ZBL-R620/610 混凝土钢筋检测仪

使用说明书

📶 北京智博联科技有限公司

第1章	概述
1.1	简介
1.2	主要功能
1.3	主要技术指标
1.4	注意事项3
1.5	责任
第2章	仪器描述
2.1	仪器组成4
2.2	传感器描述
第3章	快速入门6
3.1	测试前准备6
3.2	检测界面简介
3.3	测量步骤9
第4章	菜单操作
4.1	数据编号
4.2	预设直径13
4.3	最小厚度
4.4	数据显示
4.5	数据传输
4.6	安装传输驱动程序
4.7	数据删除
第5章	测量操作
5.1	钢筋定位和保护层厚度测量
5.2	密集钢筋测量
5.3	最小保护层厚度测量
5.4	钢筋直径测量
5.5	钢筋测量的一般原则
第6章	维护

目

录

第1章 概述

1.1 简介

ZBL-R6 系列混凝土钢筋测量仪,是一种便携式无损钢筋测 量仪器,能够在混凝土表面测量钢筋位置、钢筋直径和混凝土保 护层厚度,测量钢筋分布和钢筋走向。

1.2 主要功能

- 1、确定钢筋位置及走向;
- 2、测量钢筋的保护层厚度;
- 3、测定钢筋直径;
- 4、存储保护层厚度;
- 5、显示编号内保护层厚度的统计数据;
- 6、存储数据传输至计算机。

1.3 主要技术指标

1、保护层厚度测量范围(钢筋直径Φ6mm~Φ50mm):

ZBL-R610:	10 mm \sim 130 mm				
ZBL-R620:	第一量程: 6mm~90mm。				
	第二量程: 10mm~180mm。				

表 1.1 保护层厚度测量范围

单位: ㎜

仪器型号 技术指标	ZBL-R610	ZBL-	R620
钢筋直径	全量程	第一量程保护层厚度	第二量程保护层厚度
$\Phi 6 \sim \Phi 8$	$10 \sim 66$	$6{\sim}70$	10~100
$\Phi 10 \sim \Phi 18$	$16 \sim 80$	9~80	$16 \sim 126$
$\Phi 20 \sim \Phi 28$	20~100	$10 \sim 86$	20~160
Φ 32 \sim Φ 36	24~110	16~90	28~180
$\Phi 40 \sim \Phi 50$	28~130	10 50	20 100

- 2、仪器最大允许误差(保护层厚度):
 - 表 1.2 仪器最大允许误差(保护层厚度)

单位: ㎜

仪器型号	保护层厚度测量范围				
技术指标	ZBL-R610 ZBL-R620				
最大允许误差	保护层厚度	第一量程	第二量程		
± 1	10~69	$6{\sim}59$	10~79		
± 2	$70 \sim 99$	60~69	80~119		
±4	100~130	70~90	120~180		

3、直径测量范围

Φ6mm~Φ32mm (详见表 5.2)。

4、仪器最大允许误差(钢筋直径)

表 1.3 仪器最大允许误差(钢筋直径)

单位: ㎜

钢筋直径	6	8	10	12	14	16	18	20	22	25	28	32
最大误差	+2	± 2	+3 -2	± 3	+4 -3	-4						

5、数据存储容量

25000个测点。

6、电池

6节5号电池。

供电时间约32小时。

注:供电时间在 25℃环境温度下使用 5 号南孚碱性 (1200mAh)电池时测量结果。如果用户使用其它品 种电池或在其它温度环境下使用时,可能与上述时间 有差异。

7、体积重量

仪器体积: 190mm×135mm×52mm 仪器重量: 560g(不带电池)

传感器体积: 73mm×93mm×35mm

传感器重量: 135g

1.4 注意事项

1、仪器使用前请仔细阅读本说明书。

2、工作环境要求:

环境温度: -10℃~40℃

相对湿度: <90%RH

电磁干扰:无强交变电磁场

不得长时间阳光直射

3、存储环境要求

环境温度: -20℃~50℃

相对湿度: <90%RH

不得长时间阳光直射

4、避免进水。

5、避免在强磁场环境下使用,如大型电磁铁、变压器等附 近。

6、仪器长时间不使用时,请取出电池,避免电池泄漏对电路造成损坏。

1.5 责任

当用户有以下行为之一或其它人为破坏时,本公司不承担相 关责任。

1、违反上述工作环境要求或存储环境要求。

- 2、非正常操作。
- 3、擅自打开机壳。
- 4、人为或意外事故造成仪器严重损坏。

第2章 仪器描述

2.1 仪器组成

2.2 传感器描述

该传感器采用一体化设计,能够完成一、二两个量程的保护

层厚度测量和直径测量功能。ZBL-R620的两个量程可以用▶键切换(ZBL-R610不具备该项功能);按▲键进行直径测量。

传感器具有指向性,当传感器轴线与钢筋走向平行时最灵 敏,反之,当传感器轴线与钢筋走向垂直时探测信号最弱;所以, <u>在测量钢筋时,应保持传感器轴线与钢筋走向平行,在垂直于钢</u> 筋走向的方向移动传感器进行扫描测量。

ZBL-R620 第二量程的使用。一般只有在保护层厚度接近或超 过第一量程测量的最大测量范围时才使用,因为在第二量程测量 时,并排钢筋分辨能力小于第一量程。

第3章 快速入门

3.1 测试前准备

3.1.1 安装电池(图 3.1)

打开电池舱上盖,按照电池舱 内标示出的极性要求将六节 5 号 电池依次装入,盖好舱盖。

3.1.2 连接主机传感器(图 3.1)

将信号线一端插头缺口与主 机左侧的插座缺口对齐插入,并<u>顺</u> 时针旋转锁紧,然后将信号线另一 端按同样的方式插入传感器插座 并锁紧,仪器连接完成。

注: 信号线无方向差别。

3.1.3 开机

按下"**()**"键,主机上电开始工作。

屏幕显示开机界面,如右图(图 3.2)所示:

显示信息如下:

-公司名称

- 仪器名称

- 仪器版本号

- 电池剩余电量

ZBL-R620 混凝土钢筋检测仪 Vers 01.01 电量: 26 小时

北京智博联科技有限公司

图 3.2 开机界面

当电池剩余电量小于2小时,仪器提示需要更换电池。

如果仪器自检正常,约5秒钟后,自 动进入菜单界面(图3.3菜单界面),该界 面用来设置测量参数以及进行数据查看、 传输和删除操作。具体操作请参照第4章。

3.2 测量界面简介

测量界面(图 3.4)分为两个 区域,右侧为参数状态区,显示用 户设置的测量参数和工作方式。左 侧为测量结果显示区,显示当前测 量数据。

图 3.4 测量界面

● 量程指示 ——显示当前使用

的量程(仅 ZBL-R620 具备)

▶ (开/关)键,一、二两个量程切换 (测量界面)。

■□ —— 第一量程, <u>用于保护层厚度较小的场合;</u>

□■ —— 第二量程, <u>用于保护层厚度较大的场合;</u>

- 测量方式指示 —— 显示当前使用的测量方式(仅 ZBL-R620
 具备)
 - ▼(开/关)键,一般测量和密集钢筋测量切换(测量界面切换)。
 ₩ ── 密集钢筋测量方式;

空白 —— 一般测量方式;

- 数据编号——显示当前构件编号(在菜单界面设置);
- 预设直径——显示当前预设直径(在菜单界面设置);
- 最小厚度——显示当前预设的最小保护层厚度 (菜单界面设置);
- 存储方式——显示当前存储方式 (测量界面 ◀切换)。

^{3.2.1} 参数状态区

3.2.2 测量结果显示区

- 滚动条 ── 提示当前传感器与钢筋的相对距离
 - 空白 —— 传感器有效感应范围内无钢筋
 - 增长 —— 传感器在向靠近钢筋的方向移动
 - 缩短 —— 传感器在向远离钢筋的方向移动
- 信号值 —— 当前传感器接收到的信号幅度值,信号值越 大,传感器离钢筋越近。
- 存储数 —— 当前数据编号中已存储的保护层厚度值个数。
- 当前距离 当前传感器与钢筋相对位置的等效值(单位 mm),该值越大传感器离钢筋越远,当等效值超过传感器测量范围时,该值显示 0,当前距离的最小值即为保护层厚度 值。
- 保护层 —— 显示自动锁定的混凝土保护层厚度测量值 (单位 mm)。

保护层 *** 显示按预设钢筋直径测量的保护层厚度值;

● 钢筋直径 ——

按▲键进行直径及保护层厚度测量(此时不需输入被测钢筋 直径);

屏幕显示:

保护层▶ *** (实测钢筋直径的保护层厚度值)

钢筋直径 ** (实测的钢筋直径)

● 存储方式 ── 选择保护层厚度值的存储方式。

▶ (开/关)键,自动存储和手动存储间切换(在测量界面中)。

- 1).手动存储——按存储键存储当前保护层厚度测量值。
- 2).自动存储——仪器自动将保护层厚度测量结果保存 在当前数据编号内。

3.3 测量步骤

3.3.1复 位——将传感器拿在空中,远离铁磁体。

- 按下确定键(图 3.5 测量界面);
- 按下返回键(图 3.6菜单界面)。
 约 3 秒钟后测试界面屏幕提示
 当前距离为"0"(见图 3.7),
 复位工作完成,进入测量等待
 状态。

图 3.5 测量界面

量程指示

图 3.6 菜单界面

图 3.7 检测界面

注意:① 在检测过程中应每10分钟左右进行一次复位操作。 ② 对测量数据有怀疑时,也可复位后再次测量。

3.3.2 确定钢筋位置及钢筋走向

为保证测量数据的准确性,请严格按照以下步骤进行测量:

探明钢筋分布情况
 一般应首先定位箍筋
 (或上层钢筋),然后在两条
 上层钢筋(或箍筋)中间选
 定扫描线测量来定位下层钢
 筋(或主筋)(图 3.8)。

测量时请按下列步骤操

作,并注意观察以下信息(图3.9、图3.10);

 复位操作,状态(图 3.9 (A))
 将探头置于被测混凝土表面,沿一个方向匀速移动传感器, 滚动条逐渐加长,当前距离值减小(图 3.9 (B));

自动锁定钢筋保护层厚度值(图 3.10(C));

 条头越过钢筋时蜂鸣器报警,提示已经找到钢筋,且传 感器已经越过一条钢筋。

- 精确判定钢筋位置及走向
 - 反方向移动探头,找到当前距离值最小的位置,使当前 值与保护层厚度值一致,此时探头位置即为钢筋所在的 准确位置(图 3.10(D));
 - 旋转探头,使得信号之最大,此时探头走向即为被测钢 筋走向(图 3.10(D))。

3.3.3 测量保护层厚度

- 已知钢筋直径
 - 1) 输入设计钢筋直径
 - 2) 按上述步骤判定钢筋位置(3.3.2)(操作前先复位)
 - 屏幕显示锁定的保护层厚度值即为当前钢筋的混凝土 保护层厚度
 - 手动存储状态下按存储键将当前值混凝土保护层厚度 值保存
 - 5) 自动存储状态时已经 自动将当前混凝土保 护层厚度值保存

● 不知钢筋直径

- 1) 复位(3.3.1)
- 精确判定钢筋位置 ^{存储方式} (3.3.2)

3) 按 ■ 即可测量钢筋直径及保护层厚度,此时屏幕显示 实测的钢筋直径值及锁定的保护层厚度值,保护层前面 有▶提示,如图(图 3.11)所示。

3.3.4 测量钢筋直径步骤

- 1. 复位操作
- 2. 精确判定钢筋位置
 - 将传感器放置在被测钢筋的正上方,并与被测钢筋平 行;按下▲键,屏幕显示钢筋直径字样,约2秒钟后直 径测量结果直接显示在屏幕上;仪器同时测量保护层厚 度值,显示在保护层显示值位置上,如图(图 3.11) 所示。
- 3. 移动传感器,通道报警声提示附近有钢筋存在;

- 4. 反向移动传感器,使得当前距离值与保护层值一致;
- 5. 旋转传感器使得信号值最大;
- 按▲键测量出钢筋直径及保护层厚度,此时屏幕显示如 图 3.11。

第4章 菜单操作

菜单界面用来设置测量参数以及进行数据查看、传输和删除 操作。开机界面闪过之后,该界面自动出现;也可以在测量状态 下按 菜单 键调出该界面。

菜单操作的统一原则是:

- ▲、▼ 键选择不同的菜单选项; 1.
- 2. 确定 键进入当前选项;
- 3. 菜单 键返回菜单选择状态:
- 4. **返回** 键返回测量状态:
- 5. Ⅰ 开/关键,背光电源切换(在菜 图4.1菜单界面) 单选项有效)。

□ 数据编号 数 报设直度 量 最小厚量 数 据 数 据 数 据 数 据 制 除 2 数 据 3 数 据 3 4 5 4 5 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	001 12mm 0mm	
---	--------------------	--

4.1 数据编号

数据编号应与被测构件建立一一对应关系。每个构件保护层 厚度测量值可以按照数据编号进行存储。每个数据编号中最多存 储 256 个保护层厚度值。

当该菜单项为当前洗项时(图4.2),

- 按确定 键,数据编号末位数字下出现选择光标。 1.
- 2. 按▲、▼ 键调整该位数字, 按◀、▶ 键选择其它数据 位: 该编号调整具有进位和 退位功能,最大值为999。
- 3. 按**菜单**键返回菜单选择状 杰,继续进行其它菜单操作:
- 4. 按返回键返回测量状态。

4.2 预设直径

该参数是测量混凝十保护层厚度

数据编号 001 预设直径 12mm 晶小厚度 0mm	
□ 数据编号 <u>001</u> □ 预设直径 12mm □ 最小厚度 0mm □ 数据显示 □ 数据传输 □ 数据删除	

图 4.2 菜单界面

最重要的参数,如果该参数与被测钢筋的实际直径有差异,则保 护层厚度的测量准确度会有一定误差。请依据被测物设计资料设 置该参数;

对于资料不全的旧有建筑,请先测量钢筋直径(参见第5.4 节),然后依据测量结果设置该参数。

预设直径值为国标 GB1499-1998 中规定的 15 种钢筋直径。 当该菜单项为当前选项时:

- 按 确定 键,此时菜单选择标志消失,在预设直径数字 下出现选择光标。
- 按▲、▼ 键调整该参数。设置完成后,如果需要设置 其它参数,
- 3. 按 菜单 键返回菜单选择状态,继续进行其它菜单操作;
- 4. 按 返回 键进入测量状态。

4.3 最小厚度

该参数用来检查混凝土保护层厚度是否满足最小设计厚度, 具体说明请参照第 5.2 节。在正常保护层厚度测量时,该参数设 置为 0。

当该菜单项为最小厚度选项时:

- 按确定 键,此时菜单选择标志消失,在最小厚度数字下 出现选择光标。
- 按▲、▼ 键调整该参数。设 置完成后,如果需要设置其 它参数,
- 按菜单 键返回菜单选择状态,继续进行其它菜单操作:
- 4. 按返回键返回测量状态。

编号		数	据显示	÷.	
005 004 003 002 001	预设了数据/ 数据大均 46 43 45 44	直径 个数 值 45 45 46	1 2 4 4 4 4 4 4 4 4 4 4 2	2 0 6 (42) 4 4 46 43 45	45 43 44 46
				10	

图 4.3 数据显示界面

4.4 数据显示

显示已存储的数据。

当该菜单项为数据显示选项时:

1. 按**确定**键,进入数据显示界面(图 4.3):

左侧为编号列表区,按照编号存储的先后倒序排 列,即:最后存储的编号最先显示。

右侧为数据显示区,显示当前编号中存储数据的原 始测量数据及统计数据,包括:预设直径、数据个数、 最大/最小值、平均值。

如果编号中存储的数据个数超过 35 个,则需要翻 页查看。

● 按▲、▼ 键选择需要查看的数据编号。

● 按**确定** 键进入数据查看状态,此时当前编号区中的选择

框变为下划线,如<u>005</u>

1). 按▲、▼ 键翻页查看数据。

2). 按 返回 键返回数据编号选择状态;

2. 按 菜单 键返回菜单选择状态 (在数据选择状态下);

3. 按 返回 键返回测量状态 (在菜单状态下)。

4.5 数据传输

将已存储的数据传输到计算 机。

计算机操作:

- 1. 用 USB 线将本仪器的 USB 口 和计算机的 USB 口连接好。
- 2. 运行计算机上的数据传输软件 ZBLTrans. exe,选择在数

3 数据传输	
送売務成 務成単回 つ 務成専所 つ	@ 图题检测数据(26510、2620)]
传输端口 USB	×
信息提示	件稿 (L)
)退出 (E)
传输进度	

图 4.4

据类型中选择钢筋检测数据(R620, R610),在数据传输口中选择 USB 口。如图 4.4 所示:

注: ZBLTrans. exe 文件在随机光盘上,本软件为绿色软件, 拷贝至计算机后可直接执行。

- 3. 点击传输按钮,提示用户输入文件名。如图 4.5 所示:用
 - 户可以选择文件存储位 置,输入文件名。该文 件以文本文件形式存 储,后缀名为"TXT"。
- 点击保存按钮,计算机 开始准备接收仪器传送 的数据,屏幕显示"端 口初始化完毕"信息, 如图 4.6 所示。

图 4.5

图 4.7

仪器操作:

- 将 ZBL-R620/610 仪器菜单选项 置于数据传输位置;
- 按仪器 确定 键进入图 4.7 所示 机内数据传输界面;
- 3. 再次按 确定 键,开始进行数据

图 4.8

传输,屏幕显示"正在传输…"。因为数据传输的速度很快,如果存储的数据不多,该界面会很快闪过。

- 数据传输完毕,计算机上的数据传输软件自动调用 Windows 中的记事本程序,打开传输后的数据文件(如图 4.8 所示),此时,用户可以查看数据或另存;本机自动 返回菜单界面。
- 4.6 安装传输驱动程序

Windows XP 系统:

如果您的电脑以前没有安装过相关的传输驱动程序,那 么当您将计算机和仪器连接起 来时,电脑将会弹出一个对话 框提示您要安装新硬件的驱 动。如图 4.9 所示

图 4.9

您所要做的就是在光驱中

放入传输线驱动光盘选择'搜索设备的最新驱动程序',然后点击'下一步'。电脑会自动搜索并安装所需的驱动。如图 4.10 4.11 所示:

安装完毕后点击'完成'退出安装程序。

Windows 98 系统:

电脑同样会将会弹出一个对话框提示您要安装新硬件的驱动。如图 4.12 所示。在该界面中点击'下一步',则进入如图 4.13 所示的对话框并在此对话框中选择'搜索设备的最新驱动程序'然后点击'下一步'

图 4 13

图 4.12

于是你便会进图 4.14 所示对话框

添加新硬件向导	
	Yindow: 純在都豊的加下法定位置的紙动程序教展 中規業新設設時序。请車面"下一步"以升発提案。 ■ 提来教室設动器(P) ■ 提案 CD-Exon 紙以品器(C) ■ Microsoft Windows Update(O) ■ Microsoft Windows Update(O)

图 4.14

在下面的'指定位置'选项上打钩,将位置指向光驱中的如下文件夹:'H:\CP2101驱动程序\WIN'然后一直点击'下一步'直到安装完成。(如果想在 Win XP 系统上手动安装驱动可仿照在Win98系统上安装的方法)

注: 以上安装过程可能需要重复两次。

4.7 数据删除

删除已存储的数据(全部数据)。 当该菜单项为当前选项时:

- 1、 按**确定**键,进入数据删除界 面,如图4.9 所示。
- 再按确定键,开始数据删除操作,屏幕显示"正在删除…",约4秒钟后删除完成,自动返回菜单界面:

- 2、按菜单 键返回菜单选择状态,继续进行其它菜单操作;
- 3、按返回键返回测量状态。

注意:

<u>该项功能将删除全部数据,如果需要保存数据,请将数据传</u> 输至计算机。

第5章 测量操作

5.1 钢筋定位和保护层厚度测量

5.1.1 一般操作

● 参数设置

- 1).设置预设直径;
- 2). 设置最小厚度为 0;
- 3).设置数据编号(可选);

- 5). 按返回键进入测量界面;
- 6).约3秒钟后当前值显示0,复位完成,进入测量状态

● 系统复位

1).将传感器远离铁磁体置于在空中,,按下确定键。

注意: 在当前距离值显示 0 之前不能令传感器接近钢筋!

- 2). 当前距离值消失,复位过程开始。
- 3). 约3秒钟后,当前距离值显示0,复位操作完成。

在测量过程中应每10分钟左右进行一次复位操作。

5.1.2 定位钢筋

一般应首先定位上层钢筋(或箍筋),然后在两条上层钢筋 (或箍筋)中间测量来定位下层钢筋(或主筋)。

在混凝土表面沿一个方向匀速移动传感器,注意观察滚动 条、当前距离值、保护层值和蜂鸣器声音。通过下列几种方法中 的任何一种都可以判定钢筋位置。

1).蜂鸣器发出鸣叫声。

此时仪器提示传感器越过一条钢筋,然后向相反方向移动传感器,找到当前距离值最小的位置,即是钢筋的准确位置。

- 2).信号值由小逐渐变大,然后又变小。
 传感器逐渐接近钢筋时,信号值逐渐变大,反之,信号 值变小,找到该值最大的位置,即是钢筋的准确位置。
 该值是测量保护层厚度的基本依据。因为在保护层厚度 变化 1mm 范围之内时,当前距离值不会发生变化,而信 号值是真正实时动态值,它可以反映更微小的变化;所 以根据该值可以更精确地确定钢筋位置。
- 3).当前距离值由大逐渐变小,然后又变大。
 传感器逐渐接近钢筋时,当前距离值逐渐变小,反之,
 当前距离值变大,找到该值最小的位置,即是钢筋的准确位置。
- 滚动条逐渐增长,然后又缩短。
 传感器逐渐接近钢筋时,滚动条逐渐增长,反之,滚动条逐渐缩短,找到滚动条最长的位置,即是钢筋的准确 位置。

5.1.3 定向钢筋

可以采取下列两种方法 来确定钢筋走向:

> 4、确定钢筋位置后, 在钢筋正上方左右 旋转传感器,当前 距离值及屏幕左上

角信号值相应有所变化,当<u>信号值最大当前距离值最小</u> <u>时</u>,此时传感器与钢筋平行,传感器走向即为混凝土内 部被测钢筋的走向。

2、在相互平行的两条测量线上分别测量钢筋位置,两个位置点的连线即是钢筋走向。如图 5.2 所示。

5.1.4 测量保护层厚度

1. 自动判读

传感器平行与钢筋走向,并沿与钢筋走向垂直的方向匀速扫 过钢筋正上方,仪器发出一声鸣叫,提示传感器越过一条钢筋, 此时**保护层**显示值自动更新为该处的混凝土保护层厚度值。

该方法适用于钢筋间距大于表 5.1 中描述的情况。

衣 5.1	5.1
-------	-----

单位: mm

被测	则钢筋位于上	层	被	测钢筋位于下	层
保护层厚度	平行钢筋 间距 a1	垂直钢筋 间距 b1	保护层厚度	平行钢筋 间距 a2	垂直钢筋 间距 b2
15	70	80	15	70	90
30	80	100	30	80	110
45	100	120	45	100	130
60	120	140	60	120	150

2. 手动判读

该方法适用于钢筋间距小于表 5.1 中描述的情况。

当现场环境复杂自动判读困难时,可依据**当前距离及信号值** 的变化情况来判定保护层厚度值:当该值有两个以上连续下降然 后又有两个以上连续上升的时候,可以判定该处有一条钢筋,混

凝土保护层厚度值即 是上述过程中的最小 值。例如:当前距离显 示值变化如下时即可 判定一条钢筋, 63-62-61-62-63;保护 层厚度值为61。

5.1.5存储保护层厚度测量值

仪器自动测量的保护层厚度值可以按照数据编号分组保存 下来。最多可以存储 1000 个数据编号,每个数据编号中最多存 储 256 个保护层厚度值。每个编号中同时存储测量时设置的直径 预设值,该直径预设值为第一个保护层厚度值测量时使用的值, 如果用户在存储数目大于0时改变预设直径值,仪器不予存储。

5.2 密集钢筋测量(仅 ZBL-R620 具备)

在梁类或有些柱类构件中,往往存在钢筋密集排列的情况, 有时钢筋净间距在1.5倍钢筋直径左右。在这种布筋情况下,扫 描过程中保护层厚度值变化很小,一般钢筋测量仪器都很难准确 的判定钢筋数目和钢筋位置。

ZBL-R620 针对密集钢筋构件设计了专用测量方式。用户可以针对被测构件的情况选择不同的测量方式:

- 約件中钢筋间距较大,如板类构件,宜采用一般测量方式;
- 約件中钢筋间距较小,如梁类构件,宜采用密集钢筋测 量方式。

在图 5.1 所示的测量界面下,按**▼**键,仪器在一般测量方式 和密集钢筋测量方式切换。当处于密集钢筋测量方式时,屏幕右 上方出现"艹"标志;当处于一般测量方式时,屏幕右上方"艹" 标志消失。

在密集钢筋测量方式下,钢筋定位和保护层厚度的测量、存储方法与 5.1 节相同。

采用密集钢筋测量方式应注意以下几点:

- 1). 扫描速度不应过快, 宜小于 10mm/秒。
 - 2).扫描过程一定要保持单向移动传感器,并保证传感器与 被测钢筋平行。

- 3).尽量选择交叉筋间距较大的位置进行测量。
- 在第一次扫描过程完成后,建议在相反方向进行一次验证扫描,以提高可靠性。

注意:

在钢筋净间距小于 1.5 倍钢筋直径,而且保护层厚度大于 2 倍间距的情况下,容易出现最后一根钢筋无法自动判读的情况 (该种情况在一般混凝土结构中较少见)。对该种情况一般应采 用下述方法讲行测量:

- 1、定位箍筋(方法见5.1节)。
- 2、在间距较大的箍筋中间,确定 一条扫描线。
- 选择一个方向进行扫描测量, 并标记钢筋位置。
- 4、在相反方向进行第二次扫描, 并标记钢筋位置。

5、如果两次扫描结果相吻合,测量过程结束。

6、否则重复3、4步测量,如果两组测量过程都符合以下特征:第一次扫描可以确定A、B、C 三根钢筋,相反方向扫描可以确定D、C、B 三根钢筋。那么基本可以确定该构件有4根钢筋。

5.3 最小保护层厚度测量

该功能主要应用于下列场合:

- 1、模板拆除后检查钢筋是否撑出
- 2、快速检查保护层厚度是否满足最小设计值

操作步骤

- 1). 设置预设直径值为被测钢筋直径
- 2). 设置需要报警的最小保护层厚度值

3). 扫描被测物,当保护层厚度小于设定值蜂鸣器报警。

在该测量方式下,用户可以用较快的速度进行扫描而不用注 意屏幕显示。

5.4 钢筋直径测量

首先准确定位钢筋,然后确定钢筋的准确走向,此时将传感 器置于被测钢筋正上方,按下▲键,屏幕显示**钢筋直径**字样,约 等片刻直径测量结果直接显示在屏幕上,同时将测得的保护层厚 度值,显示在保护层显示值位置上,该值前有一▶标志,以区别 于依据预设直径值测量的保护层厚度值。如果保护层厚度小于表 5.2 中相应的最小值,仪器显示"厚度太小",如果保护层厚度 大于表 5.2 中相应的最大值,仪器显示"厚度太大",此时无法 测量钢筋直径

表 5.2 钢筋直径测试范围

单位: ㎜

钢筋直径	最小保护层厚度	最大保护层厚度
6	8	60
8	12	62
10	12	66
12	14	68
14	14	68
16	16	72
18	16	72
20	18	74
22	18	74
25	20	76
28	22	76
32	22	80

测量时如遇到保护层厚度太小的情况,建议在传感器底部垫 一块有机玻璃(或其它非金属材料)将测量值减去垫块厚度即为 实测保护层厚度。

5.5 钢筋测量的一般原则

- 扫描面应比较平整,无较高的突起物。如果表面过于粗 糙而无法清理时,可以在扫描面上放置一块薄板,在测 量结果中将薄板的厚度减掉。
- 2. 扫描过程中尽量使传感器保持单向匀速移动。
- 扫描方向应垂直于钢筋走向(如图 5.7),否则可能会造 成误判(如图 5.6)。

 对于网状钢筋,一般应首先定位上层钢筋,然后在两条 上层钢筋中间测量来定位下层钢筋。

第6章 维护

6.1 使用前检查

使用前请将仪器接好传感器,开机测试,如果电量显示小于5 小时,请准备一套新电池放入仪器箱,以备随时更换;如果在当 前距离显示值位置显示"———",表示仪器自检未通过,请检 查传感器是否连接好,信号线是否损坏,接插件是否被异物覆盖 或损坏。如以上问题排除后仍未解决问题,请与提供商联系。

6.2 清洁

请勿将仪器及配件放入水中或用湿布擦洗!

请勿用有机溶剂擦洗仪器及配件!

请用干净柔软的干布擦拭主机及传感器。

请用干净柔软的毛刷清理信号线插头及插座。

仪器制造商:北京智博联科技有限公司

地 址:北京市西城区德外大街 11 号 B 座 403

- 联系电话 : 010-62366228
- 传 真: 010-62367043

仪器供应商: