,因材质散射在单位距离内声压的损失,通常以每厘米分贝表示。
- 9. 缺陷:尺寸、形状、取向、位置或性质对工件的有效使用会造成损害,或不满足规定验收标准要求的不连续性。
- 10. A 型显示:以水平基线(X 轴)表示距离或时间,用垂直于基线的偏转(Y 轴)表示幅度的一种信息表示方法。
- 11. 发射脉冲: 为了产生超声波而加到换能器上的电脉冲。
- 12. 时基线: A型显示荧光屏中表示时间或距离的水平扫描线。
- 13. 扫描: 电子束横过探伤仪荧光屏所作同一样式的重复移动。
- 14. 扫描范围: 荧光屏时基线上能显示的最大声程。
- 15. 扫描速度: 荧光屏上的横轴与相应声程的比值。
- 16. 延时扫描: 在 A 型或 B 型显示中, 使时基线的起始部分不显示出来的扫描办法。
- 17. 水平线性: 超声探伤仪荧光屏时间或距离轴上显示的信号与输入接收器的信号(通过校正的时间发生器或来自己知厚度平板的多次回波)成正比关系的程度。
- 18. 垂直线性: 超声探伤仪荧光屏时间或距离轴上显示的信号与输入接收器的信号幅度成正比关系的程度。
- 19. 动态范围: 在增益调节不变时,超声探伤仪荧光屏上能分辨的最大与最小反射面积波高之比。通常以分 贝表示。
- 20. 脉冲重复频率: 为了产生超声波,每秒内由脉冲发生器激励探头晶片的脉冲次数。
- 21. 检测频率:超声检测时所使用的超声波频率。通常为 0.4 MHz ~15MHz。
- 22. 回波频率: 回波在时间轴上进行扩展观察所得到的峰值间隔时间的倒数。
- 23. 灵敏度: 在超声探伤仪荧光屏上产生可辨指示的最小超声信号的一种量度。
- 24. 灵敏度余量: 超声探伤系统中,以一定电平表示的标准缺陷探测灵敏度与最大探测灵敏度之间的差值。
- 25. 分辨力: 超声探伤系统能够区分横向、纵向或深度方向相距最近的一定大小的两个相邻缺陷的能力。
- 26. 抑制: 在超声探伤仪中,为了减少或消除低幅度信号(电或材料的噪声),以突出较大信号的一种控制方法。
- 27. 闸门: 为监控探伤信号或作进一步处理而选定一段时间范围的电子学方法。
- 28. 衰减器: 使信号电压(声压)定量改变的装置。衰减量以分贝表示。

- 29. 信噪比: 超声信号幅度与最大背景噪声幅度之比。通常以分贝表示。
- 30. 阻塞:接收器在接收到发射脉冲或强脉冲信号后的瞬间引起的灵敏度降低或失灵的现象。
- 31. 增益: 超声探伤仪接收放大器的电压放大量的对数形式。以分贝表示。
- 32. 距离波幅曲线 (DAC):根据规定的条件,由产生回波的已知反射体的距离、探伤仪的增益和反射体的大小,三个参量绘制的一组曲线。实际探伤时,可由测得的缺陷距离和增益值,从此曲线上估算出缺陷的当量尺寸。
- 33. 耦合: 在探头和被检件之间起传导声波的作用。
- 34. 试块:用于鉴定超声检测系统特性和探伤灵敏度的样件。
- 35. 标准试块: 材质、形状和尺寸均经主管机关或权威机构检定的试块。用于对超声检测装置或系统的性能测试及灵敏度调整。
- 36. 对比试块:调整超声检测系统灵敏度或比较缺陷大小的试块。一般采用与被检材料特性相似的材料制成。
- 37. 探头:发射或接收(或既发射又接收)超声能量的电声转换器件。该器件一般由商标、插头、外壳、背衬、压电元件、保护膜或楔块组成。
- 38. 直探头: 进行垂直探伤用的探头, 主要用于纵波探伤。
- 39. 斜探头: 进行斜射探伤用的探头, 主要用于横波探伤。

附录六 有关超声波探伤的国家标准和行业标准

TUD320 及本说明书涉及到的超声波探伤国家标准和行业标准有:

- 1、GB/T 12604.1-1990 无损检测术语 超声检测
- 2、JB/T 10061-1999 A 型脉冲反射式超声探伤仪通用技术条件
- 3、JJG 746-2004 超声探伤仪 中华人民共和国国家计量检定规程